
D8.1
Initial specification of the system

Authors Daniel Winterstein (UEDIN), Ewen Maclean (UEDIN), Mihai Code-
scu (OVGU)

Reviewers Lourdes Tavira (CSIC)

Grant agreement no. 611553
Project acronym COINVENT - Concept Invention Theory
Date June 30, 2014
Distribution PU



Disclaimer

The information in this document is subject to change without notice. Company or product names mentioned in this document may
be trademarks or registered trademarks of their respective companies.

The project COINVENT acknowledges the financial support of the Future and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the European Commission, under FET-Open Grant number 611553.

Abstract
This deliverable presents a specification and architectural plan for the Coinvent system, motivated by use cases and a description
of a typical user session. The architecture described is flexible, modular, and suitable for distributed computing. Analysing target
examples has shown that interactive and iterative concept development should be supported. The system design uses RESTful http
web services to compose building blocks. Where possible, the building blocks use technology already developed by the Coinvent
group (HETS, HDTP, DOL, and HR).
Keyword list: specification, system architecture



Executive Summary

The Coinvent software will produce novel ideas through unfamiliar combinations of familiar ideas
- a difficult computational task. We aim to develop a computationally feasible, cognitively-inspired
formal model of concept creation, drawing on Fauconnier and Turner’s theory of conceptual blend-
ing, and grounding it on a sound mathematical theory of concepts.

The software must support different domains and different types of user. The key target do-
mains are mathematics and music, but it should be applicable to a wide range of domains beyond
those.

We have mapped out different use cases, and analysed the requirements that stem from them.
By exploring examples in different domains, we have concluded that a high level of flexibility
and user control will be required. This design allows for that accordingly. A mathematical case-
study where the complex numbers are invented was particularly informative in developing the
requirements; this case-study has been submitted to the C3GI workshop for publication.

The use-cases have emphasised the importance of the model-generation and evaluation com-
ponents as key parts of the system, alongside the concept blending engine.

We propose a modular system design, which supports the flexibility necessary to cover the
varying domains. The modular design is also a good basis for coordinating the work of the dis-
tributed teams involved in the project.

Recent trends in software development have seen the growth of a RESTful variant of the
model-view-controller pattern, where a json-over-http API provides a clear separation between
data, operations, and user-interface. We adopt that pattern here, adding an agent/queue model to
support potentially slow computations.

We are fortunate to be building on existing tools which will provide building blocks for several
components.



D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

Contents

1 Overview 1

2 A Typical Coinvent Session 1

3 Core Object: The Blend Diagram in Progress 2

4 Components 3
4.1 User Portal (Web App) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.2 Blend: Concept Blender: Given a Blend Diagram in Progress, compute the Blend

Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.3 Base: Given 2 Concepts, compute a common base Concept . . . . . . . . . . . . 4
4.4 Weaken: Amalgam Finder: Given an inconsistent Blend Diagram, weaken the inputs 4
4.5 Model: Example Finder: Given a Concept, find examples / models . . . . . . . . 5
4.6 Consistency: Concept Correctness: Is it consistent? . . . . . . . . . . . . . . . . 5
4.7 Quality: Concept Scorer: How good is a Concept? . . . . . . . . . . . . . . . . . 5
4.8 File: Concept Store: Store Concepts and Blend Diagrams . . . . . . . . . . . . . 5
4.9 Job: Provide meta-data on slow tasks . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Architecture 6
5.1 Independent components, linked via http APIs . . . . . . . . . . . . . . . . . . . 6
5.2 Manual / Interactive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.3 Actor / Queue Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.4 System Stack Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Languages / File Formats 9
6.1 3 Levels of languages: software, meta-logic, domain-logic . . . . . . . . . . . . 9
6.2 Connecting concepts: DOL (modified) . . . . . . . . . . . . . . . . . . . . . . . 9
6.3 Mathematics: CASL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.4 Music: OWL? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.5 Other Domains: OWL Manchester Syntax . . . . . . . . . . . . . . . . . . . . . 10
6.6 Web-service Wrapper: JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Open Questions and Risks 11
7.1 Software development risks and mitigation . . . . . . . . . . . . . . . . . . . . . 11
7.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A Appendix 1: Component APIs 12
A.1 Common . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
A.2 Url structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
A.3 Common Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.4 Common Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.5 Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.6 Authentication: none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.7 Cross-server requests: CORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

611553 June 30, 2014 iii



CONTENTS

B Component APIs 14
B.1 /blend: Given a Blend Diagram in Progress, compute the Blend Concept . . . . . 14
B.2 /base: Given 2 Concepts, compute a common base Concept . . . . . . . . . . . . 14
B.3 /weaken: Given an inconsistent blend diagram in progress, weaken the concepts . 15
B.4 /model: Given a Concept, find examples . . . . . . . . . . . . . . . . . . . . . . 15
B.5 /consistency: Is a concept consistent? . . . . . . . . . . . . . . . . . . . . . . . 16
B.6 /quality: How good is a Concept? . . . . . . . . . . . . . . . . . . . . . . . . . 16
B.7 /file: Store Concepts and Blend Diagrams . . . . . . . . . . . . . . . . . . . . . 17
B.8 /job: List open tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.8.1 /job/$user name/$job id: Show / delete job details . . . . . . . . . . . . 18

C User-Stories 18
C.1 As a Coinvent Researcher... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.1.1 User: Logic researcher . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
C.1.2 User: Social creativity researcher . . . . . . . . . . . . . . . . . . . . . 19

C.2 As a non-Coinvent developer... . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
C.2.1 User: A researcher with ontology experience . . . . . . . . . . . . . . . 19
C.2.2 User: A developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.3 As an end-user... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
C.3.1 Domain: Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.4 Domain: Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
C.4.1 Other Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D Definitions / Glossary 23

iv June 30, 2014 611553



D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

1 Overview

This document presents the archictectural design for the integrated Coinvent system.
Please first read:

1. The Glossary (§D)

2. The requirements / user-stories (§C) which motivate this design.

2 A Typical Coinvent Session

Coinvent covers several domains and use-cases. The following description may be taken as typical
of planned usage, but not normative.

In a typical session, the user browses and selects two concepts from the rich background of
domain concepts. A blended concept is then developed, which may be automatic or interactive.
Examples of the concept are generated (again, either automatically or interactively, depending on
the capability of the automatic software). Finally, the concept’s quality is evaluated based on the
examples. This is illustrated in the UML sequence diagram shown in Figure 2.

Figure 1: UML sequence diagram

611553 June 30, 2014 1



D8.1 Initial specification of the system

3 Core Object: The Blend Diagram in Progress

The object type at the heart of Coinvent is the Blend Diagram. The specification below is in-
tentionally broad to support several use-cases. The Blend Diagram is illustrated in the flowchart
diagram shown in Figure 2.

Figure 2: Flowchart diagram for blending

Crucially we must support blend diagrams which are ”works in progress”. The high-level
process of developing a new blended concept is:

1. Pick two concepts to blend.

2. Compute a common base concept.

3. Compute a blend.

4. Evaluate the blend for consistency.

5. ...Which may lead to changes in either the input concepts, such as logical weakenings to
remove the conflict. This process of evaluate-modify could be iterated several times.

6. Evaluate the blend for value, perhaps by generating examples/models and evaluating them.

7. ...This evaluation may lead to modifications, and so the whole process is iterative.

Hence we talk of a Blend Diagram in Progress to allow that blends may be developed step-by-step
and iteratively.

Concepts are defined in CASL or OWL. Mappings between concepts are defined in DOL.
Metadata is also defined in DOL. The Blend Diagram may be a single file, or several linked files,
using DOL’s support for urls.

A ‘Blend Diagram‘ consists of:

1. A Blended Concept

2 June 30, 2014 611553



D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

2. A set of Input Concepts (typically 2)

3. Optionally, weakenings of the Input Concepts. E.g. a mapping Concept1 ← WeakerCon-
cept1, by dropping symbols or sentences.

4. A Base Concept, which is a common base for all the Input Concepts. If there are weaken-
ings, then the Base is a base for the weakened concepts (not the originals).

5. Mappings from the Base Concept to each of the (weakened) Input Concepts.

6. Mappings from each of the (weakened) Input Concepts to the Blended Concept.

7. Optional metadata about each of the Concepts, such as evaluation scores, proof obligations,
or relationship to other Concepts.

8. Optional metadata about the system setup, such as preferred component setup.

The Blended Concept may be a colimit, but it does not have to be. The Base Concept may be
found via anti-unification, but it does not have to be.

A ‘Blend Diagram in Progress‘ is simply a Blend Diagram where any part may be missing or
incomplete, and Concepts do not have to be consistent.

4 Components

A Coinvent system will be made up of the following components. A component can be ”manual”,
which means a human being provides the result (using a web interface).

4.1 User Portal (Web App)

An interface through which the user drives the system. This will be a web-app, i.e. a browser-
based ajax app.

A default user interface (UI) will be built on established toolkits, including Bootstrap, jQuery,
and underscore.js.

As the project progresses other domain-specific UIs may be developed – e.g. a music viewer
and player, or a child-friendly UI if we cover the fictional-beasts domain. The architecture setup
deliberately keeps the UI separate, accessing the processing components via the APIs, so that other
UIs can be built and by anyone.

Default implementation: To be developed.

4.2 Blend: Concept Blender: Given a Blend Diagram in Progress, compute the
Blend Concept

Default implementation: HETS

As well as producing blends, this component also outputs proof obligations.

611553 June 30, 2014 3



D8.1 Initial specification of the system

The Blender does not have to compute consistency. This is the job of the Concept Scorer.

The HETS API is currently still in development, and improvements are needed before it
fits all requirements. Specific open issues are logged here: https://github.com/coinvent/
coinvent/issues?labels=HETS&page=1&state=open

4.3 Base: Given 2 Concepts, compute a common base Concept

This component finds a common base theory, and mappings to the input concepts. That is, it fills
in the bottom half of the blend diagram. The common base is not always unique – there may be a
choice of several.

A common base and mappings defines an analogy between the concepts. This component
does not itself calculate the blend. However if a push-out based /blend component is used (as we
envisage), then the base and mappings do uniquely determine the blend concept.

Default implementation: HDTP, which works via anti-unification.

Required work: HDTP currently uses a custom Prolog-based format. To plug into Coinvent
(or HETS without Coinvent), a translation layer will be developed so that HDTP can take in OWL
or CASL.

Note: HDTP will remain stateless. It will not itself manage sessions or run a web-server.

4.4 Weaken: Amalgam Finder: Given an inconsistent Blend Diagram, weaken the
inputs

Initial implementation: manual

Since the colimit operation (and blending in general) can generate inconsistent blends, it may
be necessary to weaken the input theories until a consistent blend is found.

The Amalgams team will lead on this, exploring the generalization operation for amalgams
described in [4], and developing a stand-alone Theory Weakener (TW).

The TW will not be capable of computing colimits itself; therefore it requires a feedback loop
with HETS.

In case the colimit is inconsistent, the TW analyzes the input theories and the inconsistencies
in the blend and weakens the theories based on this information by removing sentences from the
input theories. This removal will be based on heuristics known from amalgam reasoning [4]. The
whole procedure is repeated until a consistent colimit is found.

For the implementation of the TW, we are currently investigating using an Answer Set Pro-
gramming (ASP) approach, calling on online ASP solvers. This allows us to (i) rapidly implement
prototypes, (ii) make use of the highly optimized search problem algorithms that drive modern
ASP solvers [2], and (iii) use the advantages of online ASP solvers like oclingo [1] that will re-
use partial solutions of earlier weakenings. Towards this, a weakening operation is modeled as
sequence of theory transitions, based on atomic operations that each affect the different types of
sentences (eg. SubClassOf , EquivalentTo, ObjectProperty, etc. for OWL) within theories. Per-
ceiving the theory weakening as a sequence of theory transitions also allows us to exploit the iter-

4 June 30, 2014 611553

https://github.com/coinvent/coinvent/issues?labels=HETS&page=1&state=open
https://github.com/coinvent/coinvent/issues?labels=HETS&page=1&state=open


D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

ative problem solving capabilities of modern ASP solvers and to re-use coding strategies known
from other kinds of state transition based problems that are typically modeled in ASP [2].

4.5 Model: Example Finder: Given a Concept, find examples / models

This is a key part of creative blending, especially around evaluating a concept. It is noticeable that
when people learn and evaluate concepts, they often do so via examples.

The meaning of ”example” is domain specific.

In mathematical theories, an example is a model, which is itself a theory. E.g. in the complex
numbers case-study (c.f. https://github.com/coinvent/coinvent/tree/master/HETS/

complex_numbers), an example is the refined theory where ‘i2 =−1‘ has been added to provide
a constructive formula for the existential axiom ‘∀ vectors x,y, ∃ vector z, x*y = z‘ (note: in the
.dol file, this existential axiom is implicit in * being a total function).

In musical theories, an example is a piece of music conforming to the theory.

The initial implementation will be manual. Automated implementations will often be domain
specific (e.g. we may use a Hidden-Markov-Model based music generator), and may not be possi-
ble in all domains. For relatively simple theories (e.g. small models to finite first-order theories),
model-finders such as MACE can be used, possibly via HETS.

4.6 Consistency: Concept Correctness: Is it consistent?

Blending can lead to inconsistent concepts. HETS has support for using various theorem provers
to check for consistency. However detecting inconsistency is not always easy. In the complex
numbers example, it has been found to require manually guided proofs.

Any proof of an inconsistency of the blend can give hints about which axioms to look at
(namely, the axioms used in the inconsistency proof). This component should therefore provide
feedback where possible, to enable a workflow enriched with vision and debugging techniques.

4.7 Quality: Concept Scorer: How good is a Concept?

A key part of creativity is judging the quality of the outputs; discarding low-value concepts, and
selecting valuable ones. How to do this is one of the research questions this project will explore.
HR has automatic scores for detecting interesting concepts, which it would be interesting to incor-
porate.

Default implementation: Manual

4.8 File: Concept Store: Store Concepts and Blend Diagrams

Must provide save and load over http.

Note that most of the other components do not depend on a dedicated storage component.
They can work with concepts stored on any server, as long as the format is correct and the concept

611553 June 30, 2014 5

https://github.com/coinvent/coinvent/tree/master/HETS/complex_numbers
https://github.com/coinvent/coinvent/tree/master/HETS/complex_numbers


D8.1 Initial specification of the system

can be identified by url. The User Interface does require a file storage component to store blend
diagrams as they’re modified.

Default implementation:

- File-system backed. By adding git to the file-system we can provide integration with Onto-
hub.

4.9 Job: Provide meta-data on slow tasks

As discussed in §5, some of the system tasks are not suitable for a fast blocking API. These tasks
will create jobs, which run on the server until complete. The /job component provides an API for
fetching information on the state of the job queue and a specific job. This allows the web-portal
(or other user interfaces) to see the state of a blend, and a way to report on any errors.

5 Architecture

5.1 Independent components, linked via http APIs

Requirements:

1. The components of the system may be developed in different languages.

2. The system should be easy to maintain and extend.

3. The system should support both interactive use, and repeatable scripted use.

Requirements (1) and (2) above suggest a loose coupling between components. The use of http-
based APIs is an established way of achieving this. In particular, http-based APIs with a REST-
like setup (i.e. the url follows a simple readable structure) and using JSON to encode data are now
becoming the standard for modern software development.

JSON will provide a wrapper for API-level information. JSON is not part of the file format for
Blend Diagrams. Blend Diagrams are written in DOL + OWL or CASL, and sent within a JSON
packet as JSON strings.

An added benefit of this architecture is that it provides flexibility regarding the hardware in-
frastructure. The components of the Coinvent system may be run either on a single server, or
across multiple servers.

Supporting Alternative Component Implementations To provide flexibility, especially across
varied domains, the architecture is organised into separate components. This document describes
default implementations for each component. However any component can be provided by an
alternative implementation. Any system which fits the API for a Coinvent component slot, can fill
that slot.

We envisage certain components will indeed have multiple implementations: HETS and HR3
are both candidates for the /blend and /consistency slots. The /model slot will benefit from domain-
specific implementations (e.g. a music generator).

6 June 30, 2014 611553



D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

Component Setup With the architecture supporting different implementations for components,
the system requires a setup describing which implementations to call.

Each component has a default implementation, which will be specified in a config file.

The Social Creativity strand of the Coinvent project requires that different setups can be run
and interact. In order to support this from within one server, we allow that a Blend Diagram in
Progress can carry meta-data about which component implementations to call (if different from
the defaults). This meta-data might include implementation-specific configuration parameters.

Scripting the system Requirement (3) relates to research users, who need to run repeatable
concept development sessions. This requirement is met in this architecture by scripts which drive
the API. Such scripts would most naturally be developed in javascript, perhaps using a test-runner.
Indeed, the test scripts we develop as part of software QA will provide templates for scriptable
use.

Where steps involve systems such as the interactive theorem prover Isabelle, it is an open
question how we script such systems within Coinvent. HETS has some support for this (call ‘hets
-I‘ and enter ”help”), although the HETS API does not expose it.

Software Wrapped as a Server ”Calculation” software such as HDTP will be incorporated into
this framework using a server which ”wraps” the low-level software. E.g. the other components
connect to the HDTP-server over http, and the server manages calling HDTP itself.

Top-level Stateful, Low-level Stateless Calculation software will be stateless. This is simpler,
and avoids tying the low-level components to the bigger system.

In places it is necessary to page through results. E.g. HDTP can produce multiple outputs for
some inputs. The first call would return one result, then a mechanism is required to access the 2nd
or a 3rd result.

This will be handled via input flags, and simply repeating the calculation asking for more
outputs (i.e. iterative deepening).

The overall system will be stateful, because being stateful is the most natural way to support
several required features:

• Slow tasks, where a job is started, runs, finishes later.

• Interactive UI, where the user has a fixed reference point to view a developing blend.

The state would be handled at the top level. The components (HDTP, HETS-as-a-colimit-calculator,
etc) are used in a stateless manner.

5.2 Manual / Interactive Mode

The goal of the Coinvent system is to be semi-automatic. Certain components – such as evaluating
musical quality – are best handled manually, at least in this project. There are also components,

611553 June 30, 2014 7



D8.1 Initial specification of the system

such as consistency checking, where a fully-automatic solution is desirable, but for mathematically
difficult theories, this may not be possible. We therefore support a manual / interactive mode for
each component.

This works as part of the actor model. Certain actors correspond to systems, e.g. the ”hets”
user connects to the HETS system. Other actors correspond to people. For these actors, the UI
will show a list of open job requests sent to them, and an interface for responding to a job. The
user is then free to call on any outside tools they wish (e.g. working via another theorem prover)
in order to complete the job.

These responses will be stored, so that sessions can be re-played.

5.3 Actor / Queue Pattern

Requirements:

1. The components of the system call on each other to perform tasks...

2. ...but these tasks may be slow to complete. Since tasks may require human input (eg. a
proof in an interactive theorem prover like Isabelle), a task could even take days.

This means a standard call/response would timeout. We therefore adopt an actor / queue based
pattern (see https://en.wikipedia.org/wiki/Actor_model).

Each top-level component is an actor, which can send and receive messages to other actors.
Each API request is either fast or slow:

1. Fast requests get an immediate result within the http response.

2. Slow requests send an immediate receipt response with a job-id (using http code 202 ”ac-
cepted for processing”), followed later by a result (which may indicate failure). This later
message is either pushed via a callback, or pulled by polling.

5.4 System Stack Diagram

Default User Interface
AJAX jQuery underscore templates

Web Browser
Java web-service wrapper

HDTP Files HETS Server1

SWI Prolog2 Git3 Theorem Provers
OS: Linux (Ubuntu)

1 The HETS server provides an http API. This is lower-level than the Coinvent API.

2 HDTP might be re-written by Martin MÃ¶hrmann to use a different backend.

3 Git integration provides OntoHub integration without a hard dependency.

8 June 30, 2014 611553

https://en.wikipedia.org/wiki/Actor_model


D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

6 Languages / File Formats

Coinvent will focus on human-readable text-file formats. A couple of formats for concepts will be
supported, with the DOL language used to describe the connections between concepts.

6.1 3 Levels of languages: software, meta-logic, domain-logic

1. The outer language (json) is used to connect software components. E.g. specifying software
inputs and callbacks, reporting on job-status, etc.

2. The meta-logic language (DOL) is used to describe the mappings between concepts.

3. The domain-logics (OWL, CASL) are used to describe actual concepts.

6.2 Connecting concepts: DOL (modified)

DOL (Distributed Ontology, Modeling and Specification Language) is a language for describing
how ontologies connect. DOL is currently in development by the OntolOp group. It is used by the
HETS system. This integration with HETS makes it a good choice for Coinvent.

DOL is both larger than we need, and does not provide a couple of features we require. So
we specify a modified version of DOL. We will work with the DOL team aiming to converge on a
true subset of DOL.

DOL subset: Supported Language Terms Coinvent does not need all the features of DOL, and
so we specify a reduced subset of DOL which should be used. Sticking to a smaller set reduces
the learning curve for new Coinvent users.

Briefly, the supported symbols are:

- ‘logic‘ Specify the Concept language, e.g. ‘logic OWL‘

- ‘ontology‘ Start defining a Concept.

- ‘end‘ Finish defining a Concept.

- ‘view‘ Specify a mapping between Concepts, e.g. ‘view MyView : A to B =‘

- ‘with‘ Introduces a symbol mapping to rename symbols from a theory. A typical use in
Coinvent would be as part of a combine statement.

- ‘combine‘ Compute the colimit, e.g. ‘ontology B = combine I1, I2‘

- ‘hide‘ Used in a mapping to drop a symbol.

- ‘=‘

- ‘:‘

- ‘,‘ List separator.

611553 June 30, 2014 9



D8.1 Initial specification of the system

- �→ Part of a mapping, e.g. zero �→ 0

- ‘%predicate(value)%‘ An annotation on a sentence.

- ‘%(label)%‘ A line label.

- ‘%%‘ Starts a comment

- ‘%implied‘ Marks a proof obligation (i.e. a statement which is required to be true, but has
not been proved)

DOL: Extra Conventions and Language Terms There are some features Coinvent needs which
DOL does not yet provide (see the project’s GitHub issue tracker, https://github.com/coinvent/
coinvent/issues?labels=DOL+%2F+file-formats). Where possible, we fit these within the
current DOL specification by specifying non-standard annotations.

1. Dropping symbols from a Concept: ‘hide‘ can be used when defining a mapping to drop
sentences as well as symbols.

2. Marking inconsistent sentences: by the annotation ‘%inconsistent‘

3. Marking relative importance of sentences: by the annotation ‘%importance(X)%‘, where X
is a number in the range [0,1]. The is interpreted by the /weaken component. How this is
interpreted is not fixed, but it may be interpreted as a probability that the sentence holds.

4. Evaluating Concepts. That is, adding metadata which describes how good a concept is.
Format TBD.

6.3 Mathematics: CASL

CASL is the first order logic language used by HETS. We will adopt it as the language Coinvent
should use for mathematical concepts.

6.4 Music: OWL?

The music team are investigating the use of OWL by producing a worked example of cadence
blending.

It is anticipated that musical idioms will comprise both rules (e.g. constraints on a cadence)
and statistical parts (e.g. hidden-markov-models).

6.5 Other Domains: OWL Manchester Syntax

The established OWL description logic, via the Manchester Syntax, should be used for other
domains.

10 June 30, 2014 611553

https://github.com/coinvent/coinvent/issues?labels=DOL+%2F+file-formats
https://github.com/coinvent/coinvent/issues?labels=DOL+%2F+file-formats


D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

6.6 Web-service Wrapper: JSON

The web-service components (see below) will use JSON as a black-box wrapper, for web-services
to talk to each other. I.e. JSON is used to encode commands, such as ”blend these concepts”, and
describe results, such as ”success” or ”failure due to timeout”.

JSON is the best choice here, because it’s a universal standard.

Low-level components (e.g. HDTP) will not take in JSON. That would be done by a web-
service wrapper, which then calls HDTP.

7 Open Questions and Risks

Many development questions remain open at this stage in the project. Notable open questions are:

1. How to generate examples in the different domains.

2. How to use ”3rd party systems” such as the Isabelle interactive theorem prover within Coin-
vent.

3. How to weaken theories to resolve inconsistencies?

4. What format is best for musical idioms?

7.1 Software development risks and mitigation

Much of the Coinvent system builds upon existing components (HETS, HDTP, DOL), or can use
standard software and approaches (the UI). These components therefore have a relatively low risk.
Though note that all the base components require some development to meet the needs of this
project.

Higher risk components are /model and /weaken. How these functions can be implemented is
a research topic. The problems are deep, and no readily adaptable solution exists. The team do
have relevant expertise in techniques to tackle these tasks, but, as with any open-ended research
task, there is a high level of technical risk.

To mitigate these risks, the system design allows for components to be fulfilled by manual
interactive input. This means work on automated solutions to /model and /weaken is not a blocker
for use of the system.

7.2 References

- CASL: user manual http://www.informatik.uni-bremen.de/cofi/wiki/index.php/
CASL_user_manual, and reference manual http://www.informatik.uni-bremen.de/
cofi/wiki/index.php/CASL_reference_manual

- DOL: https://github.com/tillmo/DOL

611553 June 30, 2014 11

http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL_user_manual
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL_user_manual
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL_reference_manual
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL_reference_manual
https://github.com/tillmo/DOL


D8.1 Initial specification of the system

- HDTP: http://link.springer.com/chapter/10.1007%2F978-3-642-54516-0_7

- HETS: http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
CoFI/hets

- OWL Manchester Syntax: http://www.w3.org/TR/owl2-manchester-syntax

- ASP:

1. M.Gebser et al, Engineering an Incremental ASP Solver. In International Converence
on Logic Programming (2008), no. 1.

2. M.Gebser et al, Answer Set Solving in Practice. Morgan and Claypool, 2012.

3. M.Gelfond and V.Lifschitz, The Stable Model Semantics for Logic Programming. In
Proceedings of the International Conference on Logic Programming (ICLP) (1988).

4. S.Ontan and E.Plaza, Amalgams: A formal approach for combining multiple case
solutions. In ICCBR (2010).

A Appendix 1: Component APIs

A.1 Common

This document uses JSDoc to describe input and output types, e.g. ‘?string‘ would mark an op-
tional string. For describing urls, $variable is used to mark a variable within a url.

A.2 Url structure

The default server is coinvent.soda.sh and the default port is 8400.

For each component, we provide a default implementation, and these follow a common url
pattern. Other implementations are possible, and may not follow the pattern.

http://server:port/component/actor

This means we can have multiple different instances of a component, e.g. http://coinvent.
soda.sh:8400/blender/hetsandhttp://coinvent.soda.sh:8400/blender/hr3

The actor may refer to a piece of software (e.g. hets), or to a user, which allows that any
component function can be fulfilled manually by a human being. E.g. http://coinvent.soda.
sh:8400/blender/alice

This structure anticipates multi-agent setups, which will be wanted for the investigation of
social aspects later in the project.

The default file store also fits into this pattern, with component=files. E.g. the user Alice’s
houseboat file could be http://coinvent.soda.sh:8400/file/alice/houseboat.omn

12 June 30, 2014 611553

http://link.springer.com/chapter/10.1007%2F978-3-642-54516-0_7
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets
http://www.w3.org/TR/owl2-manchester-syntax
http://server:port/component/actor
http://coinvent.soda.sh:8400/blender/alice
http://coinvent.soda.sh:8400/blender/alice
http://coinvent.soda.sh:8400/file/alice/houseboat.omn


D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

A.3 Common Inputs

‘Concept‘ type: Concepts can be provided as the source text itself, or as a uri for a file which
contains the source text. A DOL file may contain more than one concept. To reference a concept
within a file, we follow the DOL / MMT / Ontohub convention and write file uri?ontology name.

‘Mapping‘ type: Mappings are provided either as:

1. JSON maps, e.g. ””sun”:”nucleus”, ”planet”:”electron””

2. DOL fragments, using only the inner part of the DOL mapping, e.g. ”sun �→ nucleus, planet
�→ electron”.

‘BlendDiagram‘ type: A packet of data comprising the Concepts and Mappings for a blend di-
agram in progress. The component Concepts of a BlendDiagram use the names ‘base‘, ‘blend‘,
‘input1‘, ‘input2‘, and the Mappings ‘base input1‘, ‘base input2‘, ‘input1 blend‘, ‘input2 blend‘.
If weakenings are used, then these Concepts are names ‘weakinput1‘, ‘weakinput2‘, and ‘weak-
base‘, with corresponding Mappings. Can be provided as the source text itself, or as a uri for a file
containing the BlendDiagram. Can be in JSON or in DOL, identified in the case of a uri by a .json
or .dol file-ending.

‘sentence‘ type: A specific sentence within a Concept. Either the sentence itself, or a DOL
annotation labelling that sentence.

All inputs are of course sent URL encoded.

A.4 Common Outputs

With the exception of files, all outputs are in JSON and have a common envelope.

A.5 Envelope

Each response has the same top level structure:

{

"success": {boolean} usually true,

"cargo": the meat of the response, or null if it is a slow asynchronous request,

"jobid": {string} The job id for slow requests,

"messages": {string[]} an array of notifications for the user -- usually null,

"cursor": {uri} the next page in a series -- usually null

}

A.6 Authentication: none

No authentication is required at this stage in the project.

611553 June 30, 2014 13



D8.1 Initial specification of the system

A.7 Cross-server requests: CORS

Cross-server calls – where a webpage hosted on one server makes an ajax request on another server
– are supported via CORS. This means they just work, although CORS may not work with older
browsers.

B Component APIs

B.1 /blend: Given a Blend Diagram in Progress, compute the Blend Concept

Default implementation: HETS

Default end point: http://coinvent.soda.sh:8400/blend/hets

Parameters:

- lang: owl|casl

- input1: {concept}

- input2: {concept}

- base: {concept}

- base_input1: {mapping} from base to input1

- base_input2: {mapping} from base to input1

Response-cargo:

{

blend: {concept} which is a blend of input1 and input2,

input1_blend: {mapping} from input1 to blend,

input2_blend: {mapping} from input2 to blend

}

B.2 /base: Given 2 Concepts, compute a common base Concept

Default implementation: HDTP

Default end point: http://coinvent.soda.sh:8400/base/hdtp

Parameters:

- lang: owl|casl

- input1: {concept}

- input2: {concept}

- base: {?concept}

- base_input1: {?mapping} from base to input1

- base_input2: {?mapping} from base to input1

- cursor: {?url} For requesting follow-on results.

14 June 30, 2014 611553



D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

Response-cargo:

{

base: {concept} which is a common base for input1 and input2,

base_input1: {mapping} from base to input1,

base_input2: {mapping} from base to input2

}

B.3 /weaken: Given an inconsistent blend diagram in progress, weaken the con-
cepts

This is the key method for Amalgams.

Default implementation: Manual (Amalgams later in the project)

Default end point: http://coinvent.soda.sh:8400/weaken/$user_name

Parameters:

- blend_diagram: A Blend Diagram in Progress

- cursor: {?url} For requesting follow-on results.

Response-cargo: A weakened blend diagram

Open question: What information should be passed to /weaken to guide it?

For example, it might take in line-numbers or DOL labels marking sets of inconsistent sentences.

B.4 /model: Given a Concept, find examples

Default implementation: Manual

Default end point: http://coinvent.soda.sh:8400/model/$user_name

Parameters:

- lang: owl|casl

- concept: {concept}

- cursor: {?url} For requesting follow-on results.

Response-cargo:

{

models: {concept[]}

}

611553 June 30, 2014 15



D8.1 Initial specification of the system

B.5 /consistency: Is a concept consistent?

Default implementations:

- HETS for automated consistency checks.

- Manual where HETS fails.

- Can we include semi-automated consistency proofs, e.g. using Isabelle?

Default end point: http://coinvent.soda.sh:8400/consistency/hets

Parameters:

- lang: owl|casl

- concept: {concept}

- goal: {?sentence} For focused testing.

Response-cargo:

{

result: {?boolean},

inconsistent: {sentence[]},

unknown: {sentence[]}

}

B.6 /quality: How good is a Concept?

Default implementation: Manual.

HR has automatic scores for detecting interesting concepts, which it would be interesting

to explore.

Quality scoring will most likely work on examples, rather than on the concepts directly.

Default end point: http://coinvent.soda.sh:8400/quality/$user_name

Parameters:

- lang: owl|casl

- concept: {concept}

- models: {concept[]}

- metric: {?string} Optional name of a metric to score against.

Response-cargo:

16 June 30, 2014 611553



D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

{

score: {number} A number. The [0, 1] scale is recommended for most metrics.

}

B.7 /file: Store Concepts and Blend Diagrams

Must provide save and load over http.

Note that most of the other components do not depend on the /file component. They

can work with concepts stored on any server (and identified by uri). The User Interface requires it to store blend diagrams as they’re modified.

Default implementation: file-system based, with git support (allowing for Ontohub integration via git). We might also develop a direct-to-Ontohub implementation)

Default end point: http://coinvent.soda.sh:8400/file/$user_name

Load Parameters:

- Use the path (i.e. the slug) to specify a file, using the convention ‘/files/$user_name/$project/$path_to/$file‘, where ‘$project‘ and ‘$path_to‘ are optional.

E.g. ‘http://coinvent.soda.sh:8400/files/alice/stuff/alices_boat.dol‘

would fetch the file stored at ‘$base_dir/alice/stuff/alices_boat.dol‘

Note that Ontohub uses the convention: ‘/$repository/$path_to/$file‘. The convention here is different but compatible.

Response: the file

Save Parameters:

- Use the path (i.e. the slug) to specify a file.

- Use http PUT or the parameter=value pair ‘action=save‘

- The post body contains the text to save.

Response: the file

A save (or a delete) triggers a git commit and push.

Distributed git repositories cany be linked together, and in particular OntoHub

uses git-based storage. This allows for connection with OntoHub.

Delete Parameters:

- Use http DELETE or the parameter=value pair ‘action=delete‘

Response: just the envelope, indicating success or failure

B.8 /job: List open tasks

Default implementation: Coinvent Integration+UI module

611553 June 30, 2014 17



D8.1 Initial specification of the system

Default end point: http://coinvent.soda.sh:8400/job/$user_name

Parameters:

- status: {?string} open|closed Optional filter.

- cursor: {?url} For requesting follow-on results.

Response-cargo:

{

jobs: [

{

id: {string},

status: open|closed

}

]

}

B.8.1 /job/$user name/$job id: Show / delete job details

Default implementation: Coinvent Integration+UI module

Default end point: http://coinvent.soda.sh:8400/job/$user_name

- Use the path (i.e. the slug) to specify a file.

E.g. ‘http://coinvent.soda.sh:8400/job/alice/1234‘

would fetch details on job id 1234, assigned to Alice.

If a job-id is not specified, this endpoint will list jobs (see above).

- action: delete Use this, or the http method DELETE, to request cancellation of a job.

Response-cargo:

{

job: {

id: {string},

status: open|closed

}

}

This may optionally provide more information about the job, such as a progress update.

C User-Stories

This appendix presents the motivating requirements for the integrated Coinvent system. It does so
via the agile method of user-stories: requirements are driven by example use-cases of who needs

18 June 30, 2014 611553



D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

it and why.

C.1 As a Coinvent Researcher...

C.1.1 User: Logic researcher

Task: Explore creating and using blends Needs:

• Specify concepts.

• Create blends.

• Evaluate blends (this is domain specific – see specific domains below).

• Reliably replay a ”session” of concept blending plus associated concept development (such
as theorem proving or example music generation).

Success criteria: The software supports research, leading to papers on blending which extend the
state of research. Priority: High.

C.1.2 User: Social creativity researcher

Task: Explore multiple users/agents creating and using blends Needs:

• As for Logic Researcher, plus...

• Agent-based system to model and explore social interactions.

• Setup different starting models for agents.

Priority: This is a key strand of the project plan. For Year 2/3.

C.2 As a non-Coinvent developer...

Later in the project, we aim to run Coinvent hackathons, where other developers use Coinvent to
build things.

C.2.1 User: A researcher with ontology experience

Task: Explore concept blending. Needs: Same as for a Coinvent Logic Researcher, plus a user-
friendly UI and documentation.

611553 June 30, 2014 19



D8.1 Initial specification of the system

C.2.2 User: A developer

Task: Making a creativity tool for a domain of their choice (e.g. one of the domains considered
below). Needs:

• The system must be flexible enough to support:

• Modified back-end components.

• Other user interfaces, built on top of the API.

• Enough documentation to support 3rd party developers, including a Hello-World example
project.

Success criteria: Developers from outside the project produce projects (which may be just proof-
of-concept scratch projects) using Coinvent. Priority: For Year 3.

C.3 As an end-user...

C.3.1 Domain: Mathematics

User: Coinvent researcher Task: Explore the blending of mathematical concepts. Use-case:
Define concepts. Pick 2 concepts as input, and get back a blended concept. Further develop the
blend to resolve ”quality issues” such as. Further develop the blended concept to create interesting
outputs – possibly models / examples. Requirements:

1. A format which can define mathematical concepts.

2. Specify two theories, and blend them to produce a new concept.

3. Weaken input concepts (to remove inconsistency) and strengthen output blends (to reach
”interesting” results).

4. Given a concept, check it for consistency.

5. Given a concept, produce examples / a model.

6. Given a concept, identify the unresolved questions in the blend (for complex numbers, the
missing formula x.y=?).

7. Solve the unresolved questions in the blend, adding axioms and resolving any proof obliga-
tions.

Note that some steps may have to be manual or semi-automated, and so it is a requirement that the
system supports interactive reasoning.

Success criteria: It works. Priority: High. This is a project deliverable.

20 June 30, 2014 611553



D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

User: Non-mathematical Analyst (e.g. someone who would normally use Excel) Task:
Quantitative analysis of data Wants: To meaningfully analyse some data using bayesian math-
ematical models. Specific use-case: Interpret Twitter conversational data on a topic, in terms of
types of person and types of conversation. Needs:

• A friendly UI.

• To create a model by blending pre-defined models.

• To understand what they’ve made without understanding the source code – i.e. a clear
natural language summary of the model.

• To apply the model to the data...

• ...And get back results they can understand (e.g. pie-charts and time-series charts with
meaningful labels).

Success criteria: It works and is adopted for use by a researcher or analyst outside the project.
Priority: Medium. This is an achievable valuable goal within the important mathematics thread.

C.4 Domain: Music

User: Coinvent Researcher Task: Explore the blending of musical idioms Use-case: Define
idioms. Pick 2 musical idioms as input, and get back a blended idiom. Given an idiom, evaluate
it, by creating examples and subjectively assessing them. Requirements:

1. A format which can define musical idioms. Open question: What levels of structure does
this have to capture?

2. Optional? The ability to statistically analyse a body of example music as part of fleshing
out a musical idiom (e.g. creating an HMM for use in generation).

3. Blend idioms to produce new idioms. This requires support for weakening or otherwise
resolving clashes, as fully-fledged idioms are likely to be logically inconsistent.

4. Given an idiom, produce example music.

5. Optional: Support for evaluating music / idioms.

Success criteria: It works. Priority: High. This is the basis for all music-domain work.

User: A Listener Task: Create music they like Use-case: Pick 2 musical idioms as input, and
get back a newly-created high-quality piece of music. Success criteria: A group is identified who
adopt Coinvent-based software as part of their music listening software. Or a Coinvent-created
piece of music gains small-scale public success. Priority: Low. This is a very hard task and may
not be achieved within this project.

611553 June 30, 2014 21



D8.1 Initial specification of the system

User: An avant-garde composer Task: Create music to use as inspiration / source material Use-
case: Pick 2 musical idioms as input, and get back a newly-created low-quality piece of music.
Success criteria: A composer collaborates with the project and uses Coinvent to create a piece of
music they then perform. Priority: For Year 2/3. This is an achievable goal for this project.

C.4.1 Other Domains

Domain: Fictional beasts User: A child Task: Create a fictional beast Use-case: Pick two input
beasts (using a simple user-friendly GUI), and get back a fictional blended beast with a mini-story
about how it behaves. Wants: To play around creating fun new animals and interacting with them.
Needs:

• A very friendly UI.

• An ontology of animals behind it.

• To specify two animals to blend.

• To get a pictorial view of the blend.

• To see some behaviour, e.g. robot cat chases mutant mice, stops to drink some milk, short-
circuits.

Success criteria: Adopted for use by a school, or distributed publicly as an app. Priority: Medium.
For Year 2. This is an achievable goal for this project.

Domain: Mechanical engineering. User: A mechnical engineer. Task: Create a new product,
and streamline the 3D modelling, requirements checking, and safety testing by leaning on an
existing database. Wants: To specify a new component (e.g. a car ejector seat), which has aspects
of existing components. Then get a CAD model which fits the spec. Priority: Low. This lacks a
sponsor within the project.

Domain: Poetry User: A poet Task: Create poetry fragments to use as inspiration / source
material Use-case:

1. Pick 2 concepts as input, and get back a newly-created metaphor and sentences illustrating
it.

2. Pick a concept and a property, and get back a 2nd concept which when blended with the first
provides a metaphor for the desired property.

Success criteria: A poet collaborates with the project and uses Coinvent to create a piece of poetry
they then publish. Priority: Medium. This is an achievable goal for this project. This is an
accessible domain for technology testing, and it fits with the research interests of Goldsmiths
group.

22 June 30, 2014 611553



D8.1 Initial specification of the system FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

User: A reader Wants: To be entertained or stimulated. Success criteria: Producing poems
that are rated as interesting, either by literature critics or a more general readership. Priority:
Low. This is an accessible domain for technology testing, and it fits with the research interests of
Goldsmiths group. However there is considerable extra work required for software to go from a
blended-concept metaphor, to a complete poem.

Domain: Recipes User: An amateur cook Wants: To create a new recipe or meal-plan by blend-
ing ideas. Success criteria: Some new and tasty recipes. Priority: Low. This is an accessible
domain for proving the technology. However there is so much cooking material online, that a new
resource would not be very valuable.

D Definitions / Glossary

Collecting technical terms in use across the Coinvent project. Some of the terms marked as equiv-
alent here do have different meanings in certain domains, but are used equivalently within the
Coinvent space.

ABox assertions about an individual – describes an instance. See TBox

ASP Answer Set Programming, a class of automated reasoning systems for ”hard” boolean satisi-
fiability searches.

Base A common shared starting theory.

Blend Any theory created by merging two parent theories. Might be a colimit (but needn’t be).

Blendoid a Theory created by blending

Cadence sequence (progression) of chords which concludes a section of music. E.g. fifth to root,
D, G in key of G.

Colimit Pushout. A category-theory term which can be applied to blending. The least-specific
specialisation which combines two theories with a common base.

Concept No one definition, but probably a Theory.

Conservativity / conservative extension: ”Safely” extending a theory by adding statements about
new constants which do not affect the old statements. See https://en.wikipedia.org/
wiki/Conservativity_theorem.

DOL HETS language for describing the relationship between theories. Can work with any ontol-
ogy language. So DOL does not itself describe theories.

Entity Individual

GCT Generalised Chord Type, e.g. 0,[0,4,7] is C-major, if in the key of C.

HETS the Heterogeneous Tool Set. A meta-logic system, which can map between logics and
theorem provers.

611553 June 30, 2014 23

https://en.wikipedia.org/wiki/Conservativity_theorem
https://en.wikipedia.org/wiki/Conservativity_theorem


D8.1 Initial specification of the system

Idiom a Theory in music.

Interpretation a symbol mapping between two theories with the following proof obligation: the
target theory must extend (ie. logically entail) the source theory. Most likely, the sentences
from the source theory are just included (with symbol renaming) into the target.

IRI International URI = URI which can use unicode. A CURIE is a short fragment, which with
extra context can be resolved into a URI (e.g. like a relative url).

Mapping signature morphism = how to translate symbols between two domains. E.g. “bank”
here maps to “river bank” there.

Model An example of a Theory (which may be a more concrete theory, or a domain-specific
example, such as a a piece of music.

Ontology Domain = Space = Theory = Idiom

OWL a description language for writing ontologies, most commonly OWL2 using Manchester
syntax

Sentence A statement in a Theory. E.g. an axiom.

Signature the set of symbols used in a theory.

Sort Type = Class. E.g. “Person” or “Boat”

Symbol Term. Anything used in a Sentence. E.g. “x” or “+” or “Chord”

TBox assertions about a domain (T for terminology).

Theory a set of symbols (the signature) and sentences.

24 June 30, 2014 611553


	Overview
	A Typical Coinvent Session
	Core Object: The Blend Diagram in Progress
	Components
	User Portal (Web App)
	Blend: Concept Blender: Given a Blend Diagram in Progress, compute the Blend Concept
	Base: Given 2 Concepts, compute a common base Concept
	Weaken: Amalgam Finder: Given an inconsistent Blend Diagram, weaken the inputs
	Model: Example Finder: Given a Concept, find examples / models
	Consistency: Concept Correctness: Is it consistent?
	Quality: Concept Scorer: How good is a Concept?
	File: Concept Store: Store Concepts and Blend Diagrams
	Job: Provide meta-data on slow tasks

	Architecture
	Independent components, linked via http APIs
	Manual / Interactive Mode
	Actor / Queue Pattern
	System Stack Diagram

	Languages / File Formats
	3 Levels of languages: software, meta-logic, domain-logic
	Connecting concepts: DOL (modified)
	Mathematics: CASL
	Music: OWL?
	Other Domains: OWL Manchester Syntax
	Web-service Wrapper: JSON

	Open Questions and Risks
	Software development risks and mitigation
	References

	Appendix 1: Component APIs
	Common
	Url structure
	Common Inputs
	Common Outputs
	Envelope
	Authentication: none
	Cross-server requests: CORS

	Component APIs
	
	
	
	
	
	
	
	
	


	User-Stories
	As a Coinvent Researcher...
	User: Logic researcher
	User: Social creativity researcher

	As a non-Coinvent developer...
	User: A researcher with ontology experience
	User: A developer

	As an end-user...
	Domain: Mathematics

	Domain: Music
	Other Domains


	Definitions / Glossary

