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Abstract
This deliverable presents a series of developments in mathematics and related domains that make use of some parts of the com-
putational machinery underlying work in the Coinvent project. In particular, this work makes use of the HETS system to validate
correctness of the blends described. We have also relied on the ONTOHUB to support uniform library and look-up mechanisms
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Executive Summary

• Section 1 gives a general background;

• Section 2 describes some simple examples where simple combinatorial combinations via
blending give mathematically interesting results.

• Section 3 looks at the blending of finite and infinite notions so as to achieve a consistent
theory with aspects of both.

• Section 4 looks at a development from algebra that produced a “surprising” definition of an
algebraic concept.

• Section 5 looks at the use of blending to identify analogies between theories that can serve
as aids in proof tasks.

• Section 6 describes a more extended development that builds the main concepts of Galois
theory from a small numbers of simple input concepts.



Conceptual blending in mathematics FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

Contents

1 Introduction 1

2 Incremental Theory Building 2
2.1 Simple Theory Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Blending Naturals with Line . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Blending Rotation with a Numberline . . . . . . . . . . . . . . . . . . . 4

2.2 Search and Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Notions of Infinity 6

4 Prime Ideals 8
4.1 The first conceptual space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 The second conceptual space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 The Generic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 The Blending Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5 The Axiomatization of the Blending . . . . . . . . . . . . . . . . . . . . . . . . 9
4.6 Implementation for prime ideals over CDR-s as a blend . . . . . . . . . . . . . . 10

5 Analogous Lemmas 11
5.1 Background explanation and motivation . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Example with Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Generalisation Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Galois Theory 17

7 Conclusion 19

611553 October 1, 2015 iii



Conceptual blending in mathematics FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

1 Introduction

This document presents a series of developments using conceptual blending in mathematics,
widely understood. In addition, a couple of developments that go in different ways outside of
the mathematical domain are also reported.

The various cases presented use the Coinvent computational resources in different ways.

• In all cases, the logical theories studied are given in the CASL language;

• Computation of the blended theory from input theories and a generic theory is realised by
HETS.

On the other hand:

• In some cases, the generic theory is computed by the HDTP module, perhaps using suc-
cessive solutions for such generic theory.

• In other cases, the generic theory is given simply in terms of type declarations common to
the input theories.

• In other cases, the generic theory is given by hand.

This will be clarified in each case.

The developments here lean on notions of search which are of course central to the aims of the
project. Again, this is apparent to different extents in the different developments.

Working in the richer representation language that is given by CASL is needed in the math-
ematical domain if we are to work with humanly-comprehensible theories. This rules out direct
use of the amalgams approach used elsewhere in the project, and reliance on HDTP to find generic
theories.

This brings with it issues of undecidability in the worst case, and infeasibility of consistency
checking in typical cases. A discussion of search issues in this context, with a suggested semi-
effective algorithm is given in Martinez et al. (2016).

There is work involving the reformation of logical theories carried out in association with
Coinvent work, not further described in this document, that is discussed in A. Bundy and Mitrovic
(2016) and Alan Bundy and Maclean (2016).
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2 Incremental Theory Building

This section presents work done on constructing mathematical theories by applying blending re-
cursively, using simple initial “seed” theories. Here we present examples in this section using
simple concepts inspired from the notion of image schema. A more complex development is
described in §6.

A main challenge in this work is controlling the search in blending. We describe the challenges
here in §2.2, where we discuss automation.

2.1 Simple Theory Building

Let us introduce some very simple concepts in CASL syntax. For example a simple version of the
natural numbers:

spec NATSUC =
sort Num
ops zero : Num;

__+__ : Num × Num→ Num;
suc : Num→ Num

pred __<__ : Num × Num
∀ x, y, z : Num
• ¬ x < x
• x < y ∧ y < z⇒ x < z
• x < y ∨ x = y ∨ y < x
• x < y⇔ suc(x) = y ∨ ∃ sx : Num • suc(x) = sx ∧ sx < y
• suc(x) = y ∧ suc(x) = z⇒ y = z
• suc(x) = suc(y)⇒ x = y
• ∃ a : Num • suc(x) = a
• ¬ suc(x) = zero
• suc(x) = y⇒ zero < y
• x < y⇒ suc(x) < suc(y)
• zero + y = y
• suc(x) + y = suc(x + y)

end

A notion of magnitude:

spec MAGNITUDE =
sort X
pred __>__ : X × X
op zerosize : X
∀ x, y, z : X
• ¬ zerosize = x⇒ x > zerosize
• x > y ∧ y > z⇒ x > z

end
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from which we could develop the notion of line:

spec LINE =
MAGNITUDE with X 7→ Dist

then sort X
preds rightof : X × X;

leftof : X × X
op distance : X × X→ Dist
∀ x, y : X
• rightof (x, y)⇔ leftof (y, x)
• ¬ rightof (x, x) ∧ ¬ leftof (x, x)
• distance(x, y) = distance(y, x)
• distance(x, x) = zerosize

end

We can also construct the concept of rotation by 180 degrees:

spec ROTATION180 =
sorts Elem, Size
preds left : Elem;

right : Elem
ops origin : Elem;

rotate : Elem × Elem→ Elem;
size : Elem→ Size

∀ x : Elem
• left(x)⇔ right(rotate(origin, x))
• size(rotate(origin, x)) = size(x)
• rotate(origin, origin) = origin
• ¬ left(origin) ∧ ¬ right(origin)
• ¬ x = origin⇒¬ (left(x) ∧ right(x))
• ¬ x = origin⇒ left(x) ∨ right(x)

end

Given these theories, the challenge is to automatically compute blends, and recursively com-
pute with the given blends to discover new theories which are creative. An algorithm for doing this
automatically is given in §2.2. For now in this section we present a simple combination of blends
which result in an interesting result - that being a version of the integers. The HETS development
graph can be seen in Figure 1.

2.1.1 Blending Naturals with Line

The creativity demonstrated here is the combination of very simple concepts. The first blend
to be considered is by blending the Natural numbers with the concept of a line. The arbitrary
sort underlying the specification on a line is associated via the Generic space with the sort of the
Natural numbers. The blend forms a number line — i.e. a line with a concept of number imposed
on it.

611553 October 1, 2015 3
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Figure 1: HETS development graph for constructing a version of the integers from simple theories

2.1.2 Blending Rotation with a Numberline

Given a concept describing rotation by 180 degrees, we can construct a blend by associating the
concept of a fulcrum with the natural number 0, and identifying the sort of Natural numbers with
that of rotation by 180 degrees. This constructs a numberline which can be reflected about 0 —-
thus identifying the concept of a negative number.

2.2 Search and Automation

In order to construct a blend recursively, one need to consider an algorithm for how to search.
Figure 2 shows a graph of how theory construction is propagated.

The main branch points in the search are:

• On choice of generic theory (HDTP or Amalgams;

• On revising input theories to logically weaker theories (e.g. if found to be inconsistent on
evaluation).

In the examples treated here, the second choice point is explored before trying alternatives to
the first (in the case HDTP is used). As soon as output theories become available for subsequent
blending, the combinatorics of the sitaution become challenging.
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input theories

HDTP Amalgams

evaluation

HETS

output theories

Figure 2: The components of the system used for recursively discovering concepts
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3 Notions of Infinity

This work is reported in the publication Bou et al. (2015), linked to the bibliography.

The work of Lakoff and Núñez (2000) provides a wide range of examples of metaphorical
reasoning in mathematics, while stressing the embodied cognition involved in basic mathematical
experience.

Some of the ideas of Lakoff and Núñez (2000) have been reworked by the authors, with in-
creased emphasis on conceptual blending. In particular, the analysis of mathematical infinity,
given in metaphorical form as the “Basic Metaphor of Infinity” (BMI) in Lakoff and Núñez (2000),
is represented in blend form in Núñez (2005) as the “Basic Mapping of Infinity” (so, still “BMI”).

A particular case descibed by Núñez involves reasoning about infinite ordered sets, and transfin-
ite ordinals; he analyses the situation from a cognitive point of view in (nunez93,nunez05).

We show here how this blend works out in our setting. The BMI suggests that the notion
of completed infinity, in particular the possibility of transfinite numbers in the sense of Cantor,
comes from a blend of the notion of completed, finite process with that of a potentially infinite and
endless process.

Thus take two corresponding input spaces, given by CASL specifications FinEnd and Inf
corresponding to the following diagrams

FinEnd:

EndStart

Inf:

. . .
Start

• FinEnd: Completed Iterative Processes are those that from some initial state, terminate in
a final state after a finite number of state transitions. One such case is chosen.

• Inf: Infinite Iterative Processes are those that continue indefinitely to change state.

The generic space Gen simply identifies the start states, the notion of process step, and the
linear ordering of states. This blend is inconsistent, for the following two reasons:

1. the number of states is finite (from FinEnd), and infinite (from Inf);

2. there both is an end state (from FinEnd) and is no end state (from Fin).

Search through the possibilities of weakening the input spaces by omitting as few axioms as pos-
sible among those involved in an inconsistency reveals the possibility of a structure with infinitely
many states (from Inf) and an end state (from FinEnd). Computing the colimit from the weakened
input spaces W-FinEnd, W-Inf gives a theory corresponding to this diagram:
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. . .
Start End

Thus we have a blend as in the earlier examples:

Colimit

W-FINEND W-INF

Gen

611553 October 1, 2015 7
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4 Prime Ideals

This work is also published in Bou et al. (2015).

The mathematical reuse of the terminology “prime”, originally associated with natural num-
bers, applied to certain well-behaved subsets of algebraics structures called rings, is not an acci-
dent. It shows inter-theory analogy in practice.

We indicate here how this is captured via the blending process. Here, we give a standard
mathematical account of the theories involved. The background concepts can be found in Eisen-
bud (1995). In carrying through identification of a blend between prime numbers and ideals of
commutative rings, the machinery gave a new definition, unknown to the authors, and apparently
not generally known to the community of algebraists — this surprise is evidence of hte creativity
of the process. We present a first blend involving weakening, followed by a second blend from
fuller input spaces, where the emergent concept of CDR appears.

4.1 The first conceptual space

Let (R,+.∗,0,1) be a commutative ring with unity (see the formal definition and examples in Eis-
enbud (1995)). Now, R can be understood as the sort containing the elements of the corresponding
commutative ring with unity. An ideal I is a subset of R satisfying the following axiom:

(∀i, j ∈ I)(∀r ∈ R)(i+(− j) ∈ I∧ r ∗ i ∈ I).

Let us define a unary relation (predicate) isideal on the set (sort) of subsets of P(R) corres-
ponding to this definition. Now, we define

Id(R) = {A ∈ P(R) : isideal(A)} .

Ideals are “multiplied” using the following definition:

I ·ι J =

{
n

∑
k=1

ik · jk : n ∈ N∧ i1, . . . , in ∈ I∧ j1, . . . , jn ∈ J

}
.

The key property that we want to keep in the blend is the one saying that this operation ·ι has
a neutral element 1ι , which can be seen as an additional notation for the ring. On the other hand,
we want to see the containment relation ⊆ as a binary relation over the sort Id(R).

Summarizing, our first conceptual space consists of sorts R, Id(R) and P(R); operations +,∗,0R,1R,1ι

and ·ι ; and the relations ⊆ and isideal.

Let us denote this space by I.

4.2 The second conceptual space

Let Z be the set of the integer numbers. Here, we choose any partial axiomatization of them
including at least the fact that (Z,∗,1) is a commutative monoid. We define also an upside-down
divisibility relation b defined as ebg := g|e, i.e. there exists an integer c such that e = c∗g. Let us

8 October 1, 2015 611553



Conceptual blending in mathematics FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

define a unary relation isprime on Z as follows: for all p ∈ Z, isprime(p) holds if p 6= 1 and:

(∀a,b ∈ Z)
(
(abbp)→ (abp∨bbp)

)
.

Besides, we define the set (sort) of the prime numbers as

Prime = {p ∈ Z : isprime(p)}

In the CASL language, we consider Z as the sort of the integer numbers, ∗ as a binary operation,
prime as a predicate and b as a binary relation, any of them defined over the sort Z. We denote
this conceptual space by P.

4.3 The Generic Space

The generic space G consists of a set (sort) G with a binary operation ∗G, a neutral element S and
a binary relation ≤G.

4.4 The Blending Morphisms

The morphism to I uses:
ϕ(G) = Id(R),ϕ(∗G) = ∗ι ,ϕ(S) = 1ι and ϕ(≤G) =⊆;
the morphism to G uses:
δ (G) = Z,δ (∗G) = ∗,δ (S) = 1 and δ (≤G) = b.

4.5 The Axiomatization of the Blending

A straightforward colimit construction based on the input and generic spaces above yields a con-
sistent space with properties inherited both from the prime elements into the integers and from
the ideals of commutative rings; one of the concepts is a notion of prime ideals, another is that
of CDR1 Here we describe briefly a weakening of the given spaces that makes the resultant blend
more generally applicable.

From the properties defining the integers we transfer into the blend only the fact that Z is a set
with a binary operation ∗ having 1 as neutral element and b as a binary relation, without taking
into account its formal definition.

Now after computing the colimit, we obtain that G = Id(S) and that any element P ∈ G (i.e.,
an ideal of S) satisfies the predicate isprime if and only if

P 6= S∧ (∀X ,Y ∈ G (X ·ι Y ⊆ P→ (X ⊆ P∨Y ⊆ P)).

Thus, the predicate isprime turns out to be the predicate characterizing the primality of ideals
of S and the set (sort) Prime turns out to be the set of prime ideals of S.

Using the weakened input spaces, the blending space consists of the axioms assuring that S
is a commutative ring with unity, G is the set of ideals of S, isprime is the predicate specifying
primality for ideals of S and Prime is the collection of all prime ideals of S.

1A ring R is a Containment Division Ring (CDR) if for all ideals I and J of R, I ⊆ J if and only if J divides I (i.e.
there exists an ideal U such that I =U ·ι J).

611553 October 1, 2015 9



D6.2 Mathematical blends in the heterogenous KR&R framework

4.6 Implementation for prime ideals over CDR-s as a blend

The paper also describes a second version of the blend, where the axiom concerning divisibility
in the second conceptual space are restored. See the paper for details: it is here that a potentially
interesting new definition arises. The resultant blended theory is summarised by the HETS blend
below.

This theory defining the blend corresponds to the axioms defining a CDR (S), the set of all its
ideals (Generic), the set all its prime ideals (SimplePrime) and a primality predicate (IsPrime). We
present in Listing 1 just the theory corresponding to the colimit (omitting details of ring axioms
and ideal generation).

[!ht]

spec SPEC =
sorts Generic, RingElt, SimplePrime, SubSetOfRing
sorts SimplePrime < Generic,IdGeneric < SubSetOfRing
ops 0,1,S : RingElt
op __∗__ : RingElt × RingElt→ RingElt
op __+__ : RingElt × RingElt→ RingElt
op __x__ : Generic × Generic→ Generic
pred IsIdeal : SubSetOfRing
pred IsPrime : Generic
pred __isIn__ : RingElt × SubSetOfRing
pred gcont : Generic × Generic
pred __generates__ : RingElt × Generic
∀ I : SubSetOfRing • I ∈ Generic⇔ IsIdeal(I)
∀ x : Generic • x x S = x
∀ x : Generic • S x x = x
∀ A, B : Generic
• gcont(A, B)⇔ ∀ a : RingElt • a isIn A⇒ a isIn B
∀ x, y : RingElt • x + y = y + x
%% and further ring axioms . . .
∀ I : SubSetOfRing
• IsIdeal(I)
⇔ ∀ a, b, c : RingElt
• ((a isIn I ⇒ a isIn S) ∧ 0 isIn I)
∧ (a isIn I ∧ c isIn S⇒ c ∗ a isIn I)
∧ (a isIn I ∧ b isIn I ∧ c isIn S ∧ b + c = 0
⇒ a + c isIn I)

∀ a : RingElt; A : Generic
%% and axioms for generates and x . . .
∀ x, y : Generic • gcont(x, y)⇔ ∃ c : Generic • x = y x c
∀ p : Generic • p ∈ SimplePrime⇔ IsPrime(p)
∀ p : Generic
• IsPrime(p)
⇔ (∀ a, b : Generic
• gcont(a x b, p)⇒ gcont(a, p) ∨ gcont(b, p))
∧ ¬ p = S

end

Listing 1: Colimit for prime ideals over CDR-s
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5 Analogous Lemmas

The work we describe here has been published in Eppe et al. (2015), and is automated using the
HETS and Amalgams system components.

5.1 Background explanation and motivation

In Automated Theorem Proving (ATP) one tries to apply mechanical techniques to prove the cor-
rectness of mathematical statements. One way of doing this is to apply inference rules of a partic-
ular logic, and rewrite rules pertaining to the theory. For example in the natural numbers one can
apply the rewrite rules

0+N ⇒ N (1)

s(M)+N ⇒ s(M+N) (2)

Imagine now trying to solve the theorem

∀x,y : x+ y = y+ x

which we do by induction on x. This sets a base case (which we ignore here but is easily solved)
and a step case:

∀y′ : x+ y′ = y′+ x ` s(x)+ y = y+ s(x)

comprised of the induction hypothesis on the left of the turnstile vdash, and the induction conclu-
sion on the right. Now we can exploit the rewrite rule (2) to give

∀y′ : x+ y′ = y′+ x ` s(x+ y) = y+ s(x)

now we can apply the induction hypothesis to give

` s(y+ x) = y+ s(x)

which we can solve with a subsequent induction - the details of which we omit here.

5.2 Example

Now let us consider a slightly more complicated example pertaining to the natural numbers. Define
a primitively recursive factorial function f act, and a tail-recursive factorial function q f act as

f act(0) ⇒ s(0) (3)

f act(s(N)) ⇒ s(N)× f act(N) (4)

q f act(0,M) ⇒ M (5)

q f act(s(N),M) ⇒ q f act(N,s(N)×M) (6)

where multiplication is defined as

0×N ⇒ 0 (7)

s(N)×M ⇒ M+(N×N) (8)

611553 October 1, 2015 11
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Now let us imagine trying to prove a theorem stating a correctness property about the equival-
ence of factorial calculations of the f act and q f act functions:

∀n : N. f act(n) = q f act(n,s(0)) (9)

Now by induction on n once again the base case is discharged easily and we ignore that here,
focussing instead on the the step case:

f act(n) = q f act(n,s(0)) ` f act(s(n)) = q f act(s(n),s(0))

which can be rewrite with (4) and (6) to

f act(n) = q f act(n,s(0)) ` s(n)× f act(n) = q f act(n,s(n)× s(0))

which is not easily solveable by induction because the s(0) in the hypothesis cannot be instanti-
ated2.

In order to solve this we need to employ a generalisation lemma. A lemma is another theorem
which is used in the proof using the cut rule of inference:

Γ ` A Σ,A ` ∆

Γ,Σ ` ∆

in this case Σ is empty, ∆ is the theorem given in (9).

The creative step required is to discover the A such that the cut rule can be applied. The
process of automatically discovering the A is an unsolved problem. There are various systems
which propose techniques but it is undecideable and in general very challenging. For factorial the
lemma we can apply which allows the proof to succeed is

∀m,n : N. f act(n)×m = q f act(n,m)

We will refer to this lemma as the “Eureka Lemma” in the rest of the exposition.

5.3 Example with Blending

The idea is to use blending to discover these eureka lemmas for different theories by blending
theories for which we know a eureka lemma with one with for which we don’t. Let us initially
take theory discussed so far about the natural numbers as one theory:

library a

spec NATSUC =
sort Nat
ops zero : Nat;

s : Nat→ Nat
op fact : Nat→ Nat
op qfact : Nat × Nat→ Nat

2This explanation can be expanded - the reason is complicated
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op plus : Nat × Nat→ Nat
op times : Nat × Nat→ Nat
∀ x, y : Nat
• ∃ a : Nat • s(x) = a
• ¬ s(x) = zero
• fact(zero) = s(zero)
• fact(s(x)) = times(s(x), fact(x))
• qfact(s(x), y) = times(qfact(x, s(x)), y)
• qfact(zero, x) = x
• plus(zero, x) = x
• plus(s(x), y) = s(plus(x, y))
• times(zero, y) = zero
• times(s(x), y) = plus(y, times(x, y))
• fact(x) = qfact(x, zero)
%theorem to be proved
• times(fact(x), y) = qfact(x, y)
%eureka lemma

end

now let us consider the theory of lists:

library a

spec LIST =
sort El
sort L
op nil : L
op cons : El × L→ L

end

where we introduce some functions and definitions:

op app : L × L→ L
op rev : L→ L
op qrev : L × L→ L
∀ x, y : L; h : El
• app(nil, x) = x
• app(cons(h, x), y) = cons(h, app(x, y))
• rev(nil) = nil
• rev(cons(h, x)) = app(rev(x), cons(h, nil))
• qrev(nil, x) = x
• qrev(cons(h, x), y) = qrev(x, cons(h, y))
• rev(x) = qrev(x, nil)
%theorem to be proved

611553 October 1, 2015 13
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Now let us say we want to find the eureka lemma for the theorem rev(x) = qrev(x,nil) which
states the equivalence of computation of reversal of a list of elements by a primitively recursive
function rev and a tail-recursive function qrev. We want to use blending of the naturals and this
theory of lists to find a colimit which states the eureka lemma for lists.

We want to find a generic space which consists of the constructors of the theory, the functions
we want to behave analogously and any auxiliary functions. In this case we want the mapping
between the input theories to be

0 : Nat ⇐⇒ nil : List

s : Nat→ Nat ⇐⇒ cons : El×List→ List

f act : Nat→ Nat ⇐⇒ rev : List→ List

q f act : Nat×Nat→ Nat ⇐⇒ qrev : List×List→ List

times : Nat×Nat→ Nat ⇐⇒ app : List×List→ List

but this is problematic when you look at the types of the constructors of the List and Naturals.

We need to discover a way in which the constructor for the naturals can be made to be equi-
valent in arity to that of the Lists. Lists of identical elements are isomorphic to the naturals and
app in lists is then equivalent to + in the naturals. In the list theory we can compute:

app([1,2], [3,4]) = app(cons(1,cons(2,nil)),cons(3,cons(4,nil)) = [1,2,3,4]

and
app([3,4], [1,2]) = app(cons(3,cons(4,nil)),cons(1,cons(2,nil))) = [3,4,1,2]

so app is not commutative. However on lists of identical elements

app([1,1], [1,1]) = app(cons(1,cons(1,nil)),cons(1,cons(1,nil)) = [1,1,1,1]

and
app([1,1], [1,1]) = app(cons(1,cons(1,nil)),cons(1,cons(1,nil))) = [1,1,1,1]

where app now behaves exactly as + does on the naturals.

We can exploit this to generalise the theory of naturals by adding an extra argument to the
successor function, but only computing with the second argument:

s(n)→ s(c,n)

where c is some arbitrary element. The step definition of plus, for example, becomes

plus(s(c,n),m) = s(c, plus(n,m))

so the computation remains in the second element. This way the naturals can be made to look like
lists. We then get a theory:

library a

spec NATSUC =
sort Nat
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sort Element
op canonical_element : Element
ops zero : Nat;

s : Element × Nat→ Nat
op fact : Nat→ Nat
op qfact : Nat × Nat→ Nat
op plus : Nat × Nat→ Nat
op times : Nat × Nat→ Nat
∀ x, y : Nat
• ∃ a : Nat • s(canonical_element, x) = a
• ¬ s(canonical_element, x) = zero
• fact(zero) = s(canonical_element, zero)
• fact(s(canonical_element, x))
= times(s(canonical_element, x), fact(x))
• qfact(s(canonical_element, x), y)
= times(qfact(x, s(canonical_element, x)), y)
• qfact(zero, x) = x
• fact(x) = qfact(x, zero)
%theorem requiring lemma
• times(fact(x), y) = qfact(x, y)
%eureka lemma
• plus(zero, x) = x
• plus(s(canonical_element, x), y)
= s(canonical_element, plus(x, y))
• times(zero, y) = zero
• times(s(canonical_element, x), y) = plus(y, times(x, y))

end

and we can now define a generic space which is correctly typed:

library a

spec GEN =
sorts H, G
op null : G
op constructor : H × G→ G
op recfunc : G→ G
op qrecfunc : G × G→ G
op auxfunc : G × G→ G

end

Now the colimit contains the lemma as part of the definition

∀x,y : List(El) .app(rev(x),y) = qrev(x,y)

which is precisely the “Eureka Lemma” we need. We then need to remove some axioms from the
naturals so that the colimit theory is consistent.
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5.4 Generalisation Required

In order to render the two theories of Nat and List similar enough that signature morphisms can
be defined between a generic space, we need to modify the definitions of the functions. The
constructor for naturals is extended with a generic type, so that the constructor function s(n) (of
arity 1) becomes s(g,n) where g is an element of a new type G which is a newly introduced general
type:

s : N→ N −→ s : G→ N

Now we must extend the definitions of any functions which are defined according to these con-
structors. For example the definition of plus and times becomes:

∀x,y : N. plus(s(x),y) = s(plus(x,y)) −→ ∀x,y : N;g : G. plus(s(g,x),y) = s(plus(g,x+ y))

∀x,y : N. times(s(x),y) = y+ times(x,y) −→ ∀x,y : N;g : G. times(s(g,x),y) = y+ times(x,y)

The element g always either is returned identically or removed from the definition. That is to say,
whenever s(g,n) appears, the first argument is always simply g.

Let us define a transformation T formally for this generalisation. We could write for any
function:

T (F (~Xi) = G (~Yi))≡
∀s(a j) ∈ ~Xi;s(bk) ∈~Yi.F (T (~Xi ◦ (s(g,a j)/s(a j)))) = G (T (~Yi ◦ (s(g,bk)/s(bk))))
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6 Galois Theory

Here we summarise work showing how a fairly small combination of belnding steps is sufficient to
build the complex, abstract notions that belong to the mathemtical theory associated wit Evariste
Galois. A version of this work is published as Gomez-Ramirez, 2015. It extends the work on
prime ideals described above. All this development has been checked via the hets system.

This work shows that it is possible to generate formally four of the most fundamental notions
of Field and Galois Theory by means of nine recursively generated blends, starting from five basic
mathematical notions coming from sev eral areas of mathematics as group theory, abstract algebra
and topology.

As an example, one of the given input spaces is given by:

Definition 1 A pointed (abelian) group is a set B with an binary operation ∗ and a distinguished
element b ∈ B such that (B\{b} ,∗|B\{b}×B\{b}) is an (abelian) group, and b∗ c = c∗b = b for all
c ∈ B.

To summarise, the statring point is from the following five basic mathematical concepts, all of
them supported by well-known examples and used very often implicitly and explicitly in modern
mathematics: Abelian Group, Pointed Abelian Group, Distributive Space, Action of a group over
a Set and Fixed Point Space.

Then each of these concepts are blended iteratively using very simple generic spaces inducing
simultaneously the simplest kinds of analogical relation between the corresponding input spaces,
namely, relations given by renaming sorts corresponding to sets, functions and relations. So, after
doing 9 times the operation of conceptual blending with a formalization of colimits of theories in
many-sorted first order logic, we obtain 4 of the most fundamental concepts of Fields and Galois
theory, i.e., the mathematical notions of Fields, Field Extension, Group of Automorphisms of a
Field and the Group of Automorphisms of a Field Extension fixing the base field. This last concept
coincides with the notion of Galois Group when the corresponding extension is a Galois extension.
We make and run explicitly all the related implementation in Hets

The figure 3 gives an idea of how this fits together.

This gives some foundational mathematical ‘evidence’ that formal conceptual blending plays
a central role as a concrete ‘meta-mathematical’ operation allowing us to model more and more
aspects of mathematical creativity. Now, we are not talking any more about isolated mathematical
concepts but about the conceptual production of entire theories with formal conceptual blending.

While the small size of the theory graph is encouraging here, at this stage the complementary
question of how to control a blending process in the face of huge freedom of choice is still to be
addressed, for this sort of example. It is not claimed that the process as described is a plausible
model of human mathematical invention.
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Figure 3: Diagrammatic Representation for the Generation of four Fundamental Conc epts of
Fields and Galois Theory through Formal Conceptual Blending.
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7 Conclusion

We have described a series of mathematical and related developments carried out in the course of
the COINVENT project. These developments have made use, to different extents, of the various
tools available to us (HETS, HDTP, Amalgams, and ONTOHUB as a flexible repository).

In so doing, we have used different search strategies, and representations, all within the frame-
work of conceptual blending via categorical push-outs, instantiated in different ways.

The examples range from theories of simple data-structures to the advanced mathematics of
Galois theory. This provides a proof of concept in this domain, showing that conceptual blends
in mathematics are explicable in this way. More work is needed to evaluate the potential of this
approach as support for creative mathematics — the new definition arising from the work in Galois
theory gives grounds for hope in this direction.
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