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Abstract
This deliverable specifies the knowledge representation formalisms used in the mathematics and music domain of the COINVENT
project. Furthermore, the reasoning processes for computing the generic space and concept blends are sketched. For mathematics a
many-sorted first-order logical language is used to represent mathematical theories. Concept blending operates on these logically
specified theories and computes candidates for a generic space as well as candidates for blend spaces. In the music domain, different
representation formalisms are specified, each of them of particular interest for different aspects of music. The discussed formalisms
are basic chord representations, feature structure representations (of various forms), and hidden Markov models. The representation
and the computation of blend spaces are instantiated using a variety of examples.
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Executive Summary

Concept blending in the sense adopted in the COINVENT project takes two input spaces and at-
tempts to compute a generic space and a blend space, i.e. the latter being a new and independent
conceptual space containing a mixture of conceptual information from both input domains. The
degree to which such computations are realizable in a formal system depends on the representa-
tion of the involved conceptual spaces. This deliverable addresses the issue which representation
formalisms can be used for concept blending in the two considered domains mathematics and
music.

The two considered domains are rather different from each other. Mathematical objects have
clear syntactic descriptions and a precise meaning, there is a clear level of description of math-
ematical theories, the possibilities to formalize mathematical theories is strongly restricted, and
hard constraints can help to distinguish a correct mathematical theory from an incorrect mathe-
matical theory (e.g. consistency), whereas these properties are in general not applicable to the
music domain. Musical objects do not have a clear (standard) meaning, there are many levels
of abstraction that can be used to describe music (e.g. physical realization, MIDI level, harmo-
nization, motifs, structure of pieces etc.), and pieces of music can be described in many different
languages and frameworks. Furthermore, it is difficult to say that hard constraints (like consis-
tency) apply to music which could help to distinguish “correct” pieces of music from “incorrect”
ones. As a consequence of these differences the representation formalisms used to work in the
intended domains differ significantly from each other in the COINVENT project.

In mathematics, a many-sorted first-order logical language is used to axiomatize the input
domains. The generalization of the input domains is formalized in a mild form of higher-order
logic (triggered by restricted higher-order anti-unification), and the blend space is again formal-
ized in a many-sorted first-order logical language. The generalization process is computed using
Heuristic-Driven Theory Projection (HDTP), whereas the blending process is a colimit construc-
tion performed by the HETS framework.

In music, several representation formalisms exist besides each other. On the one hand, there
is the need for flexible formalisms dependent on the specific aspect in music that is intended to be
modeled, on the other hand, some applications in the music domain require the modeling of uncer-
tainty using some form of probabilistic reasoning. The COINVENT project uses General Chord
Type representation (GCT), feature structure representations, and Constrained Hidden Markov
Models. It turns out that such representations have their strengths in different applications, e.g.
whereas feature structure representations fit to tasks where blending on the chord level is neces-
sary, GCT representations fit to idiom-independent representation, in particular, important in the
context of extracting harmonic information from score.

The worked examples specified in this document (and further examples published during the
first year of this project) as well as the rudimentary implementations of the system show that the
representation formalisms described in this deliverable are very good candidates for the different
tasks. A thorough testing and evaluation on more complex examples needs to be conducted during
the next project phase.
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1 Introduction

This report summarizes the specification of the representation formalisms used in the domains of
mathematics and music of the COINVENT project. Furthermore, it is reported which constraints
and requirements for reasoning tasks occur in the framework, by specifying the reasoning pro-
cesses involved in concept invention tasks. As usual in artificial intelligence, different domains
require different representation formalisms, for example, with respect to expressive strength, the
possibility to express uncertainty and vagueness, or the mechanisms for drawing inferences, just
to mention some of them. Consequently it is very common in AI that different languages are used
for applications in different domains of interest [6].

For mathematics and music in the context of concept invention we experienced a very similar
situation: whereas large parts of mathematics can be coded in a many-sorted first-order logical
language, i.e. the language is rather expressive, crisp, and uses classical logical inference mecha-
nisms, in music a variety of formalisms can be used for the different rather specific musical aspects
(e.g. feature structures, Constrained Hidden Markov Models) that are often weaker concerning
the expressive strength, but have sometimes additional properties, like the ability to express uncer-
tainty in the case of Constrained Hidden Markov Models. It is important to notice that the sketched
pluralistic perspective of representation formalisms does not restrict the possibility to implement
concept blending procedures within these formalisms.

The report has the following structure: Section 2 discusses representation aspects of mathe-
matical theories in the light of the computation of concept blends of such theories. In particular,
many-sorted first-order logic is specified in Subsection 2.1. Subsection 2.2 gives a general ap-
proach of how concept blending in mathematics can be achieved, namely in terms of a two-step
process that first, computes a generalized theory (generic space) given two input theories and
second, computes a blend space. Subsection 2.3 describes in detail a non-trivial mathematical
example of concept blends, namely the complex numbers. Section 3 has a rather similar structure
to Section 2, but this time with respect to the domain of music. In Subsection 3.1, representation
formalisms for music are introduced (General Chord Type representations, feature structures, and
Constrained Hidden Markov Models), whereas in Subsection 3.2 the overall architecture and in-
formation extraction from score is discussed. Subsection 3.3 gives a broad overview illustrating
how different aspects of music can be represented and how concrete examples of blending chords,
blending phrases of pieces, blending chord progressions etc. can be analyzed and computed. Sec-
tion 4 refers to the Deliverable D8.1 concerning the implementation of the computational system.
Finally, Section 5 concludes this report.

2 Representation of and Reasoning in Mathematical Theories to Cre-
ate New Concepts

2.1 Abstract Representation of Mathematical Theories

The working mathematician specifies mathematical theories almost in every branch of mathemat-
ics in terms of axiom systems. The language used for such axiomatiziations (as for underlying
definitions of mathematical concepts) is usually a mixture of natural language and a formal (of-
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ten logical) language. From a cognitive perspective this mixture of two types of languages is
rather plausible due to the fact that the combination of the two types of languages results in for-
malizations that are easier to grasp for cognitive agents in comparison to representations that are
exclusively formalized in a logical language.1

For computational purposes the usage of a formal language is appropriate. For example, to ex-
press the classical continuity condition of a real-valued function we need to write, as one possible
representation, the following expression:

∀ε ∈R(ε > 0→∃δ ∈R(δ > 0∧∀x ∈R∀y ∈R(|x− y|< δ → | f (x)− f (y)|< ε)))

Besides the involved set theoretical relations (e.g. the elementhood relation ∈), logical op-
erators (e.g. logical connectives like ∧), and the objects of the domain of interest (e.g. the real
numbers x and y), there is also the need to represent operations on real numbers (e.g. addition
+) and relations between real numbers (e.g. the <-relation). This can be rather straightforwardly
expressed in a logical language L using a signature containing (additionally to logical and set
theoretical symbols) constant symbols, function symbols, and relation symbols of the appropriate
arity, i.e. in our example L = {0,1,−,+, | · |,<,>}

Mathematical theories within the COINVENT framework are represented using a many-sorted
first-order logic language. This is due to the need for a formalism which allows for expressing
conveniently properties of structures of different types (i.e., sorts), offering possibilities to partition
the universe into different categories and avoiding to treat it as an entirely homogeneous collection
of objects. For an example, from the domain of mathematics, consider the use of points, lines,
planes, etc. in geometry.

In most cases, many-sorted logics are based on a set of sorts S in order to generalize the notion
of a logical signature, allowing to handle the additional information introduced by the sorts. Many-
sorted first-order logic then arises from adding sorts to standard first-order logic, resulting in a
formalism which basically maintains all the properties of first-order logic (e.g., coming with the
same proof theory).2 Different from first-order logic, in many-sorted first-order logic arguments
of function and predicate symbols may have different sorts, and constant and function symbols
also have some sort.

Many-sorted first-order logic is sufficiently expressive to study many interesting aspects of
mathematics, such as, for instance, questions relating to certain algebraic structures, real closed
fields, or relevant parts of calculus. Although not allowing to address all of mathematics, many-
sorted first-order logic seems to offer a good trade-off between expressivity and manageability and
feasibility of reasoning.

As a concrete example for the application of a many-sorted first-order logic consider the lan-
guage used for describing domain theories in the Heuristic-Driven Theory Projection (HDTP)

1Using exclusively a logical formalization of mathematical theories together with inference rules to gain mathemat-
ical theorems is an old attempt in the history of mathematics. The historically important reference in this respect is
Whitehead and Russell’s Principia Mathematica [41].

2When there are only finitely many sorts in a theory, many-sorted first-order logic can completely be reduced to
standard first-order logic: For each sort in the many-sorted theory a unary predicate symbol is added to the single-
sorted theory, and an axiom stating that these unary predicates partition the domain of discourse is introduced.
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Figure 1: Goguen’s version of concept blending (cf. [12, 13])

framework [38], one of the core modules of the COINVENT architecture: HDTP uses an al-
gebraized version of many-sorted first-oder logic, namely many-sorted term algebras, to define
the input conceptual domains. A term algebra requires two ingredients, a signature and a set of
variables.

Definition 1 A many-sorted signature Σ = 〈Sort,Func〉 is a tuple containing a finite set Sort of
sorts, and a finite set Func of function symbols. An n-ary function symbol f ∈ Func is specified
by f : s1× s2×·· ·× sn→ s, where s,s1, . . . ,sn ∈ Sort. We will consider function symbols of any
non-negative arity, and we will use 0-ary function symbols to represent constants.

Definition 2 Let Σ = 〈Sort,Func〉 be a many-sorted signature, and let V = {x1 : s1,x2 : s2, . . .}
be an infinite set of sorted variables, where the sorts are chosen from Sort. The set Term(Σ,V )
and the function sort : Term(Σ,V )→ Sort are defined inductively as follows:

1. If x : s ∈ V , then x ∈ Term(Σ,V ) and sort(x) = s.

2. If f : s1 × s2 × ·· · × sn → s is a function symbol in Σ, and t1, . . . , tn ∈ Term(Σ,V ) with
sort(ti) = si for each i, then f (t1, . . . , tn) ∈ Term(Σ,V ) with sort( f (t1, . . . , tn)) = s.

The structure 〈Term(Σ,V ),sort〉 is called a many-sorted term algebra (often suppressing sort).

HDTP has successfully been applied to a wide range of different examples from mathematics,
ranging from modeling complex historical discoveries (such as, for example, Argand’s reasoning
process giving rise to the notion of the complex plane based on algebraic number theory and vector
spaces [24]), through simulating the process of acquiring basic arithmetic and number concepts
during children’s development [15], to analyzing the mode of operation of analogy-based teaching
tools in the mathematics classroom [3].

2.2 Concept Blending in Mathematics for Concept Invention

2.2.1 General Idea

One of the early formal accounts on concept blending, which is especially influential to our ap-
proach, is the classical work by Goguen using notions from algebraic specification and category
theory (cf. [12, 13]). This version of concept blending can be described by the diagram in Fig-
ure 1, where each node stands for a representation an agent has of some concept or conceptual
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Generalization

ww ''
Source

analogical transfer // Target

Figure 2: HDTP’s overall approach to creating analogies (cf. [38]).

domain. We will call these representations “conceptual spaces” and in some cases abuse termi-
nology by using the word “concept” to really refer to its representation by the agent. The arrows
stand for morphisms, that is, functions that preserve at least part of the internal structure of the
related conceptual spaces. The idea is that, given two conceptual spaces I1 and I2 as input, we look
for a generalization G and then construct a blend space B in such a way as to preserve as many
as possible structural alignments between I1 and I2 established by the generalization. This may
involve taking the functions to B to be partial, in that not all the structure from I1 and I2 might
be mapped to B. In any case, as the blend respects (to the largest possible extent) the relationship
between I1 and I2, the diagram will commute.

Concept invention in mathematics by concept blending can then be phrased as the following
task: given two axiomatizations of two mathematical theories I1 and I2, we need first, to compute
a generalized theory G of I1 and I2 (which codes the commonalities between I1 and I2) and second,
to compute the blend theory B in a structure preserving way such that new properties hold in
B. Ideally, these new properties in B are considered to be (moderately) interesting mathematical
properties.

The reasoning process in COINVENT is triggered by the computation of the generalization
(generic space). This generalization is computed by HDTP ([38]), a framework for computing ana-
logical relations between two conceptual spaces, each one of them presented as an axiomatization
in a (possibly different) many-sorted first-order logic language. As a by-product of establishing
an analogy, HDTP provides an explicit generalization of the two spaces which subsequently can
be a base for concept creation by abstraction. HDTP proceeds in two phases: in the mapping
phase, the source and target spaces are compared to find structural commonalities, and a gener-
alized description is created, which subsumes the matching parts of both spaces. In the transfer
phase, unmatched knowledge in the source space can be mapped to the target space to establish
new hypotheses, cf. Figure 2.

For concept invention in the COINVENT project we will only need the mapping mechanism
and replace the transfer phase by a new blending algorithm. The mapping is achieved via a gen-
eralization process, in which pairs of formulas from the source and target spaces are anti-unified
resulting in a generalized theory that reflects common aspects of both spaces. Formulas (or terms)
of the two input spaces that are generalized to the same formula (or term) in the generalized theory
are considered to be analogically related. The generalized theory can be projected into the original
spaces by substitutions which are computed during anti-unification. In the context of this deliver-
able, we will say that a formula is covered by the analogy, if it is in the image of this projection,
otherwise it is uncovered. In analogy making, the analogical relations are used in the transfer phase
to translate additional uncovered knowledge from the source to the target space, while blending
combines additional (uncovered) facts from both spaces. Therefore the process of blending can
build on the generalization and substitutions that are provided by the analogy engine.

4 October 15, 2014 611553
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2.2.2 Generalization

The computation of the generalization depends crucially on the anti-unification process in HDTP.
First-order anti-unification was introduced by Plotkin [28] in the context of inductive learning.
Figure 3 gives several examples for anti-unifications. Terms are generalized resulting in an anti-
instance, where differing subterms are replaced by variables3. The original terms can be restored

X
{X → b}

��

{X → a}

��
a b

f (X ,c)
{X → b}

��

{X → a}

��
f (a,c) f (b,c)

Y
{Y → g(a,b)}

��

{Y → f (a,b)}

��
f (a,b) g(a,b)

(a) (b) (c)

Figure 3: Plotkin’s first-order anti-unification.

by replacing the new variables by appropriate subterms. This idea can be made more precise by
introducing the notion of a substitution:

Definition 3 (Substitution) Assume a term algebra Term(Σ,V ) is given. A substitution on terms
is a partial function σ : V → Term(Σ,V ) mapping variables to terms, formally represented by
σ = {x1→ t1, . . . ,xn→ tn} (provided xi 6= x j for i, j ∈ {1, . . . ,n}, i 6= j and sorts of xi and ti match).
An application of a substitution σ on a term is defined by induction over the term structure:

• apply(x,σ) =

{
t if x→ t ∈ σ

x otherwise

• apply( f (s1, . . . ,sm),σ) = f (apply(s1,σ), . . . ,apply(sm,σ))

We say that a term t ′ is an instance of t and t is an anti-instance of t ′, if there is a substitution σ

such that apply(t,σ) = t ′. In this case we write t σ−→ t ′ or simply t→ t ′.

Using substitutions, generalizations can be defined as follows:

Definition 4 (Generalization) A generalization for a pair of terms 〈s, t〉 is a triple 〈g,σ ,τ〉 with
a term g and substitutions σ ,τ such that s σ←− g τ−→ t.

Anti-unification aims to find a most specific anti-unifier, normally referred to as least general
generalization (lgg), i.e. a generalization that is minimal with respect to the instantiation ordering.4

It has been proven in [28] that for a given pair of terms a first-order generalization always exists
and that the lgg is unique (up to renaming of variables).

Figure 3 demonstrates how generalizations can induce an analogical relation: in (a), the terms
a and b are generalized to X , therefore b can be seen as an analogon to a in the target domain.
In (b), the terms a and b are embedded as function arguments in a common context, but still the

3Variables introduced by the anti-unification are denoted by capital letters.
4This is dual to unification, where a most general unifier (mgu) is computed.

611553 October 15, 2014 5
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same substitutions can be used for generalization and therefore the same analogical relation is
established. In (c), the two terms differ with respect to the function symbols. Here, the first-order
anti-unification fails to detect the common structure between these terms and generalizes it to X ,
using rather complex substitutions.

HDTP applies a restricted form of higher-order anti-unification [21] for analogy making. The
main problem when dealing with higher-order anti-unification is that generalizations can become
arbitrarily complex and may no longer reflect structural commonalities of the original terms.
Therefore, extending the set of possible generalizations in a controlled way by introducing a new
notion of basic substitution is a natural solution to this problem.

We extend classical first-order terms by introducing variables that can take arguments: for
every natural number n we assume an infinite set Vn = {F : s1× . . .× sn→ s, . . .} of variables with
arity n and s1, . . . ,sn,s ∈ SortΣ. Here we explicitly allow the case n = 0 with V0 being the set of
first-order variables. In this setting, a term is either a first-order or a higher-order term, i.e. an
expression of the form F(t1, . . . , tn) with F : s1× . . .× sn→ s ∈ Vn, terms t1, . . . , tn ∈ Term(Σ,V ),
and sortΣ(ti) = si. Analogously to the first-order case shown in figure 4, terms can be anti-unified
to a generalization subsuming the specific terms. The basic substitutions given in the following
list are applicable in HDTP. These are sufficient for generalizations in analogical reasoning and
meet the requirement to only generate less complex anti-instances.

Definition 5 (Basic Substitutions) We define the following set of basic substitutions:5

1. A renaming ρF,F ′ replaces a variable F ∈ Vn by another variable F ′ ∈ Vn of the same argu-
ment structure:

F(t1, . . . , tn)
ρF,F ′

−−−→ F ′(t1, . . . , tn).

2. A fixation φ F
c replaces a variable F ∈ Vn by a function symbol f ∈ Cn of the same argument

structure:

F(t1, . . . , tn)
φ F

f−→ f (t1, . . . , tn).

3. An argument insertion ι
F,F ′
G,i with 0≤ i≤ n, F ∈ Vn, G ∈ Vk with k ≤ n− i, and F ′ ∈ Vn−k+1

is defined by

F(t1, . . . , tn)
ι

F,F ′
G,i−−→ F ′(t1, . . . , ti,G(ti+1, . . . , ti+k), ti+k+1, . . . , tn).

4. A permutation π
F,F ′
α with F,F ′ ∈ Vn and bijective α : {1, . . . ,n}→ {1, . . . ,n} rearranges the

arguments of a term:

F(t1, . . . , tn)
π

F,F ′
α−−−→ F ′(tα(1), . . . , tα(n)).

Figure 4 gives examples for all basic substitutions. (a) shows an example for renaming: the
terms in the source and the target domain both contain variables Y and Z which are generalized to
variable X . Since variables can represent any possible term, it is irrelevant which variable name is

5To improve readability we omit the sortal specifications of the variable symbols, as long as they can be inferred
from the context

6 October 15, 2014 611553
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f (Y ) f (Z)

f (X)

φ X
b

��

φ X
a

��
f (a) f (b)

F(a)

φ F
g

��

φ F
f




f (a) g(a)

F(a,b,c)

ι
F,F ′′
G,1

��

ι
F,F ′
X ,2

��
F ′(a,b,X ,c) F ′′(a,G(b,c))

F(a,b)

π
F,F ′
α

����
F(a,b) F ′(b,a)

(a) (b) (c) (d) (e)

Figure 4: Examples for all basic substitutions of the restricted higher-order anti-unification.

chosen. It is possible to align a variable of the source domain with a variable in the target domain
without any cost. The renaming substitution is only required for formal reasons: it does not lead
to a real generalization.

Argument fixation as shown in (b) can be used to replace a variable in the generalization by a
symbol of the same argument structure, e.g. f (X) is replaced by f (a) in the source, respectively
f (b) in the target, with X ∈ V0. Example (c) demonstrates a fixation of a higher-order term F(a)
to f (a), respectively g(a). The higher-order variable F has one argument, therefore F ∈ V1.

Argument insertion is slightly more complicated: inserting a 0-ary variable X increases the
arity of the embedding term by 1. In (d), a variable X is inserted after the second argument on
the source side F(a,b,c)−→ F ′(a,b,X ,c). F ′ has now four arguments. Inserting a variable G ∈ Vn

with n ≥ 2 reduces the arity: On the target side a two-ary variable G is inserted after the first
argument F(a,b,c)−→ F ′′(a,G(b,c)). F ′′ has now only two arguments. This basic substitution is
required if a complex structure maps on a less complex structure.

An example for permutation is shown in (e). Source and target domain contain terms with
an equivalent structure. They differ only with respect to the argument order. F(a,b) serves as
generalization for both terms. On the target side, both arguments are permuted and F(a,b) −→
F ′(b,a).

For generalizing complex terms, we can successively apply several substitutions: To receive a
non-ambiguous set of substitutions we apply the basic substitutions in the order renaming, argu-
ment insertion, permutation, and finally fixation. We will call any composition of basic substitu-
tions a (higher-order) substitution and write t→ t ′, if there exists a sequence of basic substitutions
that transforms t into t ′. Again we will call t ′ an (higher-order) instance of t, and t an (higher-order)
anti-instance of t ′.

It has been proven in [21] that the application of a basic substitution will never make a term
less complex and so the following fact holds:

Fact 1 For a given term t there are (up to renaming) only finitely many anti-instances (i.e. terms
s with s→ t).

Fact 1 implies that this notion of substitution is a viable tool to compute generalizations in
the context of analogy making. It is a real extension of first-order substitution and it is capable of
detecting structural commonalities that are ignored by first-order anti-unification. Therefore, this
framework fits for the purpose of concept invention by conceptual blending, namely as a trigger
for the reasoning process by computing a generalization (generic space) of the two input domains
formulated in a many-sorted first-order logical language.
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Figure 5: The two extreme cases of input spaces, along with their generalizations and blends.

2.2.3 Blending

In the sketched setting, the blend depends on the portion of the original theories that are covered
by the analogy. There are two extreme cases: The first one, shown in the left diagram of Figure 5,
occurs when the two input spaces are isomorphic, meaning that there is a bijective morphism that
amounts to a simple renaming of signature symbols from the language of L onto the symbols of R.

In that case, all formulae of the theories can be generalized and are completely covered by
the analogy found by HDTP, and the resulting blend will be isomorphic to both of them. The
other extreme (depicted in the right diagram of Figure 5) is an analogy where no formulae are
aligned and therefore the generalized theory is empty, hence, no formulae of the domain theories
are covered by the analogy. In this case, a blend can always be obtained by taking the disjoint
union of the two input theories (this disjoint union may be inconsistent, however). In practice,
neither of these two cases is of real interest (provided there is no interest in knowing whether the
disjoint union of two input spaces is consistent). The interesting blends will be cases where only
parts of the input theories are covered by the analogy. In fact, one can adjust the blend by changing
the generalization, either by removing formulae and thereby reducing the number of mappings and
the coverage of the analogy, or by choosing another analogy which associates different formulae.
Due to the fact that HDTP outputs a ranked list of different candidates for analogical relations in
any case, using another generalization is rather straightforward.

The left theory L and the right theory R can be split into (non-empty) covered parts L+ and R+

and uncovered parts L− and R−. The covered parts are fully analogical, i.e. basically isomorphic,
and make up the core of the blend, which we will call B. The uncovered parts L− and R− reflect
the idiosyncratic aspects of the domains, which we would ideally want to integrate into the blend
B. However, due to the identifications induced by the analogical relation, adding all this to B
may result in an inconsistent theory. To preserve consistency, in such cases we may be forced to
consider only consistent subsets of this ideal, fully inclusive, blend. We will call a blend of two
theories maximally compressed if it is consistent and identifies the largest number of corresponding
signature symbols. A blend is called maximally informative if it includes a maximal consistent
subset of the set of potentially merged formulas (obtained by first taking the union of the input
theories and then replacing pairs of signature symbols that have been identified by the analogy by
only one unified symbol).

We propose the following criteria to select optimal blends: (1) the more informative and the
more compressed a blend, the better it is; (2) we are interested in blends that combine both do-
mains, i.e. that contain formulae from L− and R− (since otherwise the blend would just be a
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subtheory of L or R).6

It turns out that in the mathematical context the computation of blend spaces is strongly related
to a colimit construction, well-known from category theory (cf. Deliverable D3.1). In the worked
example (2.3), using HETS for the computation of the blend the mappings from the generaliza-
tion to the input spaces and the mappings from the input spaces to the blend space are interpreted
categorically as theory morphisms. Theory morphisms are intuitively mappings between signa-
tures that preserve the types of the symbols as well as logical consequences. These morphisms are
logic independent (i.e. they work without any restrictions for many-sorted first order theories). In
Deliverable D3.1, the computational machinery for this process is thoroughly explained.

2.3 Worked Example: Complex Numbers

The complex numbers example is one which historically took many years to be established in
mathematics, and is therefore a hard case to model. Nevertheless, we present this work as showing
that a rational reconstruction of the modern understanding of complex numbers is possible using
the techniques we describe below: given an axiomatization of an order field and an axiomatization
of a two-dimensional vector space first, HDTP computes an appropriate generalization (generic
space) and second, HETS computes a blend.

2.3.1 Formal Statement of Problem

The complex numbers can be understood as a blend between the geometrical notion of normed
real-valued vector space, and the algebraic notion of a field.

• The ordered field axioms for R:

1. R with +R , real 0 and unary -R form a commutative group.

2. R without the real 0, with ×R , 1 and -1R form a commutative group.

3. ×R distributes over +R .

4. ≤ is a total order on R, which respects addition; furthermore, the product of positive
numbers is positive.

• The elements of V form a commutative group with identity 0 and inverse operation (here as
prefix minus).

∀x,y : V x+ y = y+ x (1)

∀x,y,z : V (x+ y)+ z = x+(y+ z) (2)

∀x : V x+0 = x (3)

∀x : V x+(−x) = 0 (4)

6 Please note that, if L− or R− is fully contained in the blend, this is merely a case of analogy (where some parts of
the other theory are imported via analogical transfer).

611553 October 15, 2014 9



D1.1 Specification of the Representation Formalism and of Constraints and Requirements of Reasoning

• Interaction between field operations and vector operations. Here the field is the real num-
bers, operations are written with subscript R; 1 is the field multiplicative identity.

∀x,y : V ∀λ : R λ (x+ y) = λx+λy (5)

∀x : V ∀λ ,µ : R (λ +R µ)x = λx+µx (6)

∀x : V ∀λ ,µ : R λ (µx) = (λ ×R µ)x (7)

∀x : V 1x = x (8)

• Finally, there is a norm on the vector space (giving the size of vectors): ‖.‖ : V →R, with
associated axioms.

∀x : V ‖x‖ ≥ 0 (9)

∀x : V ‖x‖> 0↔ x 6= 0 (10)

∀x : V ∀λ : R ‖λx‖= |λ |×R‖x‖ (11)

∀x,y,z : V ‖x+ y‖ ≤ ‖x‖+‖y‖ (12)

On the other side, there are the field axioms, which are already part of the vector space axiom-
atization. The desired generalized theory linking the axiomatizations will not use that link, but it
is an obvious common feature of the two axiomatizations.

For completeness, here is an axiomatization.

• F with +F,0F , -F is a commutative group:

∀x,y : F x+F y = y+F x (13)

∀x,y,z : F (x+F y)+F z = x+F(y+F z) (14)

∀x : F x+F 0F = x (15)

∀x : F x+F(-F x) = 0F (16)

• F apart from 0F with ×F,1F ,
-1F is a commutative group.

Here a subtype F6=0 of F is used with an obvious definition.

∀x,y : F6=0 x×F y = y×F x (17)

∀x,y,z : F6=0 (x×F y)×F z = x×F(y×F z) (18)

∀x : F6=0 x×F 1F = x (19)

∀x : F6=0 x×F x -1F = 1F (20)

• Distributivity:

∀x,y,z : F x×F(y+F z) = (x×F y)+F(x×F z) (21)

We may now make clear what we are looking for in a blend. First, we are working in first-
order sorted logic, and the morphisms should map formulas to formulas while respecting the
logical form of our formulas. The generic theory should look for a morphism which maps axioms
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into axioms (or perhaps theorems) of both input theories, such that (parts) of the input theories are
instances of the mapped generic theory. And the blend should include aspects of both theories,
while respecting the generic aspects.

There are a couple of obvious, but non-creative, answers to the problem as stated.

1. Since the theory of the reals appears in both input spaces, we can take that to be the generic
space.

In this case we get nothing new, the blend is identical to the vector space theory.

2. Much more interestingly, the generic space can identify the addition operation in the theory
of the reals with the addition operation on vectors (in both cases these are Abelian groups).

In this case, the blend says that the operations on vectors should include vector multiplica-
tion, following the example of real multiplication.

The latter case we happen to know to be consistent, because the zero-dimensional real vector
space is a model (in which there is only one (zero) vector).

This is not taking us where we want to go, so far, because we have not insisted that the vector
space is two-dimensional. We can do this, by adding this constraint to the vector space axioms.

Two-dimensional case We now give ourselves products of sorts and pairings directly, and then
work with a refinement of normed vector spaces, i.e. one where the axioms, suitably interpreted,
hold, as well as the two-dimensionality axioms, again suitably interpreted. So, work with pairs of
reals:

(x1,y1)+(x2,y2) =def (x1+R x2,y1+R y2) (22)

0 =def (0,0) (23)

−(x,y) =def (-R x, -R y) (24)

λ (x,y) =def (λ ×R x,λ ×R y) (25)

‖(x,y)‖2 = ((x×R x)+R(y×R y))2 (26)

We can in fact show that, with these conditions, we do indeed have a real (normed) vector space.

Now we can look at the blend of 2-dimensional vector spaces with the real field. Again we can
look to see whether the blend is consistent, i.e. is there some multiplication operation over vectors
that turns the vectors into a field?

A way to show that the blend here is consistent (assuming the input spaces are) is to provide
definitions of multiplication, identity, and inverse in terms of what we already have, satisfying
the extra field axioms. Such abbreviational definitions are guaranteed to yield a conservative
extension, therefore no new inconsistency will be introduced.

For the case of complex numbers, the standard definitions are at hand.

1 =def (1,0) (27)

(x1,y1)× (x2,y2) =def ((x1×R x2)+R(-R(y1×R y2)),

(x1×R y2)+R(y1×R x2)) (28)

(x,y)−1 =def ‖(x,y)‖−2R (x, -R y) (29)
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(where the inverse square operation is shorthand for the obvious thing).

The preservation of norm under multiplication While the norm operation seems to have
played little role so far, we note the importance to the historical development of the role of one of
the properties of the usual Euclidean norm.

The following is part of the presentation in [9]:

The geometrical properties of the complex numbers follow from the fact that they
form a composition algebra for the Euclidean norm7

N(x+ iy) = x2 + y2

which means that
N(z1z2) = N(z1)N(z2).

This entails that multiplication by a fixed (non-zero) number z0 multiplies all lengths
by
√

N(z0); . . .

Their claim depends on the fact that, in a real vector space, a Euclidean norm with this compo-
sitional property uniquely determines the corresponding inner product (see [10] for a justification
of the claim).

At any event, this compositionality for norms played an important role in Hamilton’s discovery
of Hamiltonians, where he says of the property (cf. [17]):

. . . without which consistence being verified, I should have regarded the whole spec-
ulation as a failure.

The importance of this property suggests that the blending process should not concentrate
entirely on axioms. While our earlier thoughts on blending focused exclusively on operations
on sets of axioms, it is quite possible to include other statements such as key theorems in the
formalism associated with the initial theory.

In the case of complex numbers, this is the statement

‖z1.z2‖2 = ‖z1‖2.‖z2‖2

using a less fussy notation than that above. The centrality of this feature is further emphasized by
Argand’s discussion of the role of absolute magnitude in his description both of real and complex
numbers [2], one of the first expositions of the modern understanding of complex numbers.

The role of key properties associated with a particular theory is reminiscent of Lakatos’s char-
acterization of the hard core properties of a scientific research programme: features which are
central to the identity of the theory and not to be given up, unlike other dispensable features [22].

7Conway & Smith here take the norm to be the square of the usual Euclidean distance.
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2.3.2 Implementation

In order to automate the process of discovering blends between theories, we employ the HETS
system [26]. HETS supports reasoning about logical theories and relationships between them
(it also supports reasoning about relationships between different logics, though we make no use
of this for present purposes). It will generate proof obligations when claims are made about
relationships, such as that everything provable in one theory is provable in another theory, under
some translation into different syntax. It is thus well suited to help in organizing and verifying
claims about analogical inference.

When HETS is given signature morphisms between theories (a particular case of translations
that preserve provability), it can compute a colimit which is the categorical equivalent of what
we have thus far referred to as a blend. In order to compute a blend between two theories, we
must first calculate the signature morphisms defining the generic space which is common to both
theories. To do this we exploit the HDTP software [16, 37] which computes a generalized version
of the input theories.

Specification using DOL In order to specify a theory and to further define signature morphisms
we use the DOL specification language [23]. For our example of complex numbers we use the
CASL logic [4] to describe the theories. Initially we define the signature of an ordered field and
a two-dimensional vector space. The specification files themselves are too big to show here but
can be found in full online in the Ontohub system at http://ontohub.org/complex-blend/
complex_blend. For the purposes of exposition we show simplified files here. Below is part of a
definition of an ordered field, and part of a definition of a vector space:

spec Field =

sort Real

ops

0:Real;

__ + __: Real * Real -> Real;

- __ : Real -> Real;

__ * __: Real * Real -> Real

forall x,y:Real

. x+0=x %f_plus_ident%

. x+y=y+x %f_com_plus%

. x+(-x)=0 %f_plus_inv%

end

spec VectorSpace =

sort Real

free type Vec ::= pair(r:Real;c:Real)

ops

vzero: Vec;

0: Real;

vmi __: Vec -> Vec;

__ vpl __: Vec * Vec -> Vec

forall x,y:Vec;

. x vpl vzero = x; %v_plus_ident%

. x vpl y = y vpl x %v_com_plus%
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Gen
?

$$

?

xx
Ax(NV S2)

? &&

Ax(F)

?zz
Blend

Figure 6: Diagram for the theory of two-dimensional vectors.

. x vpl (vmi x) = zero %v_plus_inv%

end

This mirrors the exposition given for the definitions of a field and a vector space, introducing a
pair type to indicate that we want to develop a theory of two-dimensional vectors. This gives us
the following diagram of Figure 6. Ax(F) are the axioms of the real ordered field, and Ax(NV S2)
are the axioms of a normed two-dimensional vectors space. The ? correspond to the signature
morphisms that will be calculated by HDTP and HETS.

Calculation of Generic Space Since a vector space itself comprises an ordered field, there is a
generic space which is calculated using identity morphisms which reproduces the vector space in
the blend, as described in Subsection 2.3.1. We are interested here in a generic space together with
a morphism which is different to the identity morphism. We exploit the HDTP system to generate
the following signature morphism:

0 ←G→ f zero →G→v vzero (30)

+ ←G→ f plus →G→v vpl (31)

− ←G→ f minus →G→v vmi (32)

which generates the following Generic space in HETS:

spec Gen =

sort Generic

ops

__ plus __: Generic * Generic -> Generic;

zero: Generic;

minus __: Generic -> Generic

forall x,y,z:Generic

. x plus zero=x %gen_plus_ident%

. x plus y=y plus x %gen_com_plus%

. x plus (minus x) = zero %gen_plus_inv%

end

We now have a calculated definition of a generic space by which we can calculate a colimit. We
need first to indicate in HETS using the DOL language how the signature morphism calculated by
HDTP is specified (cf. also Figure 7):
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Gen
G→ f

$$

G→v

xx
Ax(NV S2)

? &&

Ax(F)

?zz
Blend

Figure 7: Diagram specifying the signature morphisms calculated by HDTP.

view I1: Gen to Field =

__ plus __ |-> __ + __,

zero |-> 0,

minus __ |-> - __

view I2: Gen to VectorSpace =

__ plus __ |-> __ vpl __,

zero |-> vzero,

minus __ |-> vmi __

It now remains to establish the signature morphisms to the computed colimit. The resulting
theory is the blend of the ordered real field and the two dimensional vector space.

Calculation of Colimit (Blend) HETS automatically computes the colimit by determining which
laws must be associated with symbols in the blend. The symbol plus from the Generic theory is
now both associated with field addition from the ordered field and vector addition from the two
dimensional vector space. The effect of this is that the two dimensional vector space “inherits” the
notion of multiplication from the ordered real field. For the complex numbers this is indeed what
we want, and we also inherit a definition of multiplicative inverse for vectors.

2.4 Further Worked Examples

Additional worked examples which are both, in the spirit of and predecessors of the complex
number example of Subsection 2.2 can be found in the published papers [15] and [24]. The paper
[3] provides an explicit modeling and a further example of analogies and analogical reasoning
used in classroom situations. General algorithmic aspects of concept blending in the context of
mathematical theories can be found in [25] (currently in press).

3 Representation of and Reasoning in Music to Create New Concepts

3.1 Abstract Representation of Musical Aspects

In mathematics, it is rather obvious how to represent mathematical theories: it is natural to rep-
resent theories in a logical language in form of axiomatic systems. Music is, however, a domain
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for which the choice of the representation formalism is less clear. One reason is that music can
be analyzed on many different levels: For example, music can be analyzed on the level of its
physical realization, on the MIDI level, on the level of motifs and chords of a piece of music, on
the level of chord progression structures (harmonic structures), on the level of larger structures of
whole pieces of music (e.g. sonata form, rondo form), or on a meta-level where concepts outside
of the musical domain are used to describe music (e.g. Chopin’s “Raindrop” Etude, Beethoven’s
“Pathetique” Sonata, Tchaikovsky’s “Song of a Lark” piano piece contained in his Op. 37a). Due
to the fact that the breadth of the sketched description levels ranges from areas which are usually
modeled with subsymbolic representations (e.g. physical level) to areas where highly conceptual
and symbolic representations are plausibly used (e.g. meta-level analysis of music), music is a
natural candidate for a domain for which the choice of the particular description level constrains
the representation formalism.

Consequently, in the COINVENT project different representation formalisms are used for
modeling certain aspects of concept invention in music. As a matter of fact it turned out that
already on a particularly chosen specific level of analysis, e.g. the harmonization level, a vari-
ety of different representation formalisms can be used dependent on whether the representation
should cover uncertainty aspects or not, whether the representation should be able to check well-
formedness conditions or not etc. Therefore, three representation formalisms are sketched which
are used throughout this report: General Chord Type representations (Subsection 3.1.1), Constraint
Hidden Markov Models (Subsection 3.1.2), and feature structures (Subsection 3.1.3).

3.1.1 General Chord Type Representations (GCT)

Within the context of the COINVENT research, a new idiom-independent representation of chord
types is proposed of chord that is appropriate for encoding tone simultaneities in any harmonic
context (such as tonal, modal, jazz, octatonic, atonal). The General Chord Type (GCT) repre-
sentation, allows the re-arrangement of the notes of a harmonic simultaneity such that abstract
idiom-specific types of chords may be derived; this encoding is inspired by the standard roman
numeral chord type labeling, but is more general and flexible. Given a consonance-dissonance
classification of intervals (that reflects culturally-dependent notions of consonance/dissonance),
and a scale, the GCT algorithm finds the maximal subset of notes of a given note simultaneity that
contains only consonant intervals; this maximal subset forms the base upon which the chord type
is built. The proposed representation is ideal for hierarchic harmonic systems such as the tonal
system and its many variations, but adjusts to any other harmonic system such as post-tonal, atonal
music, or traditional polyphonic systems.

For the GCT representation the computation of a pitch class simultaneity (chord) and a clas-
sification of intervals into consonant/dissonant (binary values) is considered, alongside with an
appropriate scale background (i.e. scale with tonic). The GCT algorithm computes for a given
multi-tone simultaneity the “optimal” ordering of pitches such that a maximal subset of consonant
intervals appears at the “base” of the ordering (left-hand side) in the most compact form. The tonal
center (key) is considered as given, therefore the position within the given scale is automatically
calculated. Roughly, the input to the algorithm is the following:

1. Consonance vector: The user defines which intervals are consonant/dissonant through a 12-
point Boolean vector of consonant (1) or dissonant (0) intervals. For instance, the vector
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[1,0,0,1,1,1,0,1,1,1,0,0] means that the unison, minor and major third, perfect fourth and
fifth, minor and major sixth intervals are consonant – dissonant intervals are the seconds,
sevenths and the tritone; this specific vector is referred to in this text as the common-practice
consonance vector.

2. Pitch Scale Hierarchy: The pitch hierarchy (if any) is given in the form of scale tones and a
tonic (e.g. a D maj scale is given as: 2, [0,2,4,5,7,9,11], or an A minor pentatonic scale as:
9, [0,3,5,7,10]).

3. Input chord: list of MIDI pitch numbers (converted to pc-set).

The GCT algorithm encodes most chord types “correctly” in the standard tonal system. How-
ever, the algorithm is undecided in some cases and even makes “mistakes” in other cases. In most
instances of multiple encodings, it is suggested that these ideally should be resolved by taking into
account other harmonic factors (e.g. bass line, harmonic functions, tonal context, etc). For more
details about strategies to resolve these issues, the interested reader is referred to [8]. An example
of the GCT analysis-representation is illustrated in Figure 8.

Figure 8: Chord analysis of a Bach Chorale phrase by means of traditional roman numeral analysis,
pc-sets and two versions of the GCT algorithm.

3.1.2 Constrained Hidden Markov Models

Hidden Markov models (HMMs) have been extensively used for the automatic harmonization of a
given melody, since their formalization describes the targeted task very well: given a sequence of
observed notes (melody), find the most probable (hidden) sequence of chords that is compatible
with the observations, according also to a chord transition matrix. In several studies of HMM–
based melodic harmonization methodologies, a straightforward distinction is made on the role
that some chords play to the composition – mainly the cadence of the phrase. For instance, the
cadences of produced harmonizations by the HMM developed in [5] were utilized to evaluate the
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system’s performance, by comparing the cadence patterns that were produced by the system to the
ones observed in the dataset.

Several HMM approaches discuss the utilization of some methodological tools to amplify the
role of the cadence in the harmonization process. For instance, in [1] and [18] a backwards
propagation of the HMM methodology is proposed, i.e. by examining the prior probabilities of the
final chord given the final melodic note. The Markov decision process followed in [42] rewards
the authentic cadences, thus providing higher probabilities to chord sequences that end with an
authentic cadence. In [43] the phrases are divided in tonic, subdominant, dominant, and parallel
tonic chords, allowing a trained HMM to acknowledge the positions of cadences, although the
selection of chords is performed through a rule–based process. A commercial application utilizing
HMM for melodic harmonization is mySong [39], which receives the melody by the singing voice
of the user, extracts the pitches of the melody and employs an HMM algorithm to provide chords
for the melody. According to the HMM approach utilized in mySong, prior probabilities are
considered not only for the beginning chord of a piece, but also for the ending one, a fact that
further biases the choice of solutions towards ones that incorporate first and final chords that are
more often met in the training dataset.

The approach presented in this section is motivated by the research in the aforementioned
works, but it is different on a fundamental aspect: it allows the deterministic (not probabilistic) in-
sertion of chords at any place in the chord sequence. Such an approach is important since it permits
the extension of the “learned” transitions, potentially allowing to build composite harmonization
that comprise characteristics from various idioms. To this end, the isolation of the harmony in
“strategic” harmonic positions (e.g. the cadence, the beginning or intermediate parts of a phrase)
is expected to contribute to the project’s perspective.

The chords that “connect” two successive fixed–boundary chord segments are defined by a
variation of HMM, the BCHMM. Throughout the development of the BCHMM, a nomenclature
relative to the subject under discussion will be followed, i.e. the dataset will comprise musical
pieces (more specifically harmonic reductions of pieces), the states will represent chords and the
observations will describe melody notes. To this end, the set of possible state–chords will be
denoted by S , while the letters C and c will be used for denoting chords. The set of all possible
observation–notes will be denoted as Y , while Y and y will be denoting melody notes. Specifically,
the capitalized letters will be used to denote statistical variables, while their instantiation variables
will be denoted by lower case letters. For example, P(Ci = ci) denotes the probability that the
chord in the i–th position is a ci chord (where ci is a specific chord, e.g. a [7, [0,4,7], [10]] chord
in GCT form, which is a dominant seventh chord).

An initial set of music phrases is considered which will provide the system with the required
statistical background, constituting the training set. Through this dataset the statistics that are
induced concern three aspects:

1. The probability for each state (chord) to be a beginning chord. This distribution is computed
by examining each beginning chord for each phrase in the dataset and is denoted as π(C1 =
c), c ∈S .

2. The probability for each state (chord) to be an ending chord. This distribution is computed
by examining each ending chord for each phrase in the dataset and is denoted as τ(CT = c),
c ∈S .
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3. The probability that each state follows another state, denoted as P(Ci = ci|Ci−1 = ci−1), ci,
ci−1 ∈S .

4. The probability of a chord being played over a melody note, denoted as P(Ci = ci|Yi = yi).

These probabilities are related during the computation of the overall probability that a certain
chord sequence (Ci = ci, i= 1,2, . . . ,T ) is applied over an observed melody (Yi = yi, i= 1,2, . . . ,T ).
This overall probability is computed by

P(Ci = ci|Yi = yi) = Pπ Pµ Pτ , (33)

where

Pπ = π(C1 = c1) P(C1 = c1|Y1 = y1), (34)

Pµ =
T

∏
i=2

P(Ci = ci|Ci−1 = ci−1)

P(Ci = ci|Yi = yi), (35)

Pτ = τ(CT = cT ) P(CT = cT |YT = yT ). (36)

An optimal sequence of chords is one that maximizes the overall probability (in Equation 33)8,
by achieving an optimal path of states that yield a maximal combination for the probabilities in all
the counterparts (Pπ , Pµ and Pτ ), typically through the Viterbi [11] algorithm. The probabilities in
Pπ promote some chords as better solutions to begin the path of chords: the ones that are more often
used in the beginning of pieces in the dataset. Similarly, the probabilities in Pτ advance solutions
that are more often met as concluding chords. Although the results reported in past works indicate
that Pπ and Pτ most probably create satisfactory results, these probabilities do not guarantee that
the more often met beginning and ending chords will be utilized. A similar comment can be made
about strategies which focus on constructing satisfactory cadences, by beginning from the end of
the phrase to be harmonized and employing the Viterbi algorithm from “right-to-left”. Specifically,
while the latter approaches have an increased bias towards the cadence part of the phrase, it is again
not guaranteed that the cadence or the beginning chord of the phrase will be satisfactory.

Regarding the probabilistic scheme, the process for computing the probability value in Equa-
tion 33, incorporates the extraction of the statistical values for π(C1 = c1) and τ(CT = cT ), ac-
cording to the number of occurrences of each chord as an initial or final chord respectively. For
the BCHMM approach however, no statistics are considered for these boundary points, since they
certainly (with probability 1) include the chords specified by a higher hierarchical level or by a
human annotator. To be compatible with the terminology followed hitherto for the presentation
of the HMM model, the latter comment can be expressed by modifying the Equations 34 and 36
so that they indicate the chords selected at temporary boundary points between successive check-
points as certain, while eliminating the probabilities for any other chords to appear. Specifically,
if the beginning and ending chords are selected to be α1 and αT respectively, the new probabilities
that substitute the ones expressed by Equations 34 and 36 are the respective following ones:

P′π =

{
1, if C1 = α1

0, otherwise
(37)

8In implementations of HMMs, it is usually the negative log–likelihood that is being minimized, i.e. the logarithm
of the expression in Equation 33, since the numbers that are yielded by consecutive multiplications of probabilities
(quantities ≤ 0) are difficult to be compared by eye because of their small magnitude.
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Figure 9: Trellis diagram for the BCHMM. Only transitions from α1 and to αT as first and last
states respectively are permitted. The intermediate trellis diagram is the same as in a typical HMM.

P′τ =

{
1, if CT = αT

0, otherwise.
(38)

The probability that is therefore optimized is the following:

P(Ci = ci|Yi = yi) = P′π Pµ P′τ , (39)

where the factor Pµ is the one defined in Equation 35. The employment of the Viterbi algorithm
under the constraints imposed by the boundary conditions, as reflected by Equations 37 and 38,
assigns zero–value probabilities to all paths, except the ones that begin with α1 and end with αT .
Figure 9 illustrates the trellis diagram of the Viterbi algorithm under the discussed constraints.

3.1.3 Feature Structures

Idea from Linguistics Feature structures have a long history in linguistics (c.f. [7] for Lex-
ical Functional Grammar and [29] for Head-Driven Phrase Structure Grammar). The classical
representation is in form of matrix-like structures. We informally introduce a simple example
from linguistics taken from [35]. Consider the German sentence “Ich habe jetzt eine Unfall gese-
hen” (“Now I have seen an accident”). The sentence is grammatically almost correct except for
the agreement between the determiner and the noun in the object NP. “gesehen” calls for an Ac-
cusative object, however “Unfall” is Accusative Masculin whereas “eine” is Accusative Feminin.
Figure 10 shows the (simplified) corresponding lexical information for “eine” and “Unfall” in a
feature structure representation (more precisely a LFG-style representation).

In order to detect the ungrammatical constituent in the above sentence a system needs only
to check the feature agreement for those features that need to correspond in a nominal phrase
consisting of an indefinite article and a noun. In German these features for which agreement needs
to be guaranteed are gender, number, and case (cf. Figure 10). In case of feature gender there is a
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“eine” “Unfall”
de f : −−
gen : f
num : sg
case : acc




pred : ACCIDENT
gen : m
num : sg
case : acc


Figure 10: Lexical entries for “eine” and “Unfall”

clash of the values. The possibility to embed smaller feature structures into larger feature structures
allows it to uniformly represent words, constituents, and sentences in the sketched matrix-like
form. Such matrix-like structures can also be used to represent chords and cord progressions in
the music domain.

Formal Basis Feature logic is a well-developed theory. It is not possible to introduce feature
logic formally in this report in detail. The reader is referred to [40] for a thorough formal intro-
duction. Just to give the reader a flavor of the formal foundation of feature logic we sketch some
basic ideas.9 We assume that a finite set Con of constants (in music e.g. values for a mode like
major or values of a key like C#), a finite set Feat of features (e.g. key, mode, function etc.), and
an infinite set Var of variables are given. The denotation of symbols is defined as usual: constants
are denoted by letters a,b,c, . . . , features by letters f ,g,h, . . . , and variables by letters x,y,z, . . .
The following definition specifies a feature algebra.

Definition 2 A feature algebra A is a pair 〈D, I〉 where D is a non-empty set and I is an interpre-
tation function defined on constants by I : Con→D and on features by I : Feat→P(D×D) such
that the following conditions hold:

(i) If 〈a,b〉 ∈ I( f ) and 〈a,c〉 ∈ I( f ) then b = c
(ii) If I(a) = I(b) then a = b
(iii) For all a ∈Con there is no d ∈ D such that 〈a,d〉 ∈ I( f )

Condition (i) requires that features are (partial) functions, condition (ii) expresses the unique
name assumption for constants, and condition (iii) does not allow the application of features to
constants, i.e. constants are considered to be atomic.

Besides the representation of feature structures in matrices it is quite common to represent
feature structures as graphs.

Definition 3 A feature graph is either a graph without edges, i.e. a pair 〈a, /0〉 where a ∈Con is
the root of the graph or a graph with edges 〈x,E〉 where x ∈Var is the root of the graph and E is
a finite set of (feature–labeled) edges of the form y f s where y ∈Var, f ∈ Feat, and s ∈Con∪Var
such that the following three conditions are satisfied:

(i) Edges are uniquely defined: If y f s ∈ E and y f t ∈ E then s = t.

9The following presentation is taken from [35] which is itself based on [40].
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(ii) The graph is connected: If y f s ∈ E then E contains a path of edges from the root x to y.
(iii) The graph is acyclic: If y f s ∈ E then there is no path of edges leading from s to y.

Definition 3 requires that a feature graph is a rooted, connected, acyclic, and directed graph.10

The edges of a feature graph are labeled with features and the nodes with variables or constants.
The set of edges E needs to be finite. Subgraphs of a given graph G are defined as usual, namely
as a homomorphic embedding of the subgraph into the matrix graph. Definition 4 makes this idea
precise.

Definition 4 Given two graphs G and G′ where the root of G is x ∈ Con∪Var, G is called a
subgraph of G′ iff there is a homomorphic embedding h : G→ G′ such that: h(x) = x and for all
edges y f s ∈ G : h(y f s) = y f s.

Following [40], the collection of all feature graphs can be used to define a new structure called
a feature graph algebra. It turns out that this feature graph algebra is itself a feature algebra
(compare Fact 6).

Definition 5 Assume a feature algebra A = 〈D, I〉 is given. A feature graph algebra F is a pair
〈DA, IA〉 such that:

(i) DA is the set of all feature graphs
(ii) For a ∈Con: IA(a) = 〈a, /0〉
(iii) IA( f ) = 〈G′,G〉 iff x f s ∈ G′ where x is the root of G′ and G is the maximal subgraph

with root s in G′

Fact 6 (Smolka) A feature graph algebra satisfies the properties of a feature algebra.

Proof: Compare [40] q.e.d.

Usually feature graphs are considered to be preordered by a subsumption relationv determin-
ing the amount of information coded in the feature graph. The intuition of Definition 7 is to make
the concepts of generality and specificity precise in the following sense: if a v b then a is more
general than b (or b is more specific than a).11 The importance of the subsumption relation v can
be traced back to the fact thatv is used for defining the unification operation on feature graphs. In
the framework of amalgams (see below), the amount of information coded in a a feature structure
becomes important. Definition 7 specifies a subsumption relation v on a feature algebra A.

Definition 7 Assume A= 〈D, I〉 is a feature algebra. A subsumption preorderv on A is a preorder
defined on D satisfying the following property: av b iff there is a partial mapping φ : D→D such
that the following conditions (i) – (iii) hold:12

10Alternative definitions of feature graphs allow cyclic graphs as well, compare for example Smolka [40].
11In machine learning terms, AvB means that A is more general than B, while in description logics it has the opposite

meaning, since it is seen as “set inclusion” of their interpretations.
12According to Definition 2 a feature f is interpreted as a (partial) function. We write (I( f ))(d) as the result of

mapping d ∈ D under I( f ) in the feature algebra A.
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(i) For all c ∈Con it holds φ(I(c)) = I(c)
(ii) If f ∈ Feat, d ∈ D, and (I( f ))(d) as well as φ(d) are defined, then φ [(I( f ))(d)] and

(I( f ))(φ(d)) are defined such that (I( f ))(φ(d)) = φ [(I( f ))(d)]
(iii) φ(a) = b

An Instantiation of the Formal Basis A concrete instantiation of the abstract theory of feature
structures are amalgams. An amalgam is a description that combines parts of two other descrip-
tions as a new coherent whole. There are notions that are related to amalgams in addition to
conceptual blending, such as merging operation or information fusion. They all have in common
that they deal with combining information from more than one “source” into a new integrated and
coherent whole; their differences reside on the assumptions they make on the source characteristics
and the way in which the combination of the sources takes place.

The notion of amalgams was developed in the context of Case-based Reasoning (CBR) [27],
where new problems are solved based on previously solved problems (or cases, residing on a case
base). Solving a new problem often requires more than one case from the case base, so their
content has to be combined in some way to solve the new problem. The notion of amalgam of
two cases (two descriptions of problems and their solutions, or situations and their outcomes) is a
proposal to formalize this combinatorial process which produces a new, coherent case.

Formally, the notion of amalgams can be defined in any representation language L for which
a subsumption relation v between the terms (or descriptions) of L can be defined. We say that
a term ψ1 subsumes another term ψ2 (ψ1 v ψ2) when ψ1 is more general than (or equal) to ψ2.
Additionally, we assume that L contains the infimum element ⊥ (or “any”), and the supremum
element > (or “none”) with respect to the subsumption order.

Next, for any two terms ψ1 and ψ2 we can define their unification, (ψ1tψ2), which is the most
general specialization of two given terms, and their anti-unification, defined as the least general
generalization of two terms, representing the most specific term that subsumes both. Intuitively,
a unifier (if it exists) is a term that has all the information in both the original terms, and an
anti-unifier is a term that contains only all that is common between two terms. Also, notice that,
depending on L , anti-unifier and unifier might be unique or not.

The notion of amalgam can be conceived of as a generalization of the notion of unification
over terms. The unification of two terms (or descriptions) ψa and ψb is a new term φ = ψatψb,
called unifier. All that is true for ψa or ψb is also true for φ .; e.g. if ψa describes “a red vehicle”
and ψb describes “a German minivan” then their unification yields the description “a red German
minivan.” Two terms are not unifiable when they possess contradictory information; for instance
“a red French vehicle” is not unifiable with “a blue German minivan”. The strict definition of
unification means that any two descriptions with only one item with contradictory information
cannot be unified.

An amalgam of two terms (or descriptions) is a new term that contains parts from these two
terms. For instance, an amalgam of “a red French vehicle” and “a blue German minivan” is “a
red German minivan”; clearly there are always multiple possibilities for amalgams, since “a blue
French minivan” is another example of an amalgam. The notion of amalgam, as a form of “partial
unification”, was formally introduced in [27].

For the purposes of this deliverable, we will introduce a few necessary concepts.
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Definition 6 (Amalgam) The set of amalgams of two terms ψa and ψb is the set of terms such
that:

ψa gψb = {φ ∈L |∃αa,αb ∈L : ψauψb v αa v ψa ∧ ψauψb v αb v ψb ∧ φ = αatαb}

and φ 6=> (i.e. αatαb has a unifer, is not inconsistent).

Thus, an amalgam of two terms ψa and ψb is a term that has been formed by unifying two gener-
alizations αa and αb such that ψauψb v αa v ψa and ψauψb v αb v ψb —i.e. an amalgam is a
term resulting from combining some of the information in ψa with some of the information from
ψb. Notice that not all generalizations are taken into account, only those that are less general than
ψa uψb (the anti-unification of the inputs); the intuitive reason is that the anti-unification repre-
sents what is common or shared between the two inputs and, thus, generalizing more than ψauψb
would eliminate information that is already in both inputs and is compatible. Formally, ψa gψb
denotes the set of all possible amalgams; however, whenever it does not lead to confusion, we will
use ψa gψb to denote one specific amalgam of ψa and ψb.

The terms αa and αb are called the transfers or constituents of an amalgam ψa g ψb. αa

represents all the information from ψa which is transferred to the amalgam, and αb is all the
information from ψb which is transferred into the amalgam.

Usually we are interested only in maximal amalgams of two input terms, i.e. those amalgams
that contain maximal parts of their inputs that can be unified into a new coherent description.
Formally, an amalgam φ ∈ ψa gψb is maximal if there is no φ ′ ∈ ψa gψb such that φ @ φ ′.
In other words, if more properties of an input were added the combination would be no longer
consistent. The reason why we are interested in maximal amalgams is very simple: consider an
amalgam φ ′′ such that φ ′′ @ φ ; clearly φ ′′, being more general than φ , has less information than
φ and thus combines less information from the inputs ψa and ψb. Since φ has more information
while being consistent, φ ′′ or any amalgam that is a generalization of φ , is trivially derived from
φ by generalization.

Amalgams and conceptual blends are similar in that they combine (parts of) two inputs into
a new coherent whole. They diverge however on the assumptions they make about those in-
puts. Amalgams approach the problem of combining inputs (e.g. ψa and ψb) from the view-
point of Artificial Intelligence, assuming some representation language is used to specify these
inputs (that an be understood as cases, problems, situations, depending on the context). Although
amalgams make very few demands on the representation language (only that some kind of sub-
sumption/generalization relation can be defined among the formulas of the language), they take a
very syntactic approach on what the inputs are and what consistency is (since consistency is itself
implicitly defined by the way a given language defines unification).

Feature Structures for Coding Chords Feature structures are rather flexible to represent dif-
ferent abstraction levels of music. Whereas features like key, function, mode etc. need to be
considered for representing chords, abstract features like mood with values happy and sad can be
used for a meta-level description of a chord, a chord sequence, or a whole piece of music. A crucial
aspect of modeling musical aspects with feature structures is therefore the choice of the features
for representation. Whereas for particular applications COINVENT uses different sets of features
to make things simple and to keep as much flexibility as possible, in the following, a possible data
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structure for the representation of single chords is considered. In order to keep things as simple
as possible only tonal chords are considered (i.e. free tonality, atonality, polytonality etc. are not
modeled). Intuitively, chords are used that can be interpreted in function theory. Furthermore, we
do not stick to a definite set of features, but exemplify the relevant features in some examples.
Natural candidates for features used to represent chords are the following ones:

• key: Every chord has a feature root key with values C, C#, D, . . . , B.

• mode: Every chord is in a mode with values major and minor.

• func: Every chord has a function with values tonic, dominant, subdominant, tonic parallel,
double dominant etc.

• 6: In a chord, a sixth can be added (sixte ajoutée) with values 0 (no added 6th) or 1 (added
6th).

• 7: In a chord, a seventh can be added (seventh cord) with values 0 (no added seventh) or 1
(added seventh).

• 9: In a chord, a ninth can be added (dominant ninth cord) with values 0 (no added ninth) or
1 (added ninth).

• 11: In a chord, an eleventh can be added (dominant eleventh cord) with values 0 (no added
eleventh) or 1 (added eleventh).

• 13: In a chord, a thirteenth can be added (dominant thirteenth cord) with values 0 (no added
thirteenth) or 1 (added thirteenth).

• sharp: In a chord several tones can be sharpened. For example, by sharpening the seventh
in a dominant seventh cord one gets a major seventh chord, by sharpening the fifth in a
dominant seventh chord one gets an augmented seventh chord etc. Values for this feature
are subsets of 5#, 7#, 9#, 11#, 13#.

• flat: In a chord several tones can be flattened. For example, by flattening the fifth and the
seventh in a minor seventh cord one gets a diminished seventh chord, by flattening only the
fifth in a minor seventh chord one gets an half-diminished seventh chord etc. Values for this
feature are subsets of 5[, 7[, 9[, 11[, 13[.

• Inversion Dependent on the bass tone in a given chord inversions of this chord can be gen-
erated. Values for this feature are 0 (no inversion), 1 (first inversion), 2 (second inversion),
3 (third inversion in case of a seventh chord).

• add: In certain musical traditions, composers depart from the arrangement of layers of thirds
to generate chords by adding additional tones, e.g. seconds, or fourth. The values for this
feature are the keys C, C#, D, . . . , B.

In a matrix-like representation, the mentioned features can be represented in a feature struc-
ture as depicted in Figure 11 (using flat feature structures). The flat feature representation has the
advantage that the resulting structure is rather homogeneous and does not contain deeper embed-
ded feature-value pairs. Nevertheless, several features are dependent on each other for which an
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key : [C |C# | D | . . . | B].
mode : [ma jor | minor]
f unc : [T | D | S | T p | Sp | Dp | DD | SS | Dcp | t | s | d | tP | sP | dP . . . ]

6 : [0 | 1]
7 : [0 | 1]
9 : [0 | 1]

11 : [0 | 1]
13 : [0 | 1]

sharp : [5# | 7# | 9# | 11# | 13#]
f lat : [5[ | 7[ | 9[ | 11[ | 13[]

inversion : [0 | 1 | 2 | 3]
add : [C |C# | D | . . . | B]


Figure 11: A flat feature structure that allows to represent a large variety of tonal music. The mode
feature is interpreted as the natural minor scale. Notice that functions are dependent on the mode
of the scale (i.e. major or minor): For example, a dominant parallel chord (Dp) of a major scale
is a minor chord, whereas the dominant parallel (dP) of a minor scale is a major chord. Notice
also that there are obvious dependencies between the features, e.g. functions are dependent on the
given scale, the sharpening of a seventh is dependent on the value of the feature 7 (if there is no
seventh, it cannot be sharpened) etc.

embedded structure, where certain features are collapsed to a more complex feature, is a more
natural representation. Figure 12 depicts a possible mild form of a feature structure where certain
dependencies are representable in the feature structure. Notice that even here some features are
not independent from each other: for example, in a C-major chord, adding with the add feature
the tone E is redundant, because the tone is already coded in the chord.

Representing chords as feature structures has the advantage that generalizations (i.e. the
generic space in the blending model) and blends can be computed rather easily. In the context
of single chords, a generalization of two chords can be computed by the HDTP engine by intro-
ducing variables for those values of features where there is a disagreement. On the other hand,
features of two chords where the values coincide can be copied to the generic space.

Here is a simple exemplification: Consider the example of blending two chords. Take as one
input a dominant seventh chord in the second inversion (e.g. in the C-major scale: D - F - G - B)
and as the other input chord a double subdominant chord without inversion and without seventh
(e.g. in the C-major scale: B[ - D - F). The task is to compute a generalization and a possible blend
chord for the input. Figure 13 shows the corresponding diagram, namely the two input chords, the
computed generalization, and a possible blend chord. In the depicted diagram we abstract from
many features that are of no interest for the example. The computation of the generalization (i.e.
the generic space) is straightforward by introducing variables x,y, and z for corresponding features
with different values (compare the computation of generalizations by HDTP in Subsection 2.2.2).
The blend space allows various variations of blending the two input chords. Heuristics need to
govern the more appropriate candidates for blended chords.
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key : [C |C# | D | . . . | B]

mode− f unction : α

[
ma jor : [T | S | D | T p | Sp | Dp | DD | SS . . . ]

minor : [t | s | d | tP | sP | dP | D | DD . . . ]

]
6 : [0 | 1]
7 : [0 | 1 | 7[ | 7#]
9 : [0 | 1 | 9[ | 9#]
11 : [0 | 1 | 11[ | 11#]
13 : [0 | 1 | 13[ | 13#]

sharp : [5#]
f lat : [5[]

inversion : [0 | 1 | 2 | 3]
add : [C |C# | D | . . . | B]


Figure 12: A feature structure that allows to represent certain dependencies between features. The
mode-function feature is interpreted as functions relative to the natural minor scale.


mode : [ma jor]
f unc : [x]

7 : [y]
inversion : [z]


%%yy

mode : [ma jor]
f unc : [D]

7 : [1]
inversion : [2]


%%


mode : [ma jor]
f unc : [SS]

7 : [0]
inversion : [0]


yy

mode : [ma jor]
f unc : [SS]

7 : [1]
inversion : [2]


Figure 13: Example of a generalization and blend of two chords. Only some interesting features
are depicted.
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Instantiation of 
IDIOM_(A+B)

melody

Automatic harmoniser
composition module 

Instantiation of 
IDIOM_A

Instantiation of 
IDIOM_B

COINVENT
blending device

Figure 14: Overview illustration of the COINVENT melodic harmonizer. Conceptual blending
takes part in the ontologies that describe harmony, creating blended harmonizations that constitute
the descriptive guidelines for the composition module.

3.2 Concept Blending in Harmony for Concept Invention: Overall Architecture
and Information Extraction from Score

The development of a melodic harmonizer is designed to encompass two main parts: the blending
and the harmonization modules. In order to give an overall picture of the approach, an architecture
is needed that specifies the information flow of the involved modules. The architecture is roughly
illustrated in Figure 14. The blending module incorporates all the background knowledge in the
form of a harmonic ontology that represents different idioms, as well as certain pieces of each id-
iom. Harmonic blending concerns the information included in this module. The specific properties
of this module are analyzed in Section 3.3. The harmonization module receives information from
the blending module, thereby building a harmonization framework of deterministically produced
chord constraints.

The architecture requires information in form of a harmonic ontology representing different
idioms as well as statistical information about chord sequences. For these two types of informa-
tion harmonic information needs to be extracted from scores. Ground-truth harmonic information
is manually annotated and extracted from pieces of music among a collection of great variety, the
harmonic training dataset (compare Deliverable D7.1). Manual annotations concern the extrac-
tion of key-elements in harmony, from a harmonically reduced version of the examined pieces’
phrases. These elements include the required information to describe harmonic concepts on many
levels, with a parallel goal to achieve a balance between human-friendly interpretation of data
and computationally accessible encoding. Specifically, the harmonic levels that are isolated and
represented are the following ones:

1. Tonality and tonality changes, which are important for tracking the tonality constitution of
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phrases within idioms (e.g. modal or tonal harmony), while also determining the harmonic
changes that occur and how often they occur.

2. Grouping of phrases for tracing the sub-phrases that include harmonically and melodically
coherent parts.

3. Denotation of harmonic devices, for isolating areas of harmonically exceptional mecha-
nisms.

The points mentioned above are analytically presented in Section 3.3. On the other hand,
building a rich background database with a plethora of different idioms demands the employment
of a chord representation formalism that is not limited to representing a subset of the utilized id-
ioms. For instance, the utilization of the alphabetic jazz chord symbols might be adequate for
representing jazz, tonal or modal music idioms (among others), however, it imposes serious limi-
tations for the representation of atonal music or for non-Western folk idioms (e.g. the polyphonic
songs of Epirus). On the other extreme, “mathematically” inspired representation techniques, like
the pitch class sets, can represent any pitch class simultaneity; however, they do not provide any
perceptual meaning to the represented harmonic entities. For an idiom-independent representa-
tion of automatically extracted information from scores the General Chord Type representation is
used (compare Subsection 3.1.1). As mentioned in the respective Subsection the GCT algorithm
encodes most chord types correctly. For more information concerning the harmonic training data
set the reader is referred to Deliverable D7.1.

3.3 Concept Blending in Harmony for Concept Invention: Representation for the
Blending Framework and Worked Examples

Conceptual blending takes place on three levels:

1. Meta-level of harmony: This level discusses blending on some aspects of harmony that are
described either as general properties of harmony (e.g. the mood) or as harmonic parts that
adhere to specific conceptual characteristics (e.g. chromatic voice leading of a particular
voice in a chord sequence).

2. Phrase structure: Phrase structure refers to the harmonic blocks that succeed one another,
including cadences or the ordering of parts that belong to harmonic devices (or harmonic
device combinations).

3. Chord level: Blending in the chord level yields on the one hand novel chords that preserve
some crucial harmonic elements, regarding the relations between notes of successive chords
(see the cadence blending example in Section 3.3.1). On the other hand, chord blending
allows the invention of intermediate chords for consecutive harmonic parts that belong to
different conceptual spaces, providing common-ground solutions for “incompatible” con-
secutive parts between different CHMMs (see Section 3.3.3).

Additionally, there is a key algorithmic process that has been developed in the context of COIN-
VENT that allows the idiom–dependent probabilistic harmonization of different parts, preserving
the harmonic characteristics of a selected idiom. This technique is based on the well-known hidden
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Markov models (HMMs, cf. Subsection 3.1.2), with the vital difference that they allow the deter-
ministic insertion of intermediate chords, thus allowing the functionality of the hitherto described
blending framework.

3.3.1 Blending on the chord level

A part of the harmonic character that is exposed by a chord transition is due to the underlying re-
lations that exist between some of the notes that compose these chords. A characteristic example
that is indicative of this statement, concerns the utilization of the pitch classes in the perfect ca-
dence, which is a harmonic device comprised of two chords (namely the pre-final and final chord)
commonly met in tonal music. This transition draws its unique character by the fact that it defines
the tonality of a piece, for reasons that are musically explainable, but are beyond the scope of this
report. Since this transition suggests a stable tonal environment by strongly implying a tonality
(either the piece’s or an intermediate tonality), this musical device is utilized as a “cadence”, i.e.
the ending part of a phrase. What is most characteristic about this cadence, is the third of the
pre-final chord that constitutes the leading note to the tonic. There are some additional inter-chord
note relations that are also of great importance, e.g. the seventh of the pre-final chord (if we con-
sider the pre-final chord to be a dominant seventh) that leads to the third of the final chord, while
some other relations are weak, e.g. the fifth of the pre-final chord could be omitted. The above
mentioned example referred to the relations between notes of successive chords that comprise a
cadence, while similar information could be utilized to describe relations for any chord transition
– not necessarily the final transition (cadence).

The rationale behind blending in the chord transition level is to take advantage of charac-
teristic relations that exist between the involved chords of two input transitions, creating novel
transitions that encompass the characteristics of both inputs. To this end, to efficiently perform
such a blending, a representation scheme is needed that expresses:

1. the relations between important notes in each chord,

2. the important relations between note successions from the first to the second chord and

3. consistency facts about each input or blendoid space (a fact that is required for performing
consistent blending, i.e. blendoids that do not include contradictions).

These points will be further examined in the subsequent paragraphs of this section, under the scope
of specific examples. The presented examples discuss blending between two input spaces that
include typical cadences of different musical idioms: from the tonal idiom the perfect cadence
with a dominant seventh pre-final chord and from the modal idiom the phrygian cadence. The
reason for selecting cadences as examples is that the cadences comprise robust and distinguishing
harmonic devices of the idiom they represent, as well as they are by themselves a subject of
particular and thorough musicological examination. Figure 15 illustrates examples of cadence,
while the two cadences that have been discussed above are the ones depicted as second and fourth.

There are many relations that shape the character of these cadences, the most important of
which will be analyzed later in the text. At this point, a simplified version of the cadences is pre-
sented, that encompasses only the necessary information for yielding two novel cadences through
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Figure 15: Examples of cadences. The ones involved in subsequent.

conceptual blending. The graphical interpretation of these simplified versions is given in Fig-
ure 16 (a) and (b). These cadences are composed of two chords, namely a pre-final and final
chord. These chords are considered to have a quality (e.g. major, minor etc.), a root note (the
chord’s fundamental) and a bass note (which indicates the inversion of the chord). Additionally,
several relations between the pre-final and final chords’ root and bass notes are considered. These
relations are illustrated in the lower “squares” of the graphs in Figure 16. Specifically, m2, m7,
M6, P5 and unison indicate a minor second, minor seventh, major sixth, perfect fifth and unison
respectively. Figure 16 (c) depicts the generic cadence, which is a cadence that includes a gener-
alized version of all the elements that are included in both (perfect 7 and phrygian) cadences. The
generalizations between the generalized elements are named as topREL, bottomREL, leftREL
and rightREL, indicating relations between the pre-final (prefix PF) and final (prefix F) chords’
root and bass notes, as illustrated by the arrows in the discussed figure. The generalized elements
include descriptions of the root (suffix Root) and the bass (suffix Bass) of the pre-final and the
final chords.

The objects (classes) and the relations among them (object properties) are structured in a “gen-
eralization sequence”, meaning that the application of the generalization (γ) and specialization
(ρ) operators function on both objects and relations within the cadence ontology, yielding more
general or more specialized cadences. For instance, the cadences in Figure 16 (b) and (c) are spe-
cializations of the “generic” cadence in Figure 16 (a). The simple subsumption relations that are
considered in Figure 16 and in the discussed amalgams/blends are the following ones:

1. PFType v dom7 or min, indicating the general concept of the pre-final chord’s type and the
specialized types dominant 7-th and minor respectively.

2. FType v maj or 5ths, indicating the general concept of the final chord’s type and the
specialized types major and 5-ths (root and fifth) respectively.

3. topREL v P5 or m7 indicating the general concept of pre-final and final chord root relations
and the specific relations of a perfect fifth and a minor seventh interval respectively.

4. Similarly for bottomREL, leftREL and rightREL v unison, P5, m2, m7 and M6.

As discussed earlier, these relations describe the “square” of relations in a cadence. It is
noticed that a square of relations should be consistently assembled, meaning that the relations
between every pair of chord elements should not be contradicting. For instance, in the perfect 7
cadence (Figure 16 (a)), the top and bottom relations are the same, a fact that obligates the left
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(a) perfect 7 cadence (c) phrygian cadence (c) cadence

Figure 16: Graphical illustration of the formalization followed for representing a cadence (a), a
perfect cadence with dominant pre-final chord (b) and a phrygian cadence (c).

and right relations to be the same. It is also noticed that the classes PFRoot, Froot, PFBass and
FBass are formalized to include no specialization or generalization.

Figure 17 and Figure 18 illustrate the above discussed spaces for two meaningful musical
blends that are constructed by the examined ontologies and blending formalizations. Specifically,
in both figures the input spaces are named as perf7 and phryg, indicating the concepts of the
perfect and phrygian cadences respectively. The intermediate generic spaces of both inputs are
called perf7 gen and phryg gen respectively. It should be noticed that the intermediate spaces
are different in the two presented examples, allowing the desired amalgam to be produced. The
generic space is named as cadence, which in both examples accommodates the common general
information that a cadence incorporates. As illustrated in the discussed figures, the blended spaces,
also named as the colimits in the category theory nomenclature, produce the tritone substitution
and the backdoor cadences, which are commonly used in jazz music. It should be noted that
the information incorporated in the colimits are not only drawn from the input but also from the
intermediate spaces (or the generic cadence space). This fact allows several inconsistencies to be
resolved as discussed in the following paragraph.

3.3.2 Blending on the phrase level of pieces

Grammars constitute an effective methodological approach to represent information that is layered
in a hierarchical manner. The structure of a grammar employes rules that describe symbol substi-
tutions from upper to lower hierarchical levels, reaching the lowest level of terminal symbols that
represent the grammar’s output string. The harmony in phrases of a musical piece or an excerpt
present a hierarchically-layered structure that can be efficiently described by grammars. However,
the development of harmonic grammars that are accurate enough to capture the basic character-
istics of a musical idiom, is a task that requires deep knowledge and ready-made musicological
analysis of the harmonic elements and their relation in this idiom. Therefore, the development of
musical grammars from scratch is a tedious and time consuming process prone to errors, especially
for idioms that are not yet deeply studied.

Previous work on grammars for harmony indicate that harmony in an idiom is a highly spe-
cialized characteristic and, therefore, the development of an idiom’s grammar requires a deep
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Figure 17: Tritone substitution cadence illustrated according to the core model for conceptual
blending.
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Figure 18: Backdoor cadence illustrated according to the core model for conceptual blending.
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musicological analysis of this idiom. For instance, a highly specialized grammar for harmony
was presented in [14], which discussed the employment of combinatory categorial grammars to
describe the harmony in jazz standards. This grammar allowed to either automatically parse, or
generate harmonic parts of the jazz idiom. A large number of rules was included in this grammar,
describing highly specialized harmonic devices of the jazz idiom, e.g. special types of cadences
like tritone substitution and backdoor cadence. Additionally, the highly specialized nature of har-
mony is further amplified by the vast complexity of rules that are employed in works that examine
the development of grammars for the probably deepest studied musical idiom: the tonal music
(e.g. [36, 20]).

Since the presented study incorporates a large dataset of many and diverse idioms, it is prac-
tically impossible to hand-craft rules for each studied idiom; this fact is further highlighted by
the difficulties to hand-craft rules for tonal or jazz harmony. Therefore, the approach followed in
the context of COINVENT includes the development of grammatical rules on a level that can be
inferred with automatic means for each piece: the phrase level. The phrase level is considered to
include general descriptions about the structure of a phrase. A similar approach to describe the
phrase level with grammars, has been presented in [36], where rough descriptions of the phrase
structure where provided, however again in the context of tonal music. The descriptive elements
that are considered for COINVENT are the primary harmonic parts (like ending part and harmony
body), as well as special harmonic devices (see Section 3.3.4) that might be incorporated within
the primary parts (e.g. harmonic devices that incorporate special voice leading or ready-made
chord sets). All these parts will be manually annotated on selected and representative pieces of
each idiom on the score, allowing the induction of their grammar by algorithmic means on a later
stage.

The basic grammatical rule for constructing a phrase is the following:

P→ bodytonality=X2
endtonality=X3 , (40)

where P represents the phrase, while bodytonality=X2
and endtonality=X3 represent the phrase’s body

and ending parts in tonalities X2 and X3 respectively – which are not necessarily the same. The
primary separation of a phrase into a body and an ending part, as in Equation 40, is based on the
distinguishing role that the ending parts (cadences) play in all musical idioms. Different tonalities
between different phrase elements are potentially applicable, since in some idioms the cadences
prepare a change of key in subsequent phrases.

The bodytonality=X part is by itself comprised of many potential parts, according to an idiom’s
special harmonic content. Some examples for expanding the bodytonality=X part are the following:

bodytonality=X1
→ bodytonality=X1

bodytonality=X2
(41)

→ endtonality=X1bodytonality=X1
(42)

→ devicetonality=X1 (43)

The expansion rule in Equation 41 indicates a key change within a phrase. Equation 42 repre-
sents a harmonic block that includes a cadence before a harmonic new block, describing potential
intermediate cadences that occur e.g. before a key change in a phrase. The expansion rule in
Equation 43 refers to the utilization of harmonic devices, which are described in Section 3.3.4.
This rule allows the insertion of special harmonic constructions that include specific harmonic
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concepts. For instance, the utilization of parallel chromatic chord movement, or the employment
of a drone tone in a chord sequence are two harmonic devices. Additionally, the combination of
harmonic devices is also realizable, if these devices are not contradicting.

Blending on the phrase level potentially will be examined in the context of “grammatical
blending”, while its outcome will potentially enable blended phrase structures for different idioms,
as well as the combination of characteristic parts (e.g. cadences or harmonic devices) from diverse
idioms.

3.3.3 Idiom–dependent probabilistic chord generation

During the last decades, several methodologies have been proposed for the harmonization of a
given melody with algorithmic means. Among the most successful are methodologies that incor-
porate probabilistic mechanisms and statistical learning, since they have the ability to generate
harmonies that statistically adhere to the harmonic characteristics of the idiom that the train-
ing pieces belong to. In the context of COINVENT, a modified version of the hidden Markov
model (HMM) has been examined, namely the constrained HMM, which combines the prob-
abilistic HMM framework with additional intermediate fixed–chord constraints. This modified
HMM version utilizes the probabilistic idiom-reflecting characteristics, but additionally harnesses
any external chord generation processes. For the COINVENT melodic harmonization system, the
utilization of this methodology provides on the one hand a robust harmonization basis (the HMM),
while on the other hand fixed harmonic constraints referring to other idioms can be injected.

The representation requirements for such a system concern all the algorithmic parts required
for the HMM methodology: prior distributions for beginning and ending chords, transition tables
of probabilities and observed notes–to–chord selection probabilities (or rules expressed as prob-
abilistic density functions). The CHMM [19] methodology integrates the potential to blend har-
monic concepts on different levels than the chord transitions. Such concepts can be programmed
by chord generation processes named as the “harmonic devices”, presented in Section 3.3.4. A fu-
ture extension of the algorithm will allow the insertion of notes that are “required” to participate in
the harmonization, extending the abilities of the system towards generating chord sequences that
adhere to voice leading constraints. Although this step appears to be trivial, a number of issues
may emerge, involving the absence of chords-states that encompass the desired notes. However,
such problems could potentially be resolved by employing concept invention through blending - a
consideration that extends conceptual blending from a concept generation mechanism to a solution
finding methodology.

During the “unofficial” evaluation of the presented methodology, several test phrases were
harmonized, as well as several anchor point insertion setups were examined. The presented results
include some indicative harmonizations that have been produced by the system with different
anchor point setups. The utilized dataset comprises a selection of phrases from the “benchmark”
chorales of J. S. Bach, specifically some chorales in the major mode.

The experimental process aims to provide indications about the fact that the utilization of the
anchor points yields harmonizations that are potentially more “interesting” than the ones produced
by the typical HMM methodology – depending on the selected anchor points. Therefore, the exper-
imental results expose the ability of the proposed system, as well as the flexibility of the modified
HMM scheme towards allowing different – and potentially more interesting – harmonization al-
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ternatives, according to the provided anchor points. To this end, the system’s evaluation processes
mainly address the fact that the proposed methodology is implementable using a relatively small
dataset of training pieces.

The CHMM methodology in COINVENT addresses the harmonization task within the context
of a certain key, thus a full harmonic reduction of phrases is considered as input to the system;
the term “phrase” will hereby signify the melody notes and their harmonization, as yielded from
the reduction. The phrases of the Bach chorales are divided in two sets according to their key of
composition, i.e. in major and minor phrases. Although harmonizations of both modes were tested,
the reported results include only major mode phrases. The GCT chords–states that are derived for
the major chorales of Bach are 41 and for the minor chorales 38, while many of the major and
minor states are overlapping, i.e. exist both in the major and in the minor chorales. Several of these
states are redundant since their GCT expression in fact describes chords of the same functionality,
e.g. the GCTs [0, [0,4,7], []] and [0, [0,4], []] denote a major chord in the tonic. Additionally, there
is a considerable amount of GCT states (around 15 for each mode) that occur only two or three
times in the entire dataset. The latter comments indicate that the employment of a GCT clustering
technique could group some GCTs according to their harmonic functionality, further reducing the
states to approximately 25 for each mode. However, such a grouping methodology is yet to be
developed and it is part of ongoing research.

When harmonizing a melody with no constraints, the HMM methodology selects the most
probable sequence of chords (hidden states) according to probabilities related to the melody’s
note to be harmonized and to probabilities related to the transitions between pairs of states. The
imposition of fixed–chord constraints is intuitively expected to alter the harmonization “locally”,
i.e. the CHMM harmonization is expected to be different than the one provided by the typical
HMM a few chords before or after a chord that remains fixed – if the selected chord to be fixed
is different than the one provided by the HMM. However, the application of chord constraints
in some cases provided different harmonizations throughout the entire length of the phrase. The
voice leading in the examples presented below was performed by a music expert; an algorithmic
process for voice leading is a future research goal. The score examples that are analyzed in the
remainder of this section are produced by HMMs or CHMMs that have been trained on the same
set of 30 random chorale phrases, which did not include the harmonized phrases.

The example in Figure 19 amplifies the role of anchor chords and specifically the beginning
and ending chords of a phrase. In this example, a Bach chorale melody is harmonized with the
typical HMM methodology (top) and with anchor boundary (beginning and ending) chords de-
noted by an asterisk. The boundary chords are the ones utilized by Bach in the genuine chorale.
An initial comment concerns the fact that the HMM methodology does not “guarantee” that the
beginning and ending (boundary) chords of a melody to be harmonized are identical to the ones
that would potentially be utilized by a human composer. Additionally, the role of the boundary
chords is crucial: the example in Figure 19 demonstrates that different anchor chords provided
an entirely different harmonization. Furthermore, this example shows that the imposition of con-
straints “forced” the system to follow more “interesting” and unpredictable chord paths, since,
the typical HMM methodology utilized more typical and probable chord progressions between V
and I chords. The imposition of constraints on the other hand, forced the HMM methodology to
establish temporary secondary tonalities, yielding a richer harmonic interpretation of the melodic
sequence.
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(a) typical HMM

(b) CHMM with boundary anchor chords

Figure 19: (a) The harmonization of a Bach chorale melody with the typical HMM methodology
and (b) with constraints on the first and final chords (indicated with an asterisk).

Except from the imposition of boundary chords, the insertion of intermediate chords can also
produce interesting results. The example depicted in Figure 20 discusses the harmonization of a
Bach chorale in four different versions. Specifically, Figure 20 (a) demonstrates the harmonization
produced by the typical HMM methodology, while the harmonization in (b) is produced with
constraints on the boundary chords (as indicated by the asterisks). The constraints used in the
phrase’s boundaries are the ones utilized by Bach in the genuine chorales. The imposition of
the boundary constraints does not produce a harmonization that is entirely different regarding the
selection of GCT chords (unlike the example shown in Figure 19), however the voice leading
that was assigned by the music expert in both phrases is different. The harmonization became
more interesting when the music expert indicated the insertion of the diminished chord marked
with an asterisk in Figure 20 (c) (fifth chord). This anchor chord changed the harmonization
entirely; even when the boundary constraints were alleviated, the harmonization produced by the
CHMM system (Figure 20 (d)) was again completely novel. The fact that different constraint
conditions produce diverse harmonizations, amplifies the motivation to utilize a “deterministic”
chord selection scheme along with the probabilistic HMM framework.

3.3.4 Meta-Level Properties of Music

Through the utilization of semantic technologies, the knowledge that is incorporated among large
amounts of data becomes potentially understandable both by humans and machine, while at the
same time machine reasoning is realizable. Therefore, the development of ontologies that encom-
pass qualitative descriptors of harmony and their interrelations, will allow conceptual blending on
a level beyond harmonic objects and structure: at the “meta”-level of harmony. Some of these
concepts can be expressed according to the emotions or the stylistic references they imply (e.g.
happy mood or minimal harmonization). On the other hand, some harmonic concepts are ex-
pressed efficiently as specialized “harmonic devices”, which constitute focused descriptions of
specific harmonic content in a musical excerpt, either for vertical or for horizontal harmony (e.g.
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(a) typical HMM

(b) CHMM with boundary anchor chords

(c) CHMM with boundary and intermediate anchor chords

(d) CHMM with an intermediate anchor chord

Figure 20: (a) The harmonization of a Bach chorale melody with the typical HMM methodology
and with constraints on (b) the boundary chords, (c) the boundary and one intermediate chord and
(d) only one intermediate chord. The fixed intermediate chords selected by a human annotator are
indicated on the score with an asterisk.

utilization of chromatic parallel ascending chord movement). Such concepts are incorporated in a
semantic context by developing a harmonic ontology that describes relations between them.

The formulation of such a harmonic ontology can be materialized in a manner similar to the
one utilized by frameworks that have already been developed for music related tasks. An example
of such ontologies is the Music Ontology [32, 34], which hosts information about music publish-
ing on diverse aspects, e.g. from publication and recording dates or instrumentation, to events that
might occur at specific time instances within recordings. However, since the discussed harmonic
ontology is developed to comprise a set of composition guidelines to the underlying melodic har-
monization system, its formalization needs to meet more than the descriptive standards that the
Music Ontology does. For example, if an entry that describes the concept of mood in a harmoniza-
tion is happy, then this concept has to map to several related attributes, e.g. prevalent utilization of
major chords – which constitutes a form of compositional guideline. Other ontologies that will be
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Figure 21: An excerpt of Modest Mussorgsky’s “Il vecchio castello”, where conceptual blending
on the harmonic meta-level is realized.

examined as auxiliaries towards the development of the discussed meta-level harmonic ontology,
are the Timeline Ontology [33], the Event Ontology [31] and the Chord Ontology [30].

The example examined for describing the meta-level harmonic information concerns an ex-
cerpt of Modest Mussorgsky’s work entitled “Il vecchio castello”. In this work Mussorgsky, uti-
lizes blending between a variety of harmonic concepts consolidated in harmonic devices, some of
which are combined simultaneously to harmonize parts of the melody.

3.3.5 Blending of Chord Progressions

There is a classical theoretical basis for chord progressions in the tonal system: cadences. In clas-
sical music theory, cadences are often used to describe a balance between tensions in a harmonic
progression and a resolution of these tensions. Pieces of music can be made more interesting and
surprising by using new chord progressions. Figure 22 depicts examples of classical cadences that
constitute an important foundation of classical music theory. Here are some properties of such
chord progressions:

• It is obvious that the single chords involved in a cadence can be straightforwardly repre-
sented using feature structures as described in Subsection 3.1.3.
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Basic Cadences

Piano

Figure 22: Examples of classical cadences in C major (more generally one could say basic chord
progressions in C major). The last cadence is the circle of fifth, where descending fifths (or
ascending fourths) constitute the progression. The seventh step in a progression (except the last
one) is associated with a dominant chord.

• The basic cadences do not involve features like sevenths, ninths etc.

• Chord progressions occurring in pieces of music are more general than basic cadences and
allow in various directions more possibilities for chord progressions.

• Representing a sequence of chords in a feature structure representation requires either the
representation of a sequence of features structures or the embedding of feature structures in
a matrix feature structure.

Blending chord progressions in this framework can be considered as a blending process of
the involved chords of the single sequences in order to achieve a new sequence. It turns out that
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there are many design choices in a blending process of general chord sequences. In order to keep
the complexity of the representation as simple as possible, we exemplify the blending of general
chord sequences in non-trivial examples, but we are using an extremely simplified notation of
chord sequence, namely as a sequence of functions similar to the presentation in scores of popular
music.

Example 1 In the following two input sequences together with the generalization and candidates
for blended sequences is listed:

Input 1: T→ Tp→ Sp→ D7→ T (in C major: C→ a→ d→ G7→ C)
Input 2: T→ DDD→ DD→ D→ T (in C major: C→ A→ D→ G→ C)
Generalization: T→ x→ y→ D→ T
Blend 1: T→ Tp→ DD→ D→ T (in C major: C→ a→ D→ G→ C)
Blend 2: T→ DDD→ Sp→ D7→ T (in C major: C→ A→ d→ G7→ C)

Blending of the two sequences means first of all to compute a generalization. This can be easily
done by introducing variables for all those pairs of chords which do not coincide. In our example,
we collapsed the dominant and the dominant seventh chord (fourth chord in the sequences) in the
generalization to a dominant chord. The two blended candidates for possible chord sequences
emerge naturally from the input. Without doubt the two blends are interesting chord progressions.

Example 2 Again two input sequences are considered, but this time the sequences are very com-
plex and they differ in the length of the sequence. In the following, the first input sequence is the
circle of fifths. This sequence is represented by iterated subdominant chords (double subdominant,
triple subdominant etc.), respect. iterated dominant chords.

Input 1: T→ S→ SS→ S3→ S4→ S5→ S6→ D5→ D4→ D3→ DD→ D→ T
Input 1 (C maj): C→ F→ B[→ E[→ A[→D[→G[→B→ E→ A→ D→ G→ C

Input 2: T→ SS→ T→ D5→Tp→ SS→D5→T
Input 2 (C maj): C→B[→ C→ B→ a→ B[→ B→ C

Generalization: T→ x1→ x2→ x3→ x4→ x5→ x6→ T

Blend 1: T→ S→ T→ S3→ Tp→ SS→D5→T
Blend 1 (C maj): C→ F→ C→ E[→ a→ B[→ B→ C

Blend 2: T→ SS→ SS→ S3→ S4→ SS→ S6→ T
Blend 2 (C maj): C→B[→ B[→ E[→ A[→B[→ G[→C

Blend 3: T→ S→ SS→ D5→S4→ S5→ D5→T
Blend 3 (C maj): C→ F→ B[→ B→ A[→D[→B→ C
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The generated candidates for chord sequences can be considered as rather interesting. In
particular, there seems to be a trade-off between the degree of interesting progressions and more
conservative progressions that stick more to the original sequences. This could be metaphorically
described as a more progressive form of chord progression versus a more conservative form of
chord progression. Here are two examples of heuristics which circumscribe these ideas:

• A conservative chord progression starts with the tonic and ends with the tonic whereas a
more progressive chord progression does not stick to this constraint.

• A more conservative chord progression attempts to stay in a certain functional region,
whereas a more progressive chord progression flips between functional regions.13

An important aspect for the next project phase will be the development and evaluation of
appropriate heuristics that govern the blending process.

4 Remarks on the Implementation

Some remarks concerning the implementation of the systems in the domain of mathematics are
covered in Subsection 2.3. A more complete initial specification of the system has been described
in Deliverable D8.1. The reader is referred to this report for more information.

5 Conclusions

This report summarizes the results of the COINVENT project concerning the development of rep-
resentation formalisms for concept invention by analogy and conceptual blending in the domains
of mathematics and music. In particular, representation frameworks were considered that are com-
patible for computing generalizations and conceptual blends, i.e. formalisms that do not impose
severe limitations and constraints to the computation of the blend spaces. The report summarizes
the various formalisms, sketches the processes that allow the computation of blend spaces, and
gives some hints concerning implementation issues.

In the case of mathematics, it is rather straightforward to represent a particular mathematical
theory in form of a system of axioms. The language used to represent axioms is a many-sorted
first-order logical language. This suffices to represent non-trivial mathematical theories as shown
in Section 2.3 by considering the theory of complex numbers. It was shown how a restricted
form of higher-order anti-unification can be used to generalize two input theories and how this
generalization can be used as the generic space for conceptual blending. In a second step, concept
blending can be performed governed by the principle that a blend should be as informative and as
compressed as possible. The rather explicit example of complex numbers was used to illustrate
the basic ideas of concept blending and to show how this example is implemented in the DOL
framework.

13Functional regions could be, for example, the tonic region (T | Tp | tP | Tcp . . . ), the subdominant region (S | Sp |
sP | SS | S3 | . . . ), and the dominant region (D | Dp | dP | DD | . . . ). This idea is not new, in [36] one can find a very
similar idea.
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In the case of music, the situation is more difficult due to the fact that music can be described
on quite many different levels of abstraction. Therefore, different representation formalisms are
used at the same time representing different aspects of music. Due to the diversity of requirements
the report sketches as representation formalisms the general chord type representation (GCT rep-
resentation), Constrained Hidden Markov Models, and Feature Structures. For each framework
the general mechanisms of concept blending are sketched and exemplified using several examples
(blending on the chord level, blending on the chord progression level, blending on the phrase level
of pieces, meta-level properties of music). Due to the fact that music is formally not as strongly
constrained as mathematical theories (e.g. there is no hard consistency concept in music, a concept
that is constitutive for mathematics), the choice and ranking of candidates for generalizations and
blends is strongly dependent on heuristics. The development and testing of appropriate (if possible
cognitively plausible) heuristics as well as the application of the framework to hard problems in
mathematics and music is (according to the work package description) a task for the following
project period.
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