E— — °
SEVENTH FRAMEWORK

PROGRAMME

* % Concept
by ) Invention
et B Theory

D2.1
Reasoning with Amalgams

Authors Félix Bou, Manfred Eppe, Enric Plaza, Marco Schorlemmer
Reviewers
Grant agreement no. 611553
Project acronym COINVENT - Concept Invention Theory
Date October 15, 2014
Distribution PU




Disclaimer

The information in this document is subject to change without notice. Company or product names mentioned in this document may
be trademarks or registered trademarks of their respective companies.

The project COINVENT acknowledges the financial support of the Future and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the European Commission, under FET-Open Grant number 611553.

Abstract

In this deliverable we survey how Fauconnier and Turner’s theory of conceptual blending has been implemented computationally,
and we do an in-depth theoretical exploration of the mathematical framework proposed by Goguen to model conceptual blending in
a domain- and system-independent manner. We also discuss several alternative categorical frameworks that still capture Goguen’s
basic insights and propose a formal model of blending that is also a generalisation of the closely related notion of ‘amalgam’,
originally proposed as a method for knowledge transfer in case-based reasoning. A computational realisation of this model is
presented by means of a well-known example of creative thinking, specified in the CASL specification language and implemented
in the Hets reasoning system.

Keywords: conceptual blending, amalgams, category theory, colimits, image schemas, computational creativity, concept
invention.




D2.1 Reasoning with Amalgams

FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

Contents
1 Introduction

2 Background

2.1 Conceptual Blending . . . . . .. ... .. ...

2.2 Constitutional Elements of Conceptual Blending

2.3 Optimality Principles . . . . . . . . . . . . . ...
24 TheGeneric Space . . . . . . . .t oo e

2.4.1 The CONTAINER Image Schema
2.4.2 The SOURCE-PATH-GOAL Image Schema

3 Computational Models of Conceptual
3.1 The Alloy Algorithm and the Grio

Blending

t System . . . .

3.1.1 Constitutive Elements of Conceptual Blending in Alloy . . . . . ... ..
3.1.2  Optimality Principles . . . . . . . ... ... .. oL
3.1.3 Structural Blending . . . . . ... ... ...

3.1.4 Strengths and Weaknesses of Alloy and Griot

32 Sapper . ... e e

3.2.1 Constitutive Elements of Blending

3.2.2 Optimality Principles . . . . . . ... ... ... oL

3.2.3 Strengths and Weaknesses

33 Divago . . . . .o e e e e

3.3.1 Constitutive Elements of Blending

3.3.2 Optimality Principles . . . . . . ... .. ... ... ... ........

3.3.3 Strengths and Weaknesses

3.4 Blending by Heuristic-Driven Theory Projection (HDTP) . . . . . .. ... ...

3.4.1 Constitutive Elements of Blending

34.2 Optimality Principles . . . . . . . ... ... ... ... ... .. ...,

3.4.3 Strengths and Weaknesses

3.5 A Neurological Account on Combinatorial Creativity
3.5.1 Constitutive Elements of Blending

3.5.2 Optimality Principles . . . . . . ... ... ... L oL

3.5.3 Strengths and Weaknesses

4 A Formal Theory of Blending as Colimits and Amalgams

4.1 Blendingas Colimits . . . . . . . . . . . . . .

4.1.1 Category Theory Preliminaries
ories . . . ...

4.1.2 Colimits in Ordered Categ

42 Blendingas Amalgams . . . . . . . . . ... e
421 Amalgams . . ... ...

4.2.2 Comparing Amalgams and Blends
4.2.3  An Example: Computer Icons

4.3 Relating Colimits and Amalgams

4.3.1 Preliminaries . . . . . . . . . e e

4.3.2 A Category-Theoretical Account of Amalgams

611553

October 15, 2014

01 N NN

o 0 R

10
10
11
11
12
13
14
15
16
18
20
20
21
22
22
23
24
25
25

26
26
26
39
46
47
49
50
53
53
54



CONTENTS

5 The Theory at Work

5.1 The Buddhist Monk Riddle
5.2 CASL and its Application for Blending
5.3 The Formalisation of the Riddle

5.3.1
532
533
534
535

Input Spaces

Composition of the Blend — Amalgamating the Input Spaces
Completion of the Blend — Adding Background Knowledge

Elaboration of the Blend — Proving the Riddle . . . . . . . . ..

6 Concluding Thoughts

Bibliography

A Characterisation of %-colimits in Pfn

il

October 15, 2014

The GenericSpace . . . . . . . .. .. ... ... .......

611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

1 Introduction

This deliverable accounts for the work done under Task T1 of work package WP 2, where the goal
is to develop a computational model of conceptual blending based on amalgams while taking into
account previous work on formal and computational approaches to the cognitive science notions
involved in conceptual blending.

The notion of amalgams in a lattice of generalisations was developed at IIIA-CSIC in the
framework of modelling analogical inference, and case amalgamation in case-based reasoning
(CBR). Case amalgamation models the process of combining two different cases into a new
blended case to be used in the CBR problem solving process. As such, the notion of amalgam
seems related to but not identical to the notions of conceptual blending and belief merging. These
related notions have in common that there is some combination or fusion of two different sources
into a new entity that encompasses selected parts of the sources, but they differ in the assumptions
on the entities upon they work: amalgams work on cases (expressed as terms in some language),
conceptual blending works on mental spaces, and merge operations work on sets of beliefs.

Our motivation being that the account on conceptual blending by Fauconnier and Turner [22] is
very detailed and comprehensive from a cognitive viewpoint, but it lacks a clear formal description
which is necessary to realise computational creativity. We take the approach of generalising the
original notion of amalgam from CBR to see if it was amenable to be used in the development of
a theory of conceptual blending that was close to, and even compatible with, Goguen’s work on
blending [24]. This means taking a category-theoretic approach to model amalgams in the world
of conceptual blending. Moreover, we also take into account preexisting computational models of
conceptual blending, regardless of the theoretical approach taken.

For this purpose, after this introduction, we start by summarising the cognitive science notions
relevant to conceptual blending in the Section 2. There have been several attempts to formalise the
ideas of Fauconnier and Turner, which lay some important grounds and show how blending can be
formalised for certain domains or certain representations of input spaces. Hence, in Section 3 we
review the existing computational models of conceptual blending. However, existing approaches
are either not general enough to capture the idea of conceptual blending in a way that is indepen-
dent from domain and representation, or they lack the implementation of other ideas behind blend-
ing theory, such as optimality principles that govern what a good blend is (see Section 2.3). The
category-theoretic approach to model conceptual blending as colimits and amalgams is presented
in Section 4, which comprises the core formal contribution of this deliverable. To better under-
stand this contribution, Section 5 develops in detail a well-known conceptual blending example,
the Buddhist Monk Riddle, using the theory presented in the previous section. The deliverable’s
last section presents some concluding thoughts on the approach taken, the results so far obtained
and the road ahead.

611553 October 15, 2014 1



D2.1 Reasoning with Amalgams

2 Background

2.1 Conceptual Blending

Creativity understood as unfamiliar combinations of familiar ideas goes back to the notion of biso-
ciation, presented by Arthur Koestler in his book The Act of Creation in 1964 [41], but cognitive
science has not until more recently proposed approaches on how to produce novel ideas (concepts,
theories, solutions, works of art). This approach, known as the theory of conceptual blending or
conceptual integration has been proposed by Fauconnier and Turner [21] as a kind of primitive or
fundamental cognitive operation underlying much of everyday thought and language. The process
by which two concepts are blended into a novel idea is a complex process by which particular
elements and their relations pertaining to the initial two concepts are combined into a new whole
that is more than the mere commonalities of the two concepts.

For instance, a ‘houseboat’ or a ‘boathouse’ are neither the intersection nor the union of the
concepts of ‘house’ and ‘boat’. Instead, the concepts ‘houseboat’ and ‘boathouse’ selectively in-
tegrate different aspects of the input concepts ‘house’ and ‘boat’ in order to produce two different
new concepts, ‘houseboat’ and ‘boathouse’, each with its own distinct internal structure. For in-
stance, consider the ‘houseboat’ blend shown in Figure 1. According to the dictionary a houseboat
is “a vessel, such as a barge, used as a dwelling.” From the point of view of blending, ‘houseboat’
is a new concept where the house (dwelling object) rests on water instead of land, and the person
is considered a resident (dweller) instead of a passenger on a boat. Thus, only selected parts of
the input mental spaces are projected into the blend: a person that is a resident (but not passenger)
that lives on a dwelling (called ‘houseboat’) that rests on water (and not on land).

Fauconnier’s view of concepts is prior to the notion of blending, and his Mental Spaces The-
ory is a highly influential cognitive theory of meaning construction, developed in [19] and [20].
According to Fauconnier, meaning construction involves two processes: (1) the building of mental
spaces; and (2) the establishment of mappings between those mental spaces. Moreover, the map-
ping relations are guided by the local discourse context, which means that meaning construction
is always situated or context-dependent.

2.2 Constitutional Elements of Conceptual Blending

Fauconnier and Turner [22] describe several constitutive elements of conceptual blending. These
are (i) the input spaces that are to be blended, (ii) a partial cross-space mapping that connects
counterparts in the input mental spaces, (iii) a generic space that is an abstraction from what the
input spaces have in common, (iv) a blending operation that produces a blend of the input spaces
and into which the structure of the input spaces is selectively projected, and (v) an emergent
structure, i.e., structure that is a synergistic gain to the naive sum of the structure of input spaces.

These constitutive elements can be organised in a conceptual integration network, i.e., the net-
work of all input spaces, generic spaces and blend spaces together with the selective projections
that model a particular blending process. Finally, Fauconnier and Turner propose certain optimal-
ity principles that govern the blending process, and that can be taken as a way to assess the quality
of a blend. Let us briefly review these constitutive elements and optimality principles as put forth
in Fauconnier and Turner’s model.

2 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

blended space
‘houseboat’

resident/
passenger water

live infride on

house/boat

resident land

passenger  water

live in on ride on

house

input space \ / input space
‘house’ ‘boat’

person medium

generic space

Figure 1: The ‘houseboat’ blend, adapted from [30].

Input Spaces. Fauconnier and Turner [22] consider the input spaces of a blend to be mental
spaces —small conceptual packets constructed as we think and talk, for purposes of local un-
derstanding and action. According to Fauconnier [19], mental spaces are connected to long-term
schematic knowledge, by means of frames, which model how certain elements and relations are or-
ganised as a package that we already know about. Often these frames are so-called image schemas
—a recurring dynamic pattern of our perceptual interaction and motor programs that gives coher-
ence and structure to our experience. An example of frame of this sort is the SOURCE-PATH-GOAL
schema which underlies our experience of walking along a path. Mental spaces have also access
to long-term specific memory, e.g., the episode in your memory of climbing Mont Blanc last year.

Moreover, mental spaces are built on-demand, for a particular linguistic situation, For example,
contrary to a naive view of meaning, there is no fixed understanding of the concepts of ‘house’
and ‘boat’: there are mental spaces for ‘house’ or ‘boat’ that are constructed in particular linguistic
situations. Hence, one cannot assume that input mental spaces, such as those of ‘house’ or ‘boat’,
are the same in all possible output blends, since the content on a mental space dubbed ‘house’ or
‘boat’ is neither constant nor preexisting to the context in which they are used. However, many
computational blending systems (e.g., [32, 74]) that emanate from the work by Fauconnier and
Turner [22] often simplify this aspect of their theory and consider blending to be an operation that
takes two input spaces as given and generates one or more output spaces, i.e., blends.

Cross-space mapping. According to [22, p. 41], “ [...] a partial cross-space mapping connects
counterparts in the input mental spaces.” As an example consider the ‘house-boat’ blend, where
the passenger of the boat is mapped to the resident of the house, and the ride relation between

611553 October 15, 2014 3



D2.1 Reasoning with Amalgams

passenger and boat is mapped to the live-in relation between resident and house.

Generic Space. The cross-space mapping points to what might constitute the generic space,
which essentially contains what is common to or shared among the two input mental spaces. For
example, the mapping between passenger and resident in the house-boat blend suggests a generic
space with a concept person that generalises the concepts of passenger and resident.

Blend. The most precise statement about the actual blending operation is possibly the following,
from Fauconnier and Turner [22, p. 47]: “In blending, structure from two input mental spaces is
projected to a new space, the blend. Generic spaces and blended spaces are related: Blends
contain generic structure captured in the generic space but also contain more specific structure,
and they can contain structure that is impossible for the inputs [...]”

The blend is neither the intersection nor the union of the input spaces. Parts of the input spaces
are selectively projected into the blend, other parts do not become part of the blend. For example,
blending ‘house’ and ‘boat’ to ‘houseboat’ requires to select the concept water from the ‘boat’
input space, but not the concept land from the ‘house’ input space.

The close relationship between the generic and the blend spaces, makes it important for any
formal model of blending to come to grips how the generic space arises from the blending process
as well as what role it plays. In Section 2.4 we shall come back to this issue and propose several
approaches to what can constitute the generic space or spaces of a conceptual integration network.

Emergent Structure — Composition, Completion and Elaboration. The emergent structure
refers to additional structure in the blend that is not directly copied from the inputs. Emergent
structure is built through three processes: composition, completion, and elaboration. First, com-
position simply brings the elements of the input spaces together, without any further effect; second,
completion is the inference of additional information, obtained from accessing related frames and
scenarios; and third, elaboration intuitively means simulating the behaviour of the elements in
the blend interacting among them. As emphasised in Fauconnier and Turner [22, p. 49], “[t]he
creative possibilities of blending stem from the open-ended nature of completion and elaboration.”

From an Artificial Intelligence viewpoint, composition combines a selective projection of in-
puts. Completion adds background knowledge to the blend, until it is completed, i.e., has all that
is needed for the purpose at hand. Elaboration involves reasoning or inference, in the sense that
background knowledge is used to reason about actions that some elements can perform, or actions
that can be performed on some elements, in order to elucidate the eventual consequences of the
blended mental space.

Conceptual Integration Network. As stated in Fauconnier and Turner [22, p. 44], “Building
an integration network involves setting up mental spaces, matching across spaces, projecting se-
lectively to a blend, locating shared structures, projecting backward to inputs, recruiting new
structure to the inputs or the blend, and running various operations in the blend itself.” An exam-
ple for an integration network is the basic houseboat diagram in Figure 1. There are four mental
spaces: the two inputs, the generic space, and the blend. However, this example is only a minimal

4 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

network. In general, “[...] conceptual integration networks can have several input spaces and
even multiple blended spaces.” [22, p. 47].

2.3 Optimality Principles

Optimality principles play the role of an assessment measure for blends. As we mention earlier,
two input spaces can be blended together in many different ways, and finding a particular blend
that is creative and useful is not trivial.

The optimality principles that Fauconnier and Turner [22] mention are defined in an “other
things being equal”’-manner, i.e., they compete with each other, and satisfying one principle may
dissatisfy another one. In the following we summarise how Fauconnier and Turner [21, 22] define
the particular principles that we consider in this paper, and we provide examples by explaining
their role in the ‘house-boat’ blend.

e Topology Principle:  “For any input space and any element in that space projected into
the blend, it is optimal for the relations of the element in the blend to match the relations of
its counterpart.” [21]

In terms of the ‘houseboat’ blend for example, if the elements passenger and resident are
blended to a passenger-resident of a houseboat, then the lives-in relation between the res-
ident and the house remains the lives-in relation between the passenger-resident and the
houseboat.

o Pattern Completion Principle:  “Other things being equal, complete elements in the blend
by using existing integrated patterns as additional inputs. Other things being equal, use a
completing frame that has relations that can be the compressed versions of the important
outer-space vital relations between the inputs.” [22, p. 328]

This principle is related to the work on image schemas by Lakoff [46]. Image schemas are
completing frames that are abstract versions of the input spaces. For example, in the house-
boat blend, the CONTAINER image schema is used as an abstraction for a house, which is a
container for a resident and a boat, which is a container for a passenger. The pattern com-
pletion principle is related to the emergent structure of a blend, because emergent structure
only arises through completion and elaboration.

e [ntegration Principle:  “The blend must constitute a tightly integrated scene that can be
manipulated as a unit. More generally, every space in the blend structure should have
integration.” [21]

As an example consider the ‘houseboat’ blend again. One could blend a scene of a house
and a scene of a boat as the simple union of both scenes, so that there is a house with a
resident and a boat with a passenger in the blend. However, this is not perceived well as a
unit. A better blend in terms of integration is the new concept of ‘houseboat’, which can be
treated much better as a unit.

e Maximisation of Vital Relations Principle: ~ “Other things being equal, maximise vital
relations in the network. In particular, maximise the vital relations in the blended space and
reflect them in outer-space vital relations.” [22, p. 330]

611553 October 15, 2014 5



D2.1 Reasoning with Amalgams

According to Fauconnier and Turner [22], blending does not only happen to creatively in-
vent new concepts, but it also serves as a means to compress the information in the input
spaces using so-called vital relations, which are fundamental in the particular network of
interest. As examples, Fauconnier and Turner [22] mention cause-effect, time, space, iden-
tity, change, and uniqueness relations. If such relations exist between the input spaces,
then blending causes them to reappear in compressed form in the blend. Maximising vital
relations in a blend also maximises the degree of compression that a blend produces. This
underpins not only the importance of blending as a means for creativity, but also for efficient
cognitive operation.

o Web Principle:  “Other things being equal, manipulating the blend as a unit must main-
tain the web of appropriate connections to the input spaces easily and without additional
surveillance or computation.” [22, p. 331]

This refers to relations between spaces in the network. For example, placing a houseboat
into a new environment such as a river scene maintains the connections to the input spaces
of house and boat: the relation between the resident of a house and the passenger-resident
of a houseboat is still there. As another example, consider the case where some form of
resident fee has to be paid for a houseboat. If the fee is raised for a houseboat, then one
should be able to infer that it is also raised for a house.

e The Unpacking Principle:  “Other things being equal, the blend all by itself should prompt
for the reconstruction of the entire network. ” [22, p. 332]

For example, by focussing on the concept of a ‘houseboat’ we still can access the concept
of ‘house’ with its properties and its relationship to other concepts. Similarly, we can also
access the notion of ’boat’ with with its properties and its relationship to other concepts.

e Relevance Principle:  This is sometimes also called Good Reason. Fauconnier and Turner
[22, p. 333] describe it as follows: “Other things being equal, an element in the blend should
have relevance, including relevance for establishing links to other spaces and for running
the blend. Conversely, an outer-space relation between the inputs that is important for the
purpose of the network should have a corresponding compression in the blend.”

What eventually will constitute the ‘houseboat’ concept will very much depend on what we
are pursuing when blending. So, if the relation live-in is relevant, it should be included in the
blend. But maybe another relation (say number-of-rooms) might not be relevant anymore,
and should not be considered in the blend.

2.4 The Generic Space

In Section 2.2 we mention that determining the generic space for a conceptual integration network
is crucial for creating a blend. We shall consider two alternative approaches to what the generic
space of given input spaces might be.

A generalisation of the input spaces. One way to determine what is common to the input
spaces is by means of looking at the cross-space mapping between them. Hence, structural map-
ping techniques that identify isomorphic substructures of the inputs might be useful to create an

6 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

abstraction of this substructure. This is the approach described in project deliverable D1.1 [5].
There, cross-space mappings are established by means of the HDTP algorithm [68], which com-
putes a restricted higher-order anti-unification of two input spaces represented as first-order logical
theories. This anti-unification then serves as a generic space for the blend of the original first-order
theories. Project deliverable D1.1. describes this approach in detail and illustrates it for blending
in the project working domains of mathematics and music.

Image schemas framing the structure of input space. An alternative is to adopt an approach
that is grounded of an embodied understanding of cognition, and to focus on the image schemas
that underlay the structure given in the input spaces.

The theory of image schemas was jointly proposed by Lakoff [46] and Johnson [37] and is
constitutive of the view that human cognition is essentially grounded on our bodily experience
with our environment, and that this embodied experience is at the heart of how we structure our
concepts, even the most abstract ones. Quoting Johnson, “an image schema is a recurring dynamic
pattern of our perceptual interaction and motor programs that gives coherence and structure to
our experience.” [37)]

Hampe [32] provides the following characterisations: Image schemas are directly meaning-
ful (“experiential”/*embodied”), pre-conceptual structures, which arise from or are grounded in
human recurrent bodily movements through space, perceptual interactions, and ways of manipu-
lating objects; are highly schematic gestalts that capture the structural contours of sensory-motor
experience, integrating information from multiple modalities; exist as continuous and analogue
patterns beneath conscious awareness, prior to and independently of other concepts; and are both
internally structured and highly flexible.

Lakoff [46] and Johnson [37] identify several of these image schemas and show how they
ground on our bodily experience the meaning we give to abstract concepts and situations. Because
of the central role they play in structuring our concepts, they may also serve to identify shared
commonalities between concepts or conceptual spaces. Consequently they may be constitutive
elements of the generic spaces of a conceptual blend. As a first exercise, in Section 5 we show a
conceptual integration network that adopts this approach to structure the generic space. Below we
briefly review two of these image schemas which we shall use in the discussions contained in this
deliverable.

2.4.1 The CONTAINER Image Schema

This image schema —sometimes also refered to as the CONTAINMENT schema— consists of three
parts: an interior, a boundary, and an exterior.

The structure of image schemas form a gestalt, which means that the parts only make sense in
relationship to each other, and cannot be isolated.

Image schemas come also “equipped” with an internal logic and built-in inferences by virtue
of which we do our reasoning. So if, for instance, an object is in the interior of a container A that
is in the interior of the container B, then this object is also in the interior of the container B. We
shall use this image schema in Section 4.2

611553 October 15, 2014 7



D2.1 Reasoning with Amalgams

2.4.2 The SOURCE-PATH-GOAL Image Schema

This image schemas —sometimes also refered to as simply the PATH schema— is presented in
slightly different ways in the literature, but it its simplest form it consists of: a source or staring
point, a goal or end-point, and a path or sequence of contiguous locations connecting the source
with the goal. As such, the SOURCE-PATH-GOAL is a specialisation of another image schema,
called the LINK schema, which consists of two entities and a link between them. Here, we have a
source and a goal location which are linked by a path.

Since the SOURCE-PATH-GOAL schema arises from our bodily experience of moving about
in space, it often includes the notion of a trajector moving from source to goal, and the associated
notion of this trajector “being on the path”. Furthermore, because our experience of moving about
in space is tightly linked with our perception of time, often the temporal dimension is also included
into the schema, so as to take into account that the trajector starts at a certain time at the source
position and ends at a later time at the goal position, being on the path at any intermediate time
instance.

The internal logic and built-in inferences of this schema allow us to state, for instance, that if
somebody has travelled from A to B and from B to C, then he or she has travelled from A to C. We
shall see a formalisation of this schema in Section 5.

3 Computational Models of Conceptual Blending

Several approaches of formal and computational models for conceptual blending have been pro-
posed in the past. Many of these models are inspired by the work of Fauconnier and Turner [22],
but there are also other approaches emanating from analogical reasoning [69] and neuroscience
[71].

In this section we present a survey on the most relevant existing work, and describe how the
different formalisations relate to Fauconnier and Turner’s constitutional elements and optimality
principles that we summarise in Section 2.2. We conclude each approach by summarising its
strengths and weaknesses.

3.1 The Alloy Algorithm and the Griot System

The Alloy algorithm [29] for conceptual blending incorporates many ideas of the algebraic semi-
otics approach by Goguen [24] and the conceptual blending theory by Fauconnier and Turner
[21, 22]. Alloy has been integrated in the Griot system for automated narrative generation [29, 34,
33]. Apart from the primary conceptual blending approach realised with Alloy, Griot also uses a
secondary structural blending mechanism that blends the dynamic elements of natural language
narratives to generate poetry.

3.1.1 Constitutive Elements of Conceptual Blending in Alloy

Input Spaces. The input spaces of the Alloy algorithm are theories defined in the algebraic spec-
ification language BOBJ (see e.g. [52]). This allows one to represent sorts, operators, constants

8 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

live \ / resident

Person

\ passenge

ride >
\ S house

Object \
/ boat

land

on

Medium

S
/\

on water

Figure 2: The input graph for the Alloy algorithm and the blend of HOUSE and BOAT

and axioms. As an example consider the following specifications of the concepts HOUSE and
BOAT, as depicted in Figure 1.

th HOUSE is
sorts Object Person.
pr MEDIUM.
op resident : -> Person.
op house : > Object.
op live-in : Person Object -> Bool.
op on : Object Medium -> Bool.

eq live-in(resident, house) = true.
eq on(house, land) = true.

endth
th BOAT is
sorts Object Person.
pr MEDIUM.
op boat : —> Object.
op passenger : —-> Person.
op ride : Person Object -> Bool.
op on : Object Medium -> Bool.

eq ride(passenger, boat) = true.
eq on(boat, water) = true.
endth

The keyword sorts denotes sort definitions, op denotes operators, and eq denotes axioms.
The keyword pr indicates that theories inherit structure from a parent theory called MEDIUM, that
defines a data sort Medium with constants 1and and water.

Before the actual blending happens, Alloy maps the relations, data sorts, non-data sorts and
constants of the input theories to a graph with three columns (see Figure 2). The left column of the
graph has as nodes relations, in the middle column there are sorts, and on the right are constants.
Edges between relations and sorts indicate that the relation has an argument of the respective sort,
and edges between relations denote that the relations come from different input spaces. This is

611553 October 15, 2014 9



D2.1 Reasoning with Amalgams

also done analogously for constants.

Blend. The blending algorithm generates two binary trees that are based on the input graph. The
two trees represent (i) the space of possible mappings of relations and (ii) the space of possible
mappings of constants respectively. The trees are then combined in the sense that the leaves of
the constants-tree are applied to the relations-tree. The resulting combined tree has leaves that
represent all possible sort-preserving mappings of relations and constants, i.e., all possible blends.
During the tree generation, certain optimality principles are applied to prune the space (see below).
Finally, after the tree is generated, the powerset of possible axioms wrt. the leafs is enumerated.

Cross-Space Mapping and Generic Space. The authors do not explicitly account for a cross-
space mapping. However, the edges between relations and constants from different theories can
be understood as a weak form of a cross-space mapping. Alloy uses these edges (and hence the
potential cross-space mapping) to determine a generic space.

Emergent Structure. The emergent structure is generated by blending axioms of the input
spaces. However, there is no clear distinction between the composition, completion and elabo-
ration of the blend.

3.1.2 Optimality Principles

The optimality principles by Fauconnier and Turner are considered in the articles on Alloy and
Griot [33, 29, 30], but the authors argue, that implementing these principles is difficult because
they are computationally not efficient. Therefore, the authors propose other structural optimality
principles which have better computational properties. These principles are based on degrees of
commutativity, axiom preservation, and type casting, and they serve the purpose to prune the space
of possible blends and as a means to produce only “good” blends.

3.1.3 Structural Blending

Another kind of blending that Goguen and Harrell [29, 30] use to generate narrative structure is
structural blending. The approach is based on the work on narrative structure by Labove [44], and
the authors use the following EBNF proposed in [44] as a basis for structure generation:

<Narr> <Open> (<Cls> <Eval>*)+ [<Coda>]

((<Abs> + <0rnt>) <Eval>x*)x*

<0Open>

<Open> denotes the opening of a narrative, <C1s> stands for narrative clauses, <Eval> stands for
for evaluative clauses and <Coda> denotes an ending. More details can be found in [44].

13082

For structural blending, a narrative space is generated by expanding the “x”s and by apply-
ing certain other rules which are not further discussed. The authors also mention that structural
optimality principles' are used to assess the generated blends, but a formal definition of these

I These structural optimality principles are not to be confused with the conceptual principles defined by Fauconnier
and Turner [21].

10 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

principles is missing. The authors say that some elements of the generated narrative space are
combined to generate a new structure, but they give no further elaborate definition of how this is
implemented and what structural blending is. The most descriptive sentence to describe structural
blending in [30, p.7-8] is as follows: “Thus, to use blending as a basis for multimedia narrative,
we must generalise conceptual spaces to take account of structure, which requires constructors
and axioms; it also helps to have a hierarchical type system. Hence we distinguish conceptual
blending from structural blending [...], where the former is blending of conceptual spaces and the
latter is blending that in general involves non-trivial constructors.”

3.1.4 Strengths and Weaknesses of Alloy and Griot

Alloy and the Griot system are based on the solid theory of algebraic semiotics by Goguen [24],
it accounts for the work on conceptual integration by Fauconnier and Turner [22, 21] and it is
based on the work on narrative theory by Labove [44]. The results that Griot produces are very
impressive. For example, the system is capable of generating complex poems like the following:

her tale began when she was infected with smugnessloveitis.
she began her days looking in the mirror

at her own itchy entitled face.

her failure was ignoring her tormented angel nature.

life was an astounding miracle.

nordic-beauty death-figure vapor steamed from her pores
when she rode her bicycle. that was nothing lovely.

when 21 she was a homely woman. she decided to persevere;
in the rain, she fears only epidermis imperialists.

she believes that evil pride devours and alternates with pride of hope.
it was no laughing matter.

she snuggles in angel skin sheets and sleeps.

inside she was resolved to never find

a smug or paranoid love. [29]

A weakness of the Alloy approach is the input language BOBJ. Though BOBJ is already com-
parably expressive from an algebraic-logic point of view, it is unclear how informal information
such as image schemas and emotion can be represented in BOBJ. Another weakness is that the
generated search tree is of exponential size wrt. the number of axioms of the input theories, be-
cause during the generation of the blendoid tree, the powerset of axioms is computed.

3.2 Sapper

Sapper was originally developed by Veale and Keane [73] as a computational model of metaphor
and analogy. It computes a mapping between two separate domains —understood as graphs of
concepts— that respects the relational structure between the concepts in each domain. Veale and
O’Donoghue argue in a later publication [74] that Sapper can also be seen as a computational
model for conceptual blending, because the pairs of concepts that constitute its output can be

611553 October 15, 2014 11



D2.1 Reasoning with Amalgams

Microsoft

Control &/
‘Windows™

9 Fizzy

Create Contain Brown
(& "sofe"

Create X
I gt ©) CokeMarket it Contain @ "Soft"
Affect () ColaSoftDrink ® Affect IExplorerUserBase At
Affect \ Affect rg MicrosoftSoftware

Target Affect L
. ec
‘ ) P ket K@;M Target
assMarket o peUserBase

Creare Contain v @MassMarke:
PepsiCani#6 / Corate Contain
Create () e .
Control rart - NetscapeNavigator

PepsiSixPack . Create

PepsiCo. . PespiCan#5 Control
t—part @ Netscapelnc Enable
PepsiCan#6
—Part @ ! @ WebAccess
(a) Relation between Coca Cola and PepsiCo (b) Relation between Netscape Inc. and Microsoft

Figure 3: Two networks showing the economic relation between rival companies [74]

manipulated as atomic units, as blended concepts; and they also claim that the model captures
most of the optimality principles of blending put forward by Fauconnier and Turner.

3.2.1 Constitutive Elements of Blending

Input Spaces. Strictly speaking, Sapper does not work with a priori given input spaces. It is
the structure mapping algorithm itself which, given two domains to be mapped, determines the
set of concepts and relations between these concepts that constitute the spaces that are blended.
It does so by searching within its semantic memory for the largest substructures (bounded by a
previously fixed size) at the root concepts of these domains that are isomorphic as with respect to
their relational structure, and whose concepts are metaphorically related.

Semantic memory is represented as a semantic network [64], a graph whose nodes represent
concepts and whose edges represent binary relations between concepts. As an example, consider
Figure 3, that shows two semantic networks representing the economical relation between rival
companies.

Cross-Space Mapping and Generic Space. Before the structure mapping algorithm is applied,
Sapper attempts to identify potential metaphorical relations between concepts. It does so by iden-
tifying so called bridgeable concepts., i.e., two concepts that are linked by some semantic relation

e to one or more common concepts —a process called triangulation— or

e to two other concepts that are already related by a bridge relation —a process called squar-
ing.

Bridges link concepts that share some set of semantic features with each other and that might be
put into correspondence when blended. It is this set of shared features that plays the role of the
generic space for blending. As an example, consider the concept MassMarket in Figure 3, which
is part of the Target relation in both input networks.

12 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

Blend. The actual correspondence or blend between concepts is computed by applying a spread-
ing activation algorithm (up to a fix horizon H) to the root nodes of the domains to be blended until
a wave of activation from the target node T meets a wave from the source node S at a bridge be-
tween T" and S’. This way Sapper locates pairs of paths, of which one path is rooted at T and the
other at S, that are structurally isomorphic (of equal length and constituted by the same sequence
of semantic relations) and that terminate at concepts that Sapper considers semantically bridge-
able. As an example, consider the following paths from Figure 3, which suggest to bridge the
concepts Microsoft and CocaCola.

Contai

. Creat . Part . Target
o Mircosoft —=" Windows — MS-Excel =" MicrosoftSoftware 28 MassMarket

reate Contain

e CocaCola % CokeSixPack P CokeCan#1 “2"% ColaSoftDrink "8 MassMarket

However, since many of these bridges will not coherently interact with others, only a subset
of the possible bridges between input concepts will be chosen to form the blend. The final blend
consists of the coherent combination of the one-to-one correspondence that can be established
between intermediate nodes in isomorphic paths. This set of bridges can be seen as the output of
Sapper, which can then serve as input to other inferential processes.

Emergent Structure. The correspondences found by the spreading activation algorithm that
constitute the blend outlive the computation of the blend and are added as links into the semantic
network of semantic memory. Consequently they can spread activation in subsequent applications
of the spreading activation algorithm. This allow for carrying out inference and supports the
computation of emergent properties of the blended space.

Conceptual Integration Network. The conceptual integration network handled by Sapper con-
sists of just two semantic networks of separate domains which are mapped by applying spreading
activation on the domain’s root concepts, to identifying isomorphic substructures that are grounded
on literal similarity, which constitute the generic space. Veale and O’Donoghue further claim for
the inclusion into the network of a so called “constructor space”, not part of Fauconnier and
Turner’s original model, but required for computational reasons, as different pragmatic contexts
appear to call for different ways of constructing the generic and blend spaces.

The constructor space is a toybox in which a computationalist may place structures and schemas
(though, not processes) responsible for the construction of the generic space from input spaces,
and then of the blended space. In Sapper, this constructor space would be constituted by the
triangulation, squaring and so-called slippage rules (see Topology principle).

3.2.2 Optimality Principles
Veale and O’Donoghue claim that Sapper captures most of the optimality principles of blending

put forward by Fauconnier and Turner. Optimality principles serve to rank and filter the corre-
spondences that comprise the mapping computed by Sapper.

611553 October 15, 2014 13



D2.1 Reasoning with Amalgams

Topology. Sapper’s focus on graph isomorphism is the basis of establishing cross-space corre-
spondences trivially ensures the topology principle. Since bridges are derived from isomorphic
relationships between the semantic structure of the input spaces, they exhibit the same topological
relationships to each other as do the original input concepts.

Sapper allows the relaxation of isomorphisms to accommodate to contexts that are more toler-
ant to so-called structural slippage, when there is not a strict one-to-one correspondence between
relations. The constructor space uses certain slippage rules, to determine both the generic content
of the blend and how this content structurally reconciles the input spaces.

Integration and Web. Integration is achieved by manipulating bridges as a single entity, and
can be made explicit by labelling the bridge with a new concept name. Looking at bridges as new
integrated concepts, the squaring rule is actually a triangulation rule where two concepts share a
common bridge instead of a common concept.

Bridges allow Sapper to access the component concept allowing one to reconstruct the inputs
as needed. And since bridges monotonically add to the structure of semantic memory, the concepts
linked by a bridge still maintain their connectivity to the rest of semantic memory. Hence, Sapper
adheres to the web principle.

Unpacking. Given a particular bridge, the squaring rule can be used to find neighboring bridges
in the same conceptual space with which it is structurally coherent. This allows a blended concept
to retrace the associations found by spreading activation back to the original input concepts, i.e.,
to “unpack” and reveal the additional conceptual structures that contribute to the bridge.

Relevance. The squaring and slippage rules on which Sapper grounds the formation of semantic
bridges underpin the Relevance principle, by ensuring that each bridge in the blended space is the
result of a structural or semantic consequence of another bridge, ultimately bottoming out at pairs
of concepts that were identified to be bridgeable on ground of sharing the same set of features.

3.2.3 Strengths and Weaknesses

A computational model like Sapper demonstrates how key properties and principles of integra-
tion theory effectively emerge from the interaction of some well-tested notions from cognitive sci-
ence and artificial intelligence (e.g., spreading activation, semantic networks, graph isomorphism).
It also demonstrates the inherent computational soundness of conceptual integration theory as a
paradigm for research in cognitive science.

The authors provide strong links to the work by Fauconnier and Turner, in particular with
respect to the optimality principles. Veale and O’Donoghue [74] claim that “ [...] optimality
principles are entirely compatible with a number of computational ideas that make blending a
computationally tractable process.” This however contradicts Harrell [33], who state that Faucon-
nier and Turner’s optimality principles are computationally inefficient. With respect to this claim,
it would be interesting to learn about the computational scalability of the Sapper system, e.g., in
terms of an empirical performance analysis for sample data.

14 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

4

Multi-domain Knowledge Base

§%)
£
o
! il
Factory <,|: 8
o} @ GA
Q ° N
Q :> c
© V]
gM™¢e T L L
Convergent Strategy
VAN |
"4 i N 1
Elaboration Goal

Figure 4: The Divago architecture

An explanation for the contradiction with Harrell is, that Veale and O’ Donoghue use relatively
simple graphs as input which have the expressiveness of existential-conjunctive logic with only
binary predicates. In contrast, Harrell uses the more expressive input language BOBJ. In addition,
Veale and O’Donoghue use (among other algorithms) a sophisticated structure mapping engine
(SME) which is optimised so that it can operate with a polynomial time ceiling (see [73] for
details).

3.3 Divago

Divago, by Pereira [59, 60], is probably the first complete implementation of conceptual blending
that aims at capturing as much elements as possible of Fauconnier and Turner’s cognitive model,
and that attempts to provide a concrete computational account for them. Pereira draws the termi-
nology and definitions for his formal and computational model from Wiggins’s formalisation of
creative systems [75]. The implementation of Divago is realised in Prolog.

For details pertaining to the Divago architecture consider Figure 4. The knowledge base con-
tains different micro-theories and their instantiations. Of these, two are selected for the blending.
The mapper then generated the alignment, i.e., the generic space between the inputs, and passes
on the blender which generates the “blendoid”, i.e., a projection that defines the space of possible
blends. The factory is used to select the best blends among the blendoid by means of a genetic
algorithm. This selection is interleaved with (i) enriching the blendoid with background knowl-
edge in the elaboration module and (ii) incorporating the constraint module where the optimality
principles are applied.

611553 October 15, 2014 15



D2.1 Reasoning with Amalgams

isa(house,physical structure)
isa(physical structure, physical
entity)

purpose(roof, protection)
isa(protection, task)

live in(human, house)
color(night, black)

have (house, door)

have (house, roof)

have (house, body)
purpose(body, container)
purpose(door, entrance)

have many(skyscraper, house)
have many(house, room)

(a) Excerpt of the house concept map

isa(boat, physical structure)
isa(sailing boat, boat)
shape (hatch, circle)
have(sailing boat, sail)
have(sailing boat, hatch)
have(sailing boat, mast)
purpose(sail, movement)
purpose(hatch, observation)
purpose(mast, support)
purpose(vessel, container)
property(sailing boat, slow)
property(hatch, tiny)

use (human, sailing boat)
sail (human, sailing boat)

(b) Excerpt of the boat concept map

Figure 5: Input spaces for Divago in form of Prolog facts

3.3.1 Constitutive Elements of Blending

Input Spaces. Blending in Divago is done on a pair of concepts, taken from the multi-domain

knowledge base of the system.

2

Pereira adopts Murphy and Medin’s “theory view” of what a concept is [56]. Hence, in Divago
concepts are micro-theories that describe facts about them (or about related concepts), and which
include causal connections between them. In particular, a concept micro-theory C = (CM,R, F,IC)

consists of:

e a concept map CM for the factual part — that can be represented as a directed graph with
nodes standing for concepts (they will be called ‘elements’ to distinguish them from the no-

tion of ‘concept’, which involves the entire concept map) and edges standing for relations;

3

e rules R, frames F, and integrity constraints /C for the inferential part — that play an impor-
tant role in the blending process and the further elaboration of the blend, as we shall explain

below.

Concept micro-theories in Divago are essentially logic programs, and are written as Prolog clauses.
Instances can also be provided. As an example consider the micro-theories for house and boat in
Figure 5.

2 A domain for Pereira is a set of concepts such that all of them relate to a unique, underlying concept.

3Pereira clarifies the notions of ‘domain’, ‘concept’ and ‘element’ he uses in his work as follows: “In order to
avoid confusion, we adopt the convention that each of these nodes of a concept map will be named element, instead
of concept. Thus, a Concept will be made up of the concept maps, rules, frames, etc. [...] following the micro-theory
view.” (p. 104). A domain is a concept map with no central concept. Although he is not entirely consistent with this
view, we will try to follow his intended terminology.

16 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

Cross-Space Mapping. Mappings are initially formalised as a function function ¢ : U x U — M,
where M is the power set of all possible pairs of substructures from concepts of U. In particular,
in Divago, mapping is implemented to yield as output a set of pairs of elements (e;,e;) where e;
is an element of the concept map of one input concept, and e, is an element of the concept map of
the other input concept. Hence, a mapping between concepts C; and C», is just a binary relation
m C A& x AE,, where AE; is the subset of element symbols occurring at nodes of the concept
map CM; of concept C;.

Like Sapper, the mapper module of Divago uses spreading activation to search for the largest
bijection m such that, forall¥,,Z; € A€ and Y»,Z, € AE,, whenever (Y1,Y2) € mand (Z,,2,) €m,
then X (Y1,Z,) € CM, if, and only if, X (Y>,Z,) € CM,. That is, it looks for the largest isomorphic
pair of subgraphs (contained in the concept maps), where two graphs are considered isomorphic
when they have the same edge structure (relations), independently of the symbols occurring at
nodes (elements).

Generic Space. In Divago there is no generic space as understood by Fauconnier and Turner.
Instead, Divago always includes a generic domain that participates in all blend computations. This
domain contains:

e all knowledge that is applicable to all concepts and to the process of concept invention;

o the Generalised Upper Model [4], a general task and domain independent linguistic ontol-
ogy, intended for organising information for expression in natural language, and from which
all labels for relations in Divago’s concept maps are taken from;

e an IS-A ontology used by the mapper for finding correspondences between elements of
different concepts;

e various frames that govern the creation of blends;

e integrity constraints and rules.

Blend. Blending is formalised by means of a ‘transfer operation’ @ : U x U — U, that is depen-
dent on the mapping between inputs: ®(x,y) = 0 if ¢(x,y) = 0. No further constraints on @ are
given, and Pereira claims that “there is no way to specify this operation in more detail, since there
are many different accounts for how concepts are combined together.” However, this cannot be
entirely true, because in retrospect one can tell whether a newly created concept is the combina-
tion of two previously existing concepts or not; hence, a minimal characterisation for @ should be
possible.

According to Pereira’s formalisation, there is directionality in blending, and unlike the map-
ping function ¢, the transfer operation ® is not necessarily symmetric. Furthermore, ® is un-
derstood as a non-deterministic algorithm, rather than a mathematical function. Thus, the set
Q={k | k=w(x,y),x,y € U} of all possible blends of two concepts is called the bisociation set.

In Divago, blending is implemented by computing the blendoid, which merges all possible
blends into one single concept map. The blendoid is generated by means of a blending projection
function y: A — Ap that maps the atomic symbols (constants and variables) A of the input concept

611553 October 15, 2014 17



D2.1 Reasoning with Amalgams

maps into the blended concept map, whose atomic symbols include also compound symbols:
Ap=AU{x]y | x,y € AAx#y}. Given a mapping m between concept maps, the function
7 has to satisfy that, for all x,y € A, y(x) =0, y(x) = x, or, whenever (x,y) € m, y(x) =y or
7(x) = x|y. But even if two concepts x and y are mapped according to m, nothing prevents that
¥(x) # y(y). Rules, frames, integrity constraints, and instances are all included into the blend,
after translating the atomic symbols according to the blending projection 7.

Out of the blendoid, the best blend is selected applying a genetic algorithm that searches for the
best blending projections. The genotype of the individuals of the population over which the genetic
algorithm is run are sequences of projected atomic symbols for a particular blending projection
Y. The population evolves via crossover, mutation and asexual reproduction (direct copy of the
genotype) and evaluated by a fitness function applied on the actual blend that is generated given a
particular blending projection 7, the phenotype. The fitness function is a weighted sum based on
the Optimality Principles.

Emergent Structure. The blends in the bisociation set € are considered to be in a pre-inventive
state, and Divago handles the emergent structure that arises in the blend by means of an elaboration
function 6 : U x U — U. This function can be either:

e rule-based, when a rule or set of rules from the blend or the generic domain is appled (e.g.,
heuristics, causal rules, or other production rules)

e internal-logic-based, when new structure is added by reasoning within the concept micro-
theory (e.g. by deduction, induction, or abduction)

e cross-concept-based, when new structure is added or removed by comparison to other con-
cepts in the knowledge base (e.g., by means of analogy)

In Divago, this elaboration of the blend is interleaved with the generic algorithm so as to allow
less fit blends to gain value via the application of rules, frames and inference rules.

Conceptual Integration Network. The conceptual integration network handled by Divago con-
sists of just two concept micro-theories which are mapped by applying spreading activation on the
concept’s concept maps and identifying isomorphic substructures. The role of the generic space is
covered by the generic domain, which further provides also the knowledge, rules and frames that
trigger the elaboration of the blends.

3.3.2 Optimality Principles
Divago’s architecture includes a dedicated module that implements the optimality principles.
Given a blend, this module computes a measure for each principle which aims at capturing the

degree of adherence to the principle. These measures are added up in a weighted sum to yield a
preference value of the blend. This value is then taken as the fitness value of the genetic algorithm.

18 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

Topology. The value of adherence to the Topology principle is computed by taking the ratio of
topologically correct relations in the blend with respect to the size of the concept map of the blend.
Depending on the objectives of creating the blend one may want it to preserve more the structure
of the input blends or to allow to be more flexible. This can be tuned with the weight associated
to this value.

Pattern Completion. Pattern Completion is implemented by using frames that are partially sat-
isfied by the blend and asserting the truth of its grounded condition. For this a completion evidence
is computed for each frame with respect to the blend, by looking at the ratio of satisfied conditions
with respect to all conditions of the frame, weighted by a penalty factor determined by the number
of violated integrity constraints. If this evidence is above a certain threshold, the frame is used for
completion of the blend. This completion is than taken up by the Elaboration module to infer new
consequences from the blend.

The Pattern Completion measure of a blend is computed with respect to a set of frames F, by
taking the union of all its conditions and computing the completion evidence of this union.

Integration. Again, Divago takes frame as the notion behind integration, because a frame or-
ganises a concept into an understandable whole. Divago interprets integration as the coverage of
as much of the blend by as little frames as possible, where coverage of a frame means that all
conditions of the frame are satisfied by the concept map of the blend. For each frame a integration
value Iy is computed, by computing how much of the blend is covered by the frame and how little
of the integrity constraints are violated. The values for each frame are then added up taking into
account how much of the blend remain uncovered, how much overlap there is between frames and
how many frames are involved in the coverage.

Maximisation of Vital Relations. Divago interprets vital relations as salient relations, i.e., there
is not specific treatment of their role in compression —when inter-space relations between con-
cepts of different inputs intra-space relation in the blend. Furthermore, only maximisation is
considered. The measure computed is just the ratio of vital relations in the blend with respect to
all possible vital relations in the blendoid.

Web. In Divago, the Web principle is derived from the Topology and Unpacking principle, and
its measure is just a weighted sum of these two principles.

Unpacking. Divago implements the Unpacking Principle using the notion of a defining frame
of an element x in the blend, which is a frame whose conditions relate the element of the input
space that is projected onto x to its neighboring elements. The structure of a defining frame that
is preserved in the blend points to the original concept. Consequently, they provide a measure for
Unpacking, which Divago determines as the normalised sum of ratios computed for each element
x, namely the ration of defining-frame conditions satisfied by the blend for x with respect to the
number of elements to which x is connected.

611553 October 15, 2014 19



D2.1 Reasoning with Amalgams

Relevance. Finally, Relevance or “Good Reason” of the blend is computed with respect to a
given set of goal frames. Maximum relevance is achieve if the blend satisfies all goal frames.
If not all goal frames are satisfied, Divago computes the Pattern Completion value of unsatisfied
blends and takes these also into account. The Relevance value is taken as the degree of usefulness
of the creative act.

3.3.3 Strengths and Weaknesses

Divago’s main strength is that it addresses most of the elements and principles of conceptual blend-
ing as put forth by Fauconnier and Turner in their cognitive model, and that it offers a concrete
implementation of these elements and principles. This however is also a weakness, because the
formal model it gives for blending is determined and tailored towards the concrete implementation.
Consequently, the concept representation language of Divago is restricted to the expressiveness of
the Prolog-based rules.

3.4 Blending by Heuristic-Driven Theory Projection (HDTP)

Guhe et al. [31] present an approach to use Heuristic-Driven Theory Projection (HDTP) [69]
for blending and concept invention. HDTP is originally a framework for analogical reasoning,
using a many-sorted first order language to represent conceptual spaces. The authors state that
“HDTP extends [the] classical form of anti-unification of terms to formulae and logical theories
by iteratively picking pairs of formulae to be generalised from the domains. This process is driven
by heuristics. ” In particular, HDTP uses second-order anti-unification, which is restricted in way
that renders the process decidable.

In HDTP-based analogical reasoning, knowledge is mapped and transferred from a usually
well-known source domain S to a target domain 7. This happens in two phases. In the mapping
phase, source and target are compared to find commonalities. In the transfer phase, unmatched
knowledge in source is mapped to the target to establish new hypotheses.

The authors summarise how they turn the analogical reasoning framework into a conceptual
blending framework as follows [31] (see Figure 6): “The main point, where conceptual blending
differs from analogical reasoning is the second phase - the analogical transfer of knowledge from
StoT. To turn HDTP into a blending framework, we replace this transfer by a process that results
in the creation of new domain, as follows:

1. Compute a common generalisation of the domains S and T, thus setting up relationships
between the source and target domains.

2. Create the conceptual blend B by merging knowledge from S and T based on this mapping:
in the ideal case, B respects the shared features of S and T (those with common generalisa-
tions), and inherits independently the other features of S and T.”

The constitutive elements of Guhe et al.’s approach are similar to those proposed by Faucon-
nier and Turner, though some important elements such as optimality principles or the distinction
between composition, completion and elaboration are not explicitly accounted for.

20 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

G
/m\
S > T
B

Figure 6: Extending the analogical reasoning framework to conceptual blending. m is an analogy
mapping from a well-known source domain S to a new target domain 7.

3.4.1 Constitutive Elements of Blending

Input Spaces. As conceptual spaces, the authors use many-sorted first-order theories represent-
ing the image schemas proposed by Lakoff and Nufez [48]. In particular, the authors use the
following four schemas: OBJECT COLLECTION (OColl), OBJECT CONSTRUCTION (OConst),
MEASURING STICK (MS) and MOTION ALONG A PATH (MAP). Guhe et al. argue with Lakoff
and Niiiez, that these metaphors are the main building blocks to represent mathematical struc-
tures, e.g., rational numbers. As an example they consider the specification of MS and MAP input
spaces in Figure 7.

Cross-Space Mapping and Generic Space. Guhe et al. [31] state that “HDTP [...] provides
an explicit generalisation of two domains as a by-product of establishing an analogy. Such a
generalisation can be a base for concept creation by abstraction.” Hence, the established analogy
is a cross-space mapping that is determined by the restricted second-order anti-unification method
presented in [69]. The analogy directly determines the generic space.

Blend. The blending of two theories happens in three steps. First, core blend laws are applied,
second, preferred conjectures are added, and third, extra conjectures are added.

1. Core blend laws.  The system unites two input signatures X and X, to generate a new
signature as follows:

(a) Add a predicate symbol for each sort that occurs in one of the input signatures, and
assign entities e to sorts sort by adding the fact sorz(e) to the theory.

(b) For formulas Vx : Sort(¢) in an input theory the authors add Vx : sort(x) — ¢ to the
blend. Similarly, for Ix : Sort(¢) in an input theory the authors add Jx : sort(x) A §.

(c) For function symbols f : Sort; X ... x Sort, — Sort, add Vxy,...,x, : ((sort;(x;)A... A
sorty(x,)) — sort(f(x1,...,x,))) to the blend.

2. Preferred conjectures.  The system generates and adds laws that concern equality of
analogous entities, functions and relations.

3. Extra conjectures. The system adds additional laws from the input spaces, if they use
only symbols covered by the analogy. It also tries to add more symbols of the input spaces
to the blend, if these do not lead to inconsistencies.

611553 October 15, 2014 21



D2.1 Reasoning with Amalgams

Sorts: seg
Entities:
unitSeg : seg
Predicates:
longer,shorter : seg X seg
extend, chop T seg X seg X seg
Laws:
Wi VS1,8::shorter(S1,S:) < longer(S,,S1)
W VS1,8,,83: extend(S),52,53) < chop(S3,52,81)

Wsg V81,82 shorter(S1,82) V (S1 = S2) V longer(S1,52)

MHzp @ VS1,8;:shorter(S1,S2) — —shorter(S2,81)

Uy 1 VS:-—longer(unitSeg,S)

Us 1 VS1,8,83: extend(S),S2,53) — longer(S3,S2) Alonger(S3,S1)

(a) The MEASURING STICK (MS) input schema

Sorts: point
Entities:
origin : point
Predicates:
Sarther,closer 1 point X point
moveAway,moveCloser : point X point X point
Laws:
w1 VPP closer(Py,P,) < farther(Ps,Py)
M i VP, Py, Py:moveAway(Py, Py, P3) < moveCloser(Ps, Py, Pp)

Ma : VPP :closer(P,P)V (P = Py) V farther(Pi, Ps)

Ty VPP closer(Py,Py) — —closer(Ps, Pp)

my 1 VP :—farther(origin,P)

Tsa 1 VP, Py, Ps: (moveAway(Py, Py, Ps) NPy # origin) — farther(Ps, P>) Afarther(Ps, Py)

sy : VP, P3:moveAway(Py,origin,Py) — Py = Ps

(b) The MOTION ALONG A PATH (MAP) input schema

Figure 7: Input schemas for HDTP-based blending (see [31])

Figure 8 shows an example where the MS and MAP input spaces are blended to generate the
DISCRETE MOTION ALONG PATH (DMAP) schema. The mapping between the laws () - y4 and
my - my is straight-forward, and used to generate the generalisation space: shorter is analogous to
closer, longer is analogous to farther, Add is analogous to extend, etc.

3.4.2 Optimality Principles
The authors do not directly account for the optimality principles by Fauconnier and Turner. How-
ever, the preferred and extra conjectures can be seen as alternative optimality principles, similar to

the structural optimality principles proposed by Goguen and Harrell [29], that guide the algorithm
to select useful blends among the huge space of possible blends.

3.4.3 Strengths and Weaknesses

The HDTP-based blending approach has a comparably expressive input language. Furthermore,
the method is, in comparison with other approaches, well described in detail. However, it would

22 October 15, 2014 611553



D2.1 Reasoning with Amalgams

FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

Generalisation G

Wi, Va  L(Vi,Va) < G(Va, V)

Wi, Vo, V3 0 Add(Vy, V2, V3) < Sub(V3, V5, Vi)

Wi, Va 1 L(VL,Va) V (Vi = Va) V G(V1,Va)
Wi,V i L(Vi,Va) — —L(Va, V1))
YV i =G(min,V)

L — shorter L — closer

G — longer G — farther

Add — extend Add — moveAway
Sub — chop Sub — moveCloser
min — unitSeg min — origin

Target: MAP

T, T, T3, T3h, T4

My, Mo, U3a, H3p, Ha

Hs T5a, Tsp

[Blend: DMAP
Ty, 2, W3a, Wb T4 Msas Wsp

VP, P, : longer(Py,Py) < farther(Py,P;)
VP, P, : shorter(Py,Py) < closer(Py, Py)

VP, Py, P; : extend(Py, P, P3) < moveAway(Py, P>, P3)
Py, Ps,Ps : chop(Py, P, P3) < moveCloser(P;, P>, P3)
nat(unitSeg)

B s Moy Baas M3 Ky 145

Figure 8: Blending the MS and the MAP input space (see [31])

be interesting to investigate the scalability of the approach for blending bigger ontologies. The
approach does not consider optimality principles and partial morphisms.

3.5 A Neurological Account on Combinatorial Creativity

The combinatorial kind of creativity [6] that we are interested in has been investigated from a
neurological perspective by Thagard and Stewart [72]. The major motivation of their approach is
to explain and to model the Aha!/ or Eureka! effect that occurs when humans make serendipitous
discoveries by means of creative thinking. The authors build their work on findings from neuro-
science and approaches to realise human thinking with neural networks [71, 72, 15, 16, 62]. The
key idea is to represent mental concepts as activity patterns of vectors of neurons and to perform
a convolution operation to combine these patterns.

Activity patterns of neurons are mathematically represented as vectors of numbers that repre-
sent the firing rate of neurons. For example, if the maximal firing rate of neurons is 200Hz, a firing
rate of 100Hz is represented as the number 0.5. According to Thagard and Stewart [72], a mental
concept can then be represented as a huge but finite vector of such numbers. This representation
allows one to elegantly combine two mental concepts by the discrete mathematical convolution
operation on vectors.

611553 October 15, 2014 23



D2.1 Reasoning with Amalgams

Figure 9: Patterns of neuronal activity as input spaces in Thagard and Stewart [72]

3.5.1 Constitutive Elements of Blending

Input Spaces. Input spaces are activity patterns of neurons, which in turn are represented by
vectors of numbers that represent the firing rates of neurons. As an example, consider the two
patterns in Figure 9, where brighter dots represent a higher firing rate and darker dots a lower
firing rate. Note that this model of input spaces is biologically very realistic: Neurons do not
store discrete bits like computers, but instead are highly stochastic devices which even may die.
Towards this, a high number of neurons is used to store information redundantly and to make the
system robust. This approach coincides with recent findings in neurology (see e.g. [71]).

The goal of the author’s work is not only to combine mental spaces, but also to model the Aha!
effect. Towards this, the authors claim that for the Aha! effect to occur, two more input spaces
are required: a representation of appraisal for the convolved input spaces and a representation of
the perception of the physiological reaction (e.g. heart beat) on the convolution. These are also
modelled as mental representations in form of vectors, and convolved to a vector representing the
overall emotional reaction. The emotional reaction is then again convoluted with the convolution
of the two original input spaces and may trigger the Aha! effect if the appraisal is high and the
physiological reaction is remarkable (see Figure 10).

Generic Space and Cross-Space Mapping The convolution operation that the authors use does
no require a generalisation space as in Fauconnier and Turner’s theory. Furthermore, the cross-
space mapping in the sense of Fauconnier and Turner is not explicitly accounted for.

Blend. The blend is generated by mathematical convolution of vectors. The underlying mathe-
matical model is based on the so-called LIF model of neuronal activity (see e.g. [71]). It accounts
for various details on the neuronal level, such as neuron voltage, input current, membrane time, di-
rection vector of neuron patterns, and synaptic connection weights. The mathematical convolution

24 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

combined concept emotional reaction

AHA

=
i

concept 1 concept 2 appraisal physiology

Figure 10: Thagard and Stewart’s convolution model of the Aha! effect [72]
“x” of two input vectors X and y is defined by Equation (3.1) as follows:
z=xxy where gz = ijy(,-,j)mocw 3.1)

Here, N is the size of the vector and i, j iterate over the vectors’ constituents. The form of this
equation allows the authors to apply the convolution theorem, such that Fourier transformation can
be used to compute the convolution and hence the blend.

3.5.2 Optimality Principles

Thagard and Stewart [72] do not use Fauconnier and Turner’s optimality principles to distinguish
reasonable blends within the huge space of possible blends. Instead, they combine the blend of
two input spaces with another space representing emotional reaction (see Figure 10) to assess
blends. However, the authors do not provide a detailed description how to model the emotional
input spaces computationally.

Though optimality principles are not explicitly accounted for by Thagard and Stewart, there is
one obvious analogy concerning the “Unpacking” principle. Thagard and Stewart [72] claim that
the mathematical deconvolution operation on the input spaces allows one to reconstruct the input
spaces from the combined space, at least to a certain extend.

3.5.3 Strengths and Weaknesses

Thagard and Stewart [72] state that the advantage of their approach before symbolic knowledge
representations is, that all kinds of mental representations, such as emotional and sensory informa-
tion, can be accounted for with the vector-based knowledge representation. On the one hand, this
is true because the basic representation of input spaces makes the approach very general. For ex-

611553 October 15, 2014 25



D2.1 Reasoning with Amalgams

ample, the authors use the application domain of natural language text, where they use Plate [62]’s
‘holographic reduced representation’ approach to map natural language sentences to vectors.

On the other hand however, the vector-based knowledge representation also raises many ques-
tions. For example, it is very unclear how other high-level input spaces such as music pieces or
mathematical theories can be mapped to their vector representation. Furthermore, their approach
is limited in that it does not account for selective combination, i.e., merging only parts of concep-
tual spaces. In Section 5 we present the Buddhist monk example which illustrates that selective
combination is necessary to relax input spaces and to obtain certain conclusions within a blend.

4 A Formal Theory of Blending as Colimits and Amalgams

4.1 Blending as Colimits

Category theory, although initially designed to describe mathematical entities, has proven a suc-
cessful cornerstone in many computer science applications; a trend which has attracted a lot of
attention and researchers, and which has been nicely advocated in Goguen’s paper [28]. One of
the most interesting advantages of categorical approaches to computational theories is precisely
the fact of being independent of any particular implementation. For this very reason, it is very
appealing to search for a (basic) categorical framework where the theory of conceptual blending
can be developed. In particular, Goguen [24, 25, 26] already introduced a categorical approach to
blending based on colimits.

In this section, besides diving into category theory, we revisit Goguen’s approach, and some
subsequent categorical approximations to blending [42, 43].

4.1.1 Category Theory Preliminaries

The aim of this section is to familiarise the reader with the notion of pushout in a category, which
is a particular case of the colimit construction. The colimit construction plays a crucial role in
Goguen’s approach to blending. Towards this, consider the following quotation:

Given a species of structure, say widgets, then the result of interconnecting a system
of widgets to form a super-widget corresponds to taking the colimit of the diagram of
widgets in which the morphisms show how they are interconnected. [28, Section 6]

As an starting illustration of this informal intuition, which we present in a formalised setting
in Definition 4.4, the reader can consider the example given in Figure 11, and borrowed from
Tarlecki [70]. In this example the pushout, shown in the top right corner, is computed from the
two morphisms starting in the bottom left corner. This pushout essentially replaces arrays of
elements in one of the input specifications with arrays of strings. The notion of string is extracted
from other input specification.

In this section, no attempt of being completely self-contained is made, so we suggest the reader
to supplement the information here provided, whenever necessary, with any standard category
theory textbook (e.g., [3, 61, 53, 49]) or short introductions to the subject (e.g., [14, Chapter 2]
and [67, Chapter 3]).

26 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

sorts String, Nat, Array|String]
ops a,...,z: String;
_ 7 _: String x String — String;

sort String empty : Array [String]; '
ops a,...,z: String; | put: Nat x String x Array[String]
_ 7 _: String x String — Array[String];
— String get : Nat x Array[String] — String
PO

sorts Elem, Nat, Array|Elem]
ops empty : Array|[Elem];
put : Nat x Elem x Array[Elem)]
— Array[Elem];
get : Nat x Array[Elem] — Elem

Figure 11: Example of a pushout (PO) of specifications

Definition 4.1 (Category). A category C consists of the following items.

e A collection obj(C) of objects.

e A collection hom(C) of morphisms (sometimes also called homomorphisms, arrows or
maps) satisfying that each morphism f has associated a source object denoted by src(f),
and a target object denoted by tg(f). The expression f: A — B is used as a shorthand for
claiming that f is a morphism with source A and target B. The collection of all such mor-
phisms is denoted either by C(A,B) or hom(A, B); but this last notation is only adequate
when there is no ambiguity about the category.

For every objects A, B,C, there is a binary associative operation called composition from
hom(A,B) x hom(B,C) into hom(A,C). Composition of two morphisms f, g is denoted by
either writing

f;g (diagrammatic notation) or gof (functional notation)

to refer to the composition of morphisms f: A — B and g: B — C. We remind that associa-
tivity refers to the equality

[i(g:h) = (f:8):h

and allows to write down finite sequences “fi; fo;...; f,” without worrying about parenthe-
ses.

For every object A, there is an identity morphism id4 belonging to hom(A,A) which is a
neutral element of composition. This neutrality means that

— idy; f is equal to f (for every morphism f with source A)

611553 October 15, 2014 27



D2.1 Reasoning with Amalgams

— f:idy is equal to f (for every morphism f with target A). -

Concerning notation to be used later, we point out that hom(A,-) will denote the collection of
all morphisms with source A and hom(-,A) will denote the one of morphisms with target A.

Example 4.2 (The categories Set and Pfn). Among the plethora of examples, there are two out-
standing examples of well-known categories that play a key role in this report (see for example

[9D.

e The category Set has sets as objects and (total) functions as morphisms (endowed with the
usual composition of functions).*

e The category Pfn of sets has sets as objects and partial functions as morphisms (endowed
also with the usual composition of functions).

Let us point out that if A and B are finite sets with, respectively, cardinal n and m, then Set(A, B)
has cardinal m" while Pfn(A, B) has cardinal (m+ 1)". In case we have a partial function f, we
will use the notation Dom(f) to refer to its set theoretical domain and Im(f) for its set theoretical
image.

The categories Set and Pfn are well-known in the literature (see for example [9]). Indeed,
Set can be considered as the paradigmatic category, in the sense that it has the best properties one
can expect in a category; for example, it is bicomplete (see Definition 4.8), a topos [38], ... Set
and Pfn underlay the more complex categories that we deal with in this report (e.g., categories of
CASL theories with axiom-preserving theory morphisms, see the solution to the Buddhist Monk
Riddle given in Section 5), in the sense that in all of these other considered categories it happens
that morphisms are either functions or partial functions. Thus, understanding the categories Set
and Pfn is a first approach to understand more involved categories. 0

Besides using the previously introduced notation f: A — B to refer to morphisms, it is com-
mon to use different kind of graphical arrows to emphasise whether the arrow satisfies some par-
ticular property. Thus, we will use

e f: A — Bfor epimorphisms (i.e., for every hy,hy € hom(B,-), if f;h; = f;hy then hy = hy).

e f: A — B for monomorphisms, (i.e., for every hy,hy € hom(-,A), if hy; f = hy; f then hy =
hy).

e f: A — B only for some very special monomorphisms, i.e., those that live in a category
whose morphisms are (set-theoretical) functions preserving some structure and which cor-
respond to inclusions.

e f: A = B for isomorphisms (i.e., there is some h € hom(B,A) such that f;h = id4 and
h; f = idp).

4 It is worth noticing that, by definition of a category, the collections hom(A;,B;) and hom(A,, B, ) must be disjoint
unless both A; = A, and By = B; hold. Thus, for technicality issues it is better to think that a morphism in Set is given
by an ordered triple (A, f,B) where f is a function from A to B.

28 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

In the particular cases of Set and Pfn it is well-known that epimorphisms correspond to being
exhaustive on the target object, monomorphisms to injectivity and isomorphisms to bijectivity.
Thus, two sets are isomorphic iff they have the same cardinality.

Colimits (and also limits) in a category C are introduced via diagrams. A diagram D is a
functor from a category J to the category C, and in such a case it is said that D is J-shaped. In
other words, a diagram D in C consists of

e adirected graph (where edges are objects-morphisms in J),

e a family (indexed by the nodes of the graph) of objects in C, i.e., every node X of the graph
is associated with an object in C,

e a family (indexed by the edges of the graph) of morphisms in C satisfying that: for an edge
between nodes X and Y, the associated morphism has the object associated with X as source,
and the object associated with Y as target.

We are mostly interested in the case of finite diagrams, i.e., when J has a finite number of objects
and morphisms. In most such examples, instead of defining the category J in words, we will
simply draw a directed graph. We refer the reader to Figure 12, for an illustration of diagrams for
some particular basic graphs. It is worth saying that the notion of span introduced there, will be
crucial. Sometimes in the literature spans have been refereed as V-shape diagrams; the reason is
that the graph used to define spans has a geometrical shape remembering the capital letter “V”".
Analogously, it makes sense to talk about W-shape diagrams to refer to the last case given in
Figure 12.

Some other families of diagrams with a name in the literature are the following:

o A sink is a family of morphisms all sharing the same target.
e A source is a family of morphisms all sharing the same source.

e A connected diagram is one given by a graph such that for every two nodes, there is an edge
connecting them (without worrying about the orientation).

e a thin diagram is one given by a graph such that there is at most one edge between any two
nodes.

A very illustrative explanation of the employed terminologies of sink and source can be found in
the first page of [1, Chapter 3]. Notice that spans are a particular case of sources, while cospans
are a particular case of sinks. Also notice that all diagrams in Figure 12 are thin; and all of them,
except for the first one, are connected.

Before introducing colimits of a diagram D in a category C we introduce cocones.®

Definition 4.3 (Cocones). A cocone ¢ over a diagram D in a category C is an object O in C
together with a family (indexed by the nodes in the graph associated with D) {cx }xecNodes Of
morphisms in C such that:

5 Strictly speaking here one needs to consider only those graphs which are the support of a category, but for the
purpose of this report it is not necessary to worry about this detail.
6For the dual notions of limits and cones we refer the reader to literature (e.g., [61]).

611553 October 15, 2014 29



D2.1 Reasoning with Amalgams

DIRECTED GRAPH WHAT IS A DIAGRAM? TERMINOLOGY
° ° A B
% 4
° ° A - ¢ B
° ° B C
\, / f\l 4 cospan
b A
° ° B C
NS }\ /\g span
b A
B

° ° ° A N C
NS N ARy

Figure 12: Some basic diagrams

e ¢y has source X (for every node X);
e cy has target O (for every node X);

e f;cy =cx (for every edge f from node X to node Y).

We refer to the pointed object O, which is called the apex of ¢, as apex(c). The collection of all
cocones over D is denoted by Cocones(D,-). =

It is obvious from Definition 4.3 that all cocones are sinks.” Notice that the third condition in
Definition 4.3 is expressing a bunch (one for every edge) of commutativity conditions for triangular
graphs; this fact is sometimes emphasised using the terminology commutative cocone instead of
just saying cocone. In Figure 13, we illustrate cocones for some particular diagrams (the first row
deals with the empty diagram, i.e., the one without objects nor morphisms).

Looking at the examples in Figure 13 one realises that sometimes it is not necessary to
represent all morphisms of a cocone. For example, when considering a cocone of the span

B <L AL oitis enough to know the morphisms cp and ¢¢ because (by the triangular condi-

tions) ¢4 must be equal to f;cp (and also equal to g; cc). A greater simplification is even possible in

7 Although in the literature, for the sake of brevity, it is common to find that instead of explicitly introducing a
cocone c it is only introduced the object apex(c). However, it is worth emphasising that the definition of cocone indeed
refers to the family {cx }xeNodes-

30 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

DIAGRAM WHAT IS A COCONE ¢?

apex(c)

apex (¢

o VA

s apex(c apex(c) apex(c)
A T B / st A NG “ <# both commute
A B A B
! g
apex(c)
B ¢ * &« apex(c) apex(c)
f\x \/g B /cA \ c st & NG c NG both commute
A B 7 A C < A
A
apex(c¢)
B ¢ ° N apex(c) apex(c)
}\ /;l, B /m \ c st A NG A \\% both commute
A A B A - C
A
apex(c¢ apex(c¢
apex (c) P ( 2\% rA/{p ( )\cc
¢ M f B A g ¢
R\ /7 Kfz iﬂ ! all commute
a . apex(c) o . V,aPCX(C?\M
1 A A2 A
hy hy

Figure 13: Some basic cocones

the case of a cococone of the cospan B i> A< C . Here, itis enough to know the morphism
CA.
It is rather trivial noticing that every cocone ¢ over a diagram D induces a function H. defined
by
H. : hom(apex(c),-) — Cocones(D,-)
f — ¢ f
With the notation ¢; f we obviously refer to the family {g; f} ¢ is a morphism in ¢» 1.€-, {€x3 f }xeNodes-

These induced functions can be used to define that two cocones ¢ and 0 (over the same diagram)
are isomorphic when there is some isomorphism f in C such that @ = H(f).

Definition 4.4 (Colimit). A cocone ¢ over a diagram D in a category C is said to be a colimit if
the function H. is a bijection. We write colim(D, C), or simply colim(D), to refer to a colimit; and
we will use colim(D, C) or colim(D) for the pointed object in the cocone colim(D, C). -

611553 October 15, 2014 31



D2.1 Reasoning with Amalgams

LiMIT DIRECTED GRAPH CoLIMIT
final object initial object
binary product . ° binary coproduct
equaliser  P— coequaliser

[ ] [ ]

pullback \,

N S pushout

Figure 14: Some famous (and simple) colimits and limits

It is worth noticing that Definition 4.4 can be rephrased as claiming that every cocone over D
is of the form c; f for some unique morphism f. This remark allows us to rewrite the existence of
a colimit as saying that: for every cocone over the same diagram, there is exactly one solution for
a univariate system, using the cocone as parameters, of morphism equations. As an example, we
illustrate this fact for the case of a colimit of a span, which is also called pushout.

Definition 4.5 (Pushout). Given a span B <L A5 cC a pushout of this span is a colimit
apex(c) o D
B cc B C
(see Definition 4.4), i.e., it is a cocone B e CAT AN C such that whenever pg /\1;: N C
N
A UV
commutes, it holds that the univariate system
cg;h=0p cash =0y cc;h=0¢
of morphism equations has a unique solution for /. -

It is always the case that two colimits over the same diagram are isomorphic cocones, i.e.,
colimits are unique up to isomorphism. Indeed, if ¢ is a colimit, then the collection of all colimits
is exactly {c; f | f isomomorphism with src(f) = apex(c)}. On the other hand, the existence of a
colimit is in general not guaranteed; it depends very much on the diagram D and the category C.

Let us now mention two facts that restricts which cocones can be a colimit. The first fact
is a trivial consequence of the injectivity of the function H.: all colimits ¢ have to be jointly
epimorphic, which means that whenever /| and h, are two morphisms with source apex(c) and

32 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

such that “cx;hy = cx;hy for every node X, then h; = hy.8 The second fact, also obvious from
Definition 4.4, is that for every object E, the set Cocones(D,E) (i.e., the collection of cocones
over D with apex E) must have the same cardinal than the set hom(apex(c),E). These two facts
are, in general, very powerful tools to recognise possible candidates as a colimit over a diagram.
In the particular cases of Set and Pfn the second fact can be used to completely determine the
possible apexs of colimits (since all objects with the same cardinal are isomorphic). Remark 4.6
describes the method for the case of Pfn.

Remark 4.6 (Cardinality trick for Pfn). Consider the natural number m of cocones over D with
apex {@} (i.e., a singleton set). Then, the cardinal of an object colim(D,Pfn) has to be the only
natural number n such that m = 2". |

For the colimits (and limits) of some concrete diagrams it is common to use an specific termi-
nology. Some common examples of colimits are binary coproducts, coequalisers and pushouts,
whose definition can be found in Figure 14.° A well-known result in the literature (see for in-
stance [53, Section 4.6]) is, that the colimit of an arbitrary (finite) diagram D in C can be always
expressed as the coequaliser of an alternative diagram, such that the alternative diagram uses
empty and binary coproducts of D, whenever the involved coequaliser and coproducts exist. In
consequence, we can consider coproducts and coequalisers as the basic pieces of the colimit con-
struction. We are not giving the precise proof and formulation of this result here, but we provide an
illustration in Example 4.7 for the last two diagram cases given in Figure 13. These two diagrams
will be the important ones for the blending development to be explained in Section 4.3.

In the sequel we will use the symbol & to denote coproducts (in case they exist).!? To be more
precise, for every n € N the cocone

Al - DA,
iAl iAn
iAZ iAn—]
Al Ay . A1 Ay
is giving the n-ary coproduct of a diagram (without morphisms) given by the objects Ay, ... ,A,.

By the definition of colimit this means that there is a bijection between
hom(A; @ --- D A,,-) and hom(Aj,-) x hom(Az,-) X ... x hom(A,,-);

to avoid any confusion we point out that x refers, here and in the rest of the report, to the usual
Cartesian product. We will use the notation iy & - - - @ h,, to denote the homomorphism in hom(A; ®
.-+ @A,,-) with is mapped, under such bijection, to the ordered tuple (hy,...,h,).

Example 4.7 (Colimits as coequalisers of coproducts). In this example, we will consider the last

two diagrams in Figure 13. Firstly, we focus on the colimit of B <L A %5 C . In this case, it

happens that this colimit coincides with the coequaliser of the diagram

8 Is is worth pointing out that when C has coproducts, the following (i) and (ii) are equivalent. (i) {ex }xeNodes
is jointly epimorphic; (ii) the single morphism @{cx }xcNodes is epimorphic. This relationship explains the intuition
behind this “jointly” terminology.

9 This standard terminology is chosen in such a way that products and coproducts generalise multiplication and
addition of natural number.

10 The same symbol will also be used for the disjoint union, but this will not cause any misunderstanding as a
consequence of the results given in Examples 4.9 and 4.10.

611553 October 15, 2014 33



D2.1 Reasoning with Amalgams

h
A®A— = AeBaC
1

where h = (ida;ia) @ (idasia) and [ == (f;ip) D (gsic)-

Next we consider the colimit of B <L Ay LNy LR Ay %5 C . For this diagram, the gen-

eral theory tells us that the colimit is the coequaliser of the diagram
h
A1 DA DADA T {TABAIDAOBBC
!

where h = (idAl;iAl) & (idAl;iAl) (&) (idAz;iAz) (&) (idAz;iA2> and [ == (f, iB) D (hl;iA) (&) (hz;iA) D
(g:ic)- O

Definition 4.8. A category is said to be cocomplete in case that for all diagrams in C there is a
colimit. Analogously, complete refers to the existence of all limits; and bicomplete refers to being
both completeness and cocompleteness. -

The categories Set and Pfn introduced in Example 4.2 are well-known to be bicomplete. More-
over, it is also known that if all morphisms of a diagram D in Pfn are total functions (i.e., the
diagram lives inside Set) then colim(D, Set) = colim(D,Pfn), i.e., it does not matter whether one
computes the colimit in Set or in Pfn. Let us mention that this last remark is known to be false for
the case of limits.!!

The general result illustrated in Example 4.7 (see [53, Section 4.6]) allows us to compute
colimits over finite diagrams (in an arbitrary category) once it is known how to compute initial
objects (i.e., empty coproducts), binary coproducts and coequalisers. Thus, in the following two
examples we only focus on how computing such basic colimits for the categories Set and Pfn.

Example 4.9 (Finite colimits in Set). In Set, the initial object is the empty set 0, and the binary

1" An easy counterexample can be obtained considering the categorical product of two singleton sets, for example,
A= {¥} and B := {®}. A quick way to convince oneself that the categorical product computed in Set is different
than in Pfn is to use the cardinality trick described in Remark 4.6 (but dualised, in order to use it for limits instead of
colimits). The fact that there are exactly 4 cones in Pfn with apex {@} (i.e., a singleton) forces that the coproduct in
Pfn must have 3 elements; on the other hand, using that there is exactly 1 cone in Set with apex {®,®} one deduces
that the coproduct in Set must have 1 element.

Indeed, the content of the previous paragraph is generalised in the following well-known statement (see [63, p. 20]):

e the product in Set of A and B is given by the cone A A B where O is the Cartesian product of A and B
A g
o

(i.e., O := A x B), and the morphisms 74 and 7p are the “projections” from the Cartesian product.

. . A B
o the product in Pfn of A and B is given by the cone &N where O == (A X B) A ® B (here @ refers,
CA 0 cp
as above, to the disjoint union), the morphism cy4 is m4 @ id4 @0, and the morphism cp is 7 B 0 B idp.

The last statement is providing the intuition that for the product in Pfn of two sets one needs to consider the ordered
pairs in the Cartesian product, but also add those ordered pairs that are missing one element of the pair.

34 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

coproduct of objects A and B is the cocone

0
“/ y%
A B

where O is the disjoint union of A and B, which can be explicitly defined, among many other ways,
as O = (A x {0}) U (B x {1}). The morphisms i4 and ig are the ‘inclusions’ in the disjoint union.

f
The coequaliser (in Set) of a diagram A ? B s the cocone
8

0]
‘f/ XB
A B
where

e O is the quotient'? of B under the equivalence relation =, defined as ‘the smallest equiva-
lence relation of B extending {(f(a),g(a))|a € A}’ (ie., Ois B/=),

e the morphism cp is the projection under = (i.e., it sends an element x of B to its equivalence
class x/=),

e the morphism ¢4 is f;cp (which also coincides with g; ¢p). O

Example 4.10 (Finite colimits in Pfn). The initial object in Pfn is the empty set @. The binary
coproduct (in Pfn) of objects A and B is the same cocone given in Example 4.9. Now, we determine

the cocone
0]
‘f/ XB
A B

f
that is the coequaliser (in Pfn) of a diagram A g B . Before describing the coequaliser, it
8

is convenient to introduce some auxiliary notation: we consider = to be the equivalence relation
of B defined like in Example 4.9, and we also consider the following partial function
h : B — B/=
undefined if there exists y € A s.t. f(y) = x and g(y) = undefined
x +— < undefined if there exists y € A s.t. f(y) = undefined and g(y) =x

x/= otherwise

Then, the coequaliser happens to be the cocone where

12 We remind the reader that, as it is customary, the quotient under an equivalence relation is the collection of all its
equivalence classes.

611553 October 15, 2014 35



D2.1 Reasoning with Amalgams

e O is the (set-theoretical) image of A,
e the morphism c¢p : B — O is the partial function given by the same ordered pairs than in 4,

e the morphism ¢4 is f;cg (which also coincides with g; cg).

The only possible difference between 4 and ¢ is in the target object; but unfortunately, such con-
struction cannot in general be simplified because there are cases'® where 4 and ¢ are really differ-
ent, i.e., O is really a proper subset of B/=. Indeed, for finite sets the cardinality trick illustrated in
Remark 4.6 gives a quick method to determine whether O is or is not a proper subset of B/=. [

In this last example, it is worth noticing that the partial functions ¢p and ¢4 are indeed total
functions when f and g are total. Moreover, in such a case the coequalisers given in Example 4.9
and in Example 4.10 coincide. As a trivial consequence of this fact one gets that finite diagrams
given by total functions have the same colimit in Set and in Pfn.

The categorical approach to blending developed by Goguen is particularly interested on com-
puting colimits over diagrams B <L A-2%C and B <L Al LNy Ay 55 C e, V-
shaped and W-shaped diagrams. Next we focus on them for the particular cases of Set and Pfn. It
is obvious how they can be computed by combining Example 4.7 with Examples 4.9 and 4.10; but
in the literature one can find explicit methods for such computations. To be more specific let us at
least mention that

e the pushout of B <A %C in Set has as apex the set (B@® C)/ =, where = is the

smallest equivalence relation over B @ C extending {(f(a),g(a)) :a € A}.

e the pushoutof B < A% C inPtnhasas apex the set (B\ f[A]) & (C\ g|A]) & Q where

Q is will be soon defined. To do so, we consider = to be the the smallest equivalence relation
over A extending

{(a1,a2) €eAXA: f(ar) = flaz)} U {(a1,a2) €A xA: g(ar) = g(az)},

and A to be the largest subset of Dom(f) NDom(g) that is closed under =. Then, Q is
defined as the quotient of A under the equivalence relation =. For more details on such
pushout construction one can look at [65, p. 4]. Nevertheless, it is worth saying that in most

occasions the cardinal of Q can be directly determined using the cardinality trick illustrated
in Remark 4.6. !4

13 One of such cases is the diagram given by A :== {*}, B:= {®}, f := {(*,3)} and g := 0. In such a case the apex
of its coequaliser is the empty set.

14 For example, let us consider the diagram given by A := {@ W}, B := {®,®}, C = {0,8}, f = {(@,D), (WD)}
and g := {(M,®)}. Using that it exactly has 4 cocones (in Pfn) over a set with only one element, one deduces that the
set Q in the above description has to be the empty set. Thus, the following cocone

{@.0}
PR RN
{(@@)} ? {(0.0)}

e N
{(v.0p {em} {00}

is a pushout.

36 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

e the colimit of a W-shaped diagram B <f— Aj LNy Ay %5 € can be calculated (in

any category) using three consecutive pushouts. Firstly, one computes, respectively, the
pushouts

D E
VAN VAN
[J3 DA| 04 and eq 4y ec
/ I N\ /o AN
B Al A A A> C

of the V-shaped diagrams B <L Aq £> A and A <h—2 As 2c . Next, one computes

the pushout

of the V-shaped diagram D NN Then, by an standard argument in category
theory it happens that the cocone

is indeed the colimit of the initially considered W-shaped diagram.

To finish this section about category theory preliminaries we introduce several categories (and
bicategories) that will play a role in Section 4.3, where we present our theory of colimits and
amalgams.

Definition 4.11. Let C be a category that is closed under pullbacks, i.e., the limits of all cospans
exist.

e The category Rel has sets as objects, and a morphism from A to B is a subset of the direct
product A X B.

e The bicategory'> Span(C) has the same objects than C, and a morphism from an object A

to an object B is a span A <L D% B inC. Composition of spans A <L D -2 B

15 1t is not a category because the composition defined here does not satisfy the associativity f;(g:h) = (f:g);h.
Nevertheless, this property holds when replacing equality with isomorphism, which corresponds to claiming to be a
bicategory (see [7, 50]).

611553 October 15, 2014 37



D2.1 Reasoning with Amalgams

and B¢~ E -5 C isdefined (up to isomorphism) using the cone

D B
\ t /

B

(¥)) ‘

E
&
apex(c)

obtained as the pullback of D £, B<" E . Theresultof the composition is by definition

the span A P apex(c) L ENYS

e The bicategory MSpan(C) is defined as Span(C) except for only considering as morphisms

from A to B the mono spans from A to B, which are defined to be the spans A <i< DB

where f is a monomorphism in C.

e The category Rel(C) has the same objects than C, and a morphism from an object A to an

object B is the isomorphic class'® of a span A <L D% B inC. Composition is defined

using the same pullback construction than before. !’

e The category Pfn(C) is defined as Rel(C) except for only considering as morphisms the iso-
morphic classes of mono spans. A partial morphism from A to B is defined as the isomorphic

class of a mono span A Jip4 B . Thus, the morphisms in Pfn(C) are nothing else
than the partial morphisms. =

It is well-known that Pfn(Set) is (categorically) equivalent to the category Pfn (and also equiv-
alent to the category of pointed sets). Even more, Pfn(Set) and Pfn are isomorphic categories:
there is an obvious bijection between partial morphisms in Set and morphisms in Pfn. Thus,
Pfn(C) can be considered as a natural candidate for generalising the category Pfn of partial func-
tions. On the other hand, Rel(Set) does not exhibit so clearly the same behaviour than Rel. For
example, two non-isomorphic spans in Set like

A& AxCxB5 B and AL AxDxB3 B 4.1)

16 In other words, the spans A <L D-5B and A L D' %5 B are considered equal in Rel(C) when there is

D
S IN

an isomorphism / : D — D' such that 4 h B commutes.

PN
D/

17 1n the literature it is quite common (e.g., [23, p. 38] and [36, Section 2]) to consider relations as a proper subclass
of the one we have just introduced: consider only the subobjects of the terminal span from A to B. This alternative
proposal has the advantage of avoiding the problems remarked around Equation (4.1). The reason to not consider this
approach is simply not introducing the technical details behind it; since our goal will be to deal with partial functions,
and not relations, this difference is not so important.

38 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

induce the same binary relation as a subset of A x B (at least if C and D are non-isomorphic
non-empty sets).

Among partial morphisms from A to B there are some outstanding ones which we call fotal.

They are, by definition, the isomorphic classes of mono spans A <i< D %y B where fis an

isomorphism. Is is obvious that the total morphisms form a subcategory (i.e., total morphisms
are closed under composition and the identities are total) of Pfn(C), and such subcategory is
equivalent to C.

The categories Pfn(C) of partial morphisms are well-known in the literature. They were firstly
considered in [66] using an even more general setting, there the authors introduce for every class
M of monomorphisms satisfying certain constraints (see [35, Definitions 6 and 7] for a modern
presentation) a category Pfn(C,M). Our category Pfn(C) corresponds to choosing M as the class
of all monomorphisms. We have decided to avoid this more general framework just for the aim of
simplicity.

4.1.2 Colimits in Ordered Categories

The aim of this section is to explain Goguen’s framework for the blending theory developed by
Fauconnier and Turner. This framework is developed in [24] (mainly in its Section 5 and its
Appendix B), and instead of using plain categories it is based on the following enriched version.

Definition 4.12 (Ordered category). An ordered category is a category C such that

e for every two objects A and B, there is a partial order T4 g on the set hom(A, B);

e composition is monotonic with respect to C in both arguments (i.e., if fj C g and f, C g2,
then f1; /2 £ g1582).

Concerning notation it is customary to omit indices and simply use C (see second item), i.e., =
can be considered to be [ J{Tx 5| A, B € obj(C)}. .

Ordered categories are a simple case of so-called 2-categories (see [51, 38, 45]). Here, there
is at most one 2-cell between two 1-cells (i.e., morphisms). Thus, ordered categories lie between
plain 1-categories and 2-categories. For this reason, Goguen [24] introduces the term %-categories
to refer to ordered categories.'® Other names have also been used in the literature to refer to or-
dered categories: e.g., locally partially ordered categories, locally posetal categories, Pos-enriched
categories, etc. A reference where one can find a detailed approach to ordered categories, but with-
out considering all the difficulties due to dealing with general 2-categories, is [40].

Example 4.13. The categories Pfn(C) are ordered categories in the following sense: consider two
partial morphisms from A to B, given respectively by the isomorphic classes of the mono spans

Ad<p2 B and Adip 5B

18 The definition given in [24, Definition 6] also states that the identity morphism id4 has to be maximal in hom(A,A).
We do not require this last condition in the definition we have finally decided to adopt, but this property will also hold
for the most natural examples of ordered categories (see Example 4.13).

611553 October 15, 2014 39



D2.1 Reasoning with Amalgams

We say that the first partial morphism is below the second one (denoted C) if there is a morphism
h: D — D' such that

D

N

A h B

S
D/

commutes. In such a case it must hold that 4 is also a monomorphism. Under these assumptions
it holds that C is a partial order: antisymmetry is obtained using the cancellativity property given
by monomorphisms.'® Moreover, the partial morphisms that are total are the maximal elements
of the partial order C just defined. We will refer to this partial order C as the extension partial
order. g

Example 4.13 tells us in particular that Pfn(Set) is an ordered category; for this case it holds
that

fCg iff whenever f is defined, g is also defined and it agrees with f.
Moreover, the structure of the partial order C resembles a lot (but is not) a lattice because:

e for every two partial morphisms f] and f> (with the same sources and targets), there is also
a partial morphism f] M f> which is the infimum in C;

o for every two partial morphisms f] and f>, if they are compatible (i.e., if there is some g such
that f| C g and f> C g) then there is also a partial morphism f; LI f, which is the supremum
in C.

It is also worth noticing that the partial orders £, p are directed-complete partial orders (dcpo),
which means that every directed subset has a supremum (which we will denote using the symbol
). And the composition function can be checked to be Scott-continuous, which means that: for
every directed family {g; | i € I'} of partial functions and every partial function f,

e {f;gi|i€ I} isalso directed and its supremum is f;| |{g; | i € I};

o {gisf |i€I}isalso directed and its supremum is | [{g; | i € I}; f.

Notice also that Set is equivalent to the subcategory of Pfn(Set) given by total morphisms.

By means of Equation (4.1), we point out that Rel(Set) is not ordered using the extension
partial order. Nevertheless, the category Rel introduced in Definition 4.11 is obviously ordered
using the set theoretical inclusion. Thus, while working with (isomorphic classes of) mono spans
is a right approach to deal with partial functions and orderability, working with spans is not the
right approach to deal with binary relations and orderability. Approaches that work well for such

19 In order to illustrate the necessity of this hypothesis, let us note that in the category Rel(Set) the relation C just
defined is not antisymmetric (and so is not a partial order). This can be seen, for example, using the isomorphic classes
of the spans given in Equation (4.1).

40 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

case is considering allegories (and/or collagories) [23, 39, 40] or Cartesian bicategories [11, 10],
and the price to pay is essentially the introduction, respectively, of a converse operation or a tensor
product. For the sake of simplicity we will avoid the introduction of such frameworks, and keep
this report to deal only with Pfn(C).

In the context of ordered categories there are, at least, two very natural alternative possibilities
concerning colimits (see [40, Chapter 4]). One of them produces an strengthening of the plain
notion of colimits, and we will refer to them as ordered colimits. The other one accepts a more
general class of diagrams, which instead of considering functor one considers so-called lax func-
tors, where commutativity is replaced with semicommutativity). The latter follows a very similar
pattern than the one given for colimits in Definition 4.4, and respective colimits are called lax
colimits.

Definition 4.14 (Ordered colimit, see [40, Definition 4.1.2]). A cocone ¢ over a diagram D in
an ordered category C is said to be an ordered colimit in case that the function H, introduced
in Page 31 is an order-isomorphism (and therefore also a bijection) between the partial orders
(hom(apex(c),-),C) and (Cocones(D,-),C*). The ordered C* considered among cocones is the
one defined component-wise, that is, given two cocones ¢ := {¢x }xcNodes and 0 := {0x }xeNodes
with the same object it holds that

cC*D iff cx C 0x for every node X. =

From the very Definition 4.14 it is obvious that if ¢ is an ordered colimit, then it holds that
whenever /) and hy are two morphisms with source apex(c) and such that “cx;h; C cx;hy for
every node X”, then & C hy. We will refer to such condition as being jointly semiepimorphic.?° It
is obvious that jointly semiepimorphic is an strengthening of the jointly epimorphic property.

In the particular case of the ordered category Pfn (with the extension partial order described
in Example 4.13), one can check that the colimits given in Example 4.2 are also ordered colimits.

Next, in order to introduce lax colimits we need to firstly introduce lax diagrams and lax
cocones. The only difference between a functor D : J — C and a lax functor D : J — C is that
instead of equality one only requires

idp(4) £ D(idy) and D(f);D(g) E D(f38)-

The second condition is known as semicommutativity, and it is common to represent it graphically
as follows:

20 In the case there are ordered coproducts (in the sense of Definition 4.14) it is obvious that this definition also
follows the same intuition explained in Footnote 8. That is, {cx }xeNodes 1S jointly semiepimorphic iff the single

morphism @{cx } xeNodes 1S SO-

611553 October 15, 2014 41



D2.1 Reasoning with Amalgams

Notice that if the ordered category satisfies that the identity morphisms are maximal, then the
first condition idp4) C D(ids) can be rewritten as saying idp4) = D(ida). A lax diagram in
an ordered category C is defined to be a lax functor D : J — C. Here J is just a category (no
necessity to consider an ordered category).

A lax cocone ¢ over a lax diagram D in a category C is an object O in C together with a family
(indexed by the nodes in the graph associated with D) {cx }xeNodes Of morphisms in C such that:

e cy has source X (for every node X),
e cy has target O (for every node X),

e f;cy C cx (for every edge f from node X to node Y)

Thus, lax cocones are capturing the intuition of semicommutative cocones. As expected we will
refer to the apex object as apex(c). The collection of all lax cocones over D will be denoted by
laxCocones(D, -).

It is rather trivial noticing that every lax cocone ¢ over a lax diagram D induces a function?!
H. defined by
H. : hom(apex(c),-) — laxCocones(D,-)

f — o f

Definition 4.15 (Lax colimits, see [40, Definition 4.3.2]). A lax cocone ¢ over a lax diagram
D in an ordered category C is said to be a lax colimit when the recently introduced function
H, is an order-isomorphism (and so a bijection) between the partial orders (hom(apex(c),-),C
) and (laxCocones(D,-)),C*). The ordered C* considered among cocones is the one defined
component-wise (see Definition 4.14). =

It is again obvious that lax colimits must be jointly semiepimorphic. Notice also that in case
of considering a diagram D (instead of an arbitrary lax diagram), the notions of lax colimit and
ordered colimit collapse (up to isomorphism) if and only if all cocones are lax cocones. Thus,
whenever semicommutativity is not trivially reduced to commutativity, the two recently introduced
notions of colimits must be different.

In the particular case of the ordered category Pfn it happens that there are diagrams without
lax colimits. For example, the lax colimit (indeed pushout) over the V-shaped diagram given in
Footnote 14 does not exist.??

It is well-known that the cocone of an ordered colimit is unique up to isomorphism. And the
same happens for the lax cocone of a lax colimit. Goguen considers these facts to cause difficulties
for the formalisation of blending, since one expects more than one way to blend concepts. For this
reason he proposes the following alternative notion.>

21 We use the same notation H, than for the case of plain categories and colimits, but this is not a trouble because the
context always clarifies which one we refer to.

22 For a proof of such a claim one can use a quick cardinality argument. Firstly, check that there exactly 32 lax
cocones (in Pfn) over such diagram D with apex {&}. By Definition 4.15 this forces that any possible lax colimit must
have cardinality 5. To finish the proof, it is enough to realise that there is no lax cocone with a 5-element apex that is
jointly epimorphic.

23 In [25, Section 3.1] it is used the expression “lax pushouts” in a naive way: this has not to be understood as a
particular case of lax colimits in ordered categories.

42 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

Definition 4.16 (%—Colimits, see [24, Definition 12]). A lax cocone ¢ over a lax diagram D in an
ordered category C is said to be a %-colimit in case that for every lax cocone 0 (with object D)
over D it holds that the set

{fH(f) C* o} (which is a subset of hom(apex(c), D))
has a maximum element on C. =

Notice that this last definition is equivalent to just saying that the function

H. : (hom(apex(c),-),C) — (laxCocones(D,-),C*)
f — ¢ f

fulfills that the antiimage of principal downsets (i.e., downsets of an element) are also principal
downsets. This last restatement of the notion of %—colimits has the advantage of providing an
easier comparison with Definition 4.15. In particular, it results obvious that if ¢ is a lax colimit
over D, then it is also a %—colimit.

When the ordered category involves partial orders that are dcpos and composition is Scott-
continuous, then it is worth noticing that the following statements are equivalent:>*

1. The set {f | Hc(f) C* 0} has a maximum element on C.

2. Theset {f | H.(f) C* 0} is directed, i.e., whenever H.(fi) C* 0 and H(f2) C* 0 then there
is some g such that fj C g, f> C g and H.(g) C* 0.

Notice that the first condition is the one involved in Definition 4.16, and also that Pfn satisfies the
hypotheses for such equivalence.

For the case of the diagram B, <f—l A ﬁ> B, , Definition 4.16 provides the notion of %

pushouts, which is Goguen’s proposal for a formalisation of blending. We restate his proposal in
Definition 4.17.

Definition 4.17 (%-pushouts). A %-pushout of aspan B; <f—1 A £> B, is given by a lax cocone

81 82
8
By C 2 B
h A /fz

24 The assumptions just stated are only necessary to prove the implication 2 = 1; the reverse implication always
holds.

611553 October 15, 2014 43



D2.1 Reasoning with Amalgams

=
()

h
e
By C

NP B
satisfying that whenever \ 2
h

semicommutes, it holds that the univariate system

BTy
:xm

GACh gisAChy g A Chy

of morphism equations has a maximum solution for the indeterminate A. -

The formulation given in Definition 4.17 for presenting %—pushouts exhibits an obvious rela-
tionship with the one given in Definition 4.5; the main difference is that instead of looking for
unique solutions to a family of morphism equations one looks for best (i.e., largest) solutions to
a family of morphism inequations. For the particular inequations given in Definition 4.17, the
family of morphism inequations is the one saying that the three triangles

c*sp c*Dp c*Dp
A/ N
h hy 82
A By By
semicommute.

It is worth saying that whenever the category C has ordered coproducts (in the sense of Defini-
tion 4.14) the system {cx; f = 0x | X € Node} of morphism inequations (that is, the one which ap-
pears in Definition 4.16) is equivalent to the following single inequation: (P{cx | X € Node}); fC
@{ox | X € Node}.

Let us assume now that ¢ is a %-colimit (with object C) over a lax diagram D and that f €
hom(C, D). Then, by monotonicity it holds that c; f is also a lax cocone (with object D). Therefore,
by definition of %—colimit the univariate inequational system ¢;A C* ¢; f has a maximum solution
for A. In other words, the inequational system

oA SOy f (for every node X)

has a maximum solution for A. We denote such a maximum solution g. Considering that f is
also trivially a solution to the very system, we obtain that f C g. Thus, by monotonicity it must
hold that cy; f C cx; g for every node X. Therefore, g is also the largest solution to the equational
system c;A =¢; f.

Concludingly, we have demonstrated that for every %—colimit ¢ (with object C) over a lax
diagram D and every f € hom(C,-), there exists max-{g | Hc(g) = H.(f)} that coincides with

max—{g | Hc(g) C H.(f)}. Thus, for every %—colimit ¢ over a lax diagram D, we can define the
expansion function

xpan. : hom(apex(c),-) — hom(apex(c),-)
f — xpan(f) = maxc{g | He(g) = Hc(f)} =
maxc{g [ Hc(g) T H(f)}

44 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

It is obvious that H.(f) = Hc(xpan.(f)). Moreover, this function xpan. is

e extensive, i.e., f T xpan.(f);
e increasing, i.e., if fi C f> then xpan.(f1) C xpan.(f2);

e idempotent, i.e., xpan.(xpan.(f)) = xpan.(f).

Consequently, every %—colimit ¢ induces a closure operator (or closure system) [8, Section I.5] on
the set hom(apex(c),-).

On Page 32 we point out that colimits are jointly epimorphic. Unfortunately, in the arbitrary
case® it not so clear whether this property also holds for %—colimits. However, as obvious from

the definitions of xpan,, it holds that
if hy and hy satisfy that H¢(h;) = H¢(hy), then xpan.(h;) = xpan,(hy).

In other words, the following property (which resembles the definition of jointly epimorphic) holds

for %-colimits c:

if hy and hy satisfy that ‘cx;h; = cx;hy for every node X, then xpan, (k) = xpan,(hy).

It is worth noticing that xpan (h;) = xpan,(h) implies in particular that /2; and h;, are compatible.

Goguen’s proposal is to use %—pushouts as a computational method for finding blendings.
In the easiest case (i.e., the blending of two concepts), this framework assumes that we have
previously chosen

e a morphism f| from the generic space G into the first conceptual space I (i.e. fi : G — I}),
and also

e a morphism f, from the generic space G into the second conceptual space I, (i.e. f>»: G —
b).

Furthermore, Goguen suggests to consider all %-pushouts of the span [ <f—' G £> I, ascandi-

dates for blending of the two initial concepts. In the examples provided in [24]° this is done using
ordered categories whose objects are algebraic theories (using the formal specification language
OBJ), morphisms correspond to partial functions preserving the structure, and the partial order
corresponds to being an extension.

There are several difficulties in order to provide a computational framework to blending fol-
lowing Goguen’s categorical proposal. Some of them are as follows.

e While there are several available software packages for dealing with “algebraic theory”
categories and colimits (like Hets [55, 12]) this is not the case in the context of ordered
categories.

25 Notice that in Appendix A it is shown that in Pfn it really holds.
26 1t is also worth looking at http://cseweb.ucsd.edu/~goguen/papers/blend. html because there are more
recent examples.

611553 October 15, 2014 45


http://cseweb.ucsd.edu/~goguen/papers/blend.html

D2.1 Reasoning with Amalgams

e Although [24] contains a first theoretical study of %—colimits, the theoretical framework still

needs to be improved before considering computational implementations. For example,
can we characterise all %—pushouts in the ordered category Pfn? What about more complex
diagrams that are still in Pfn? What about considering other well-known ordered categories?
Can we get rid of the ordered category C appealing to some particular plain category built
from C?

We hope to contribute to the second point in a near future with research done inside the COIN-
VENT project, but currently most of these questions remain open. In Appendix A we completely
characterise %—colimits in Pfn.

Related Works. The papers [42] and [43] use Goguen’s categorical framework, but without
ordered categories, i.e., only plain categories are considered.

The proposed framework uses the category of CASL theories, which is known to be cocom-
plete [54], and whose computation of colimits is supported in Hets.”” Besides this, the authors
of [42, 43] also advocate for using the distributed ontology language DOL as a metalanguage for
specifying categorical diagrams (i.e., families of morphisms). When computing colimits, they
point out (indeed Goguen already did) that in some case it might be interesting (for blending pur-
poses) to ignore some of the morphisms in the diagram, and considering them just as auxiliary
morphisms.

A crucial difference between [42] and [43] is, that in [43] the authors only focus on input
diagrams given by total functions, while in the previous version [42] the same authors consider a
more general setting allowing for partial morphisms. This simplification has deep consequences,
because the colimits of diagrams formed by total functions are, in most cases, although computed
in categories of partial morphisms, formed only by total functions (see Page 34).

4.2 Blending as Amalgams

An amalgam is a description that combines parts of two other descriptions as a new coherent
whole. There are notions that are related to amalgams in addition to conceptual blending, notions
such as merging operation or information fusion. They all have in common that they deal with
combining information from more than one ‘source’ into a new integrated and coherent whole;
their differences reside on the assumptions they make on the sources characteristics and the way
in which the combination of the sources take place.

The notion of amalgams was developed in the context of Case-based Reasoning (CBR) [57],
where new problems are solved based on previously solved problems (or cases, residing on a case
base). Solving a new problem often requires more than one case from the case base, so their
content has to be combined in some way to solve the new problem. The notion of amalgam of
two cases (two descriptions of problems and their solutions, or situations an their outcomes) is a
proposal to formalise this process of the ways in which they can be combined to produce a new,
coherent case.

27 Colimits are available in Hets without problems in the homogeneous case of reasonable institutions (which include
most cases: first-order logic, description logics, etc), but things are not so simple in the heterogeneous case; for such a
case only the colimits of certain diagrams (the ‘connected thin inf-bounded’ ones) [13] are computed.

46 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

Formally, the notion of amalgams can be defined in any representation language £ for which
a subsumption relation C between the terms (or descriptions) of £ can be defined. We say that
a term y; subsumes another term W (y; T y») when y; is more general (or equal) than y,%3.
Additionally, we assume that £ contains the infimum element | (or ‘any’), and the supremum
element T (or ‘none’) with respect to the subsumption order.

Next, for any two terms y; and Y, we can define their unification, (y; L y»), which is the most
general specialisation of two given terms, and their anti-unification, defined as the least general
generalisation of two terms, representing the most specific term that subsumes both. Intuitively,
a unifier (if it exists) is a term that has all the information in both the original terms, and an
anti-unifier is a term that contains only all that is common between two terms. Also, notice that,
depending on £, anti-unifier and unifier might be unique or not.

4.2.1 Amalgams

The notion of amalgam can be conceived of as a generalisation of the notion of unification over
terms. The unification of two terms (or descriptions) ¥, and Y} is a new term ¢ = Y, LI yp,
called unifier. All that is true for y, or y; is also true for ¢.; e.g. if y, describes ‘a red vehicle’
and y;, describes ‘a German minivan’ then their unification yields the description ‘a red German
minivan.” Two terms are not unifiable when they possess contradictory information; for instance
‘a red French vehicle’ is not unifiable with ‘a blue German minivan’. The strict definition of
unification means that any two descriptions with only one item with contradictory information
cannot be unified.

An amalgam of two terms (or descriptions) is a new term that contains parts from these two
terms. For instance, an amalgam of ‘a red French vehicle’ and ‘a blue German minivan’ is ‘a
red German minivan’; clearly there are always multiple possibilities for amalgams, since ‘a blue
French minivan’ is another example of amalgam. The notion of amalgam, as a form of ‘partial
unification’, was formally introduced in [57].

For the purposes of this paper, we will introduce a few necessary concepts.

Definition 4.18 (Amalgam). The set of amalgams of two terms , and y;, is the set of terms such
that:

VoYY ={0 € L\{T}|Jag,op €L:0, Y, N o Ty A =00y} =

Thus, an amalgam of two terms Y, and y;, is a term that has been formed by unifying two gen-
eralisations o, and @, (whenever this unification is not inconsistent, 1.e. o Ll 0y # T) such that
0, C y, and oy C yp, —i.e. an amalgam is a term resulting from combining some of the informa-
tion in y, with some of the information from . Formally, y, Y y;, denotes the set of all possible
amalgams; however, whenever it does not lead to confusion, we will use Y, Y y, to denote one
specific amalgam of y, and Y.

In [57] a slightly different definition of amalgam is given, for which not all generalisations are
taken into account, only those that are less general than y, My, (the anti-unification of the inputs).
We rephrase this definition here introducing the notion of bounded amalgam:

281n machine learning terms, A C B means that A is more general than B, while in description logics it has the opposite
meaning, since it is seen as ‘set inclusion’ of their interpretations.

611553 October 15, 2014 47



D2.1 Reasoning with Amalgams

¢a ¢ :aa |_|ab %

Figure 15: A diagram of an amalgam ¢ from inputs y, and v, where ¥ = o, 0.

Definition 4.19 (Bounded amalgam). Let y € £. The set of x-bounded amalgams of two terms
Y, and ,, is the set of terms such that:

Va YW ={¢ € L\{T} | Tt op €L YT CY, A X CEyEYp AN =a,U0}

A particularly interesting case (the one studied in [57]) is when ¥ = y, 1y}, the anti-unification
of the inputs, as illustrated in Figure 15. The intuitive reason is that the anti-unification represents
what is common or shared between the to inputs and, thus, generalising more than y, M y;, would
eliminate information that is already in both inputs and is compatible.

The terms o, and ¢, are called the transfers or constituents of an amalgam y, Y y,. oy
represents all the information from y, which is transferred to the amalgam, and o, is all the
information from yj which is transferred into the amalgam. As we will see later, this idea of
transfer is akin to the idea of transferring knowledge from the source to target in CBR, and also
in computational analogy [17].

Usually we are interested only on maximal amalgams of two input terms, i.e., those amalgams
that contain maximal parts of their inputs that can be unified into a new coherent description.
Formally, an amalgam ¢ € W, Y v, is maximal if there is no ¢’ € y, Y y, such that ¢  ¢’.
In other words, if more properties of an input were added the combination would be no longer
consistent. The reason what we are interested in maximal amalgams is very simple: consider an
amalgam ¢’ such that ¢’ C ¢; clearly ¢’, being more general than ¢, has less information than
¢ and thus combines less information from the inputs y, and ;. Since ¢ has more information
while being consistent, ¢’ or any amalgam that is a generalisation of @, are trivially derived from
¢ by generalisation.

Definition 4.20 (Asymmetric amalgam). The x-bounded asymmetric amalgams g 7 y; of two
terms Y (source) and ; (target) is the set of terms such that:

%
U Yy ={p el P, e L:xCou Ty, A ¢ =0a,Lly} H

In an asymmetric amalgam, the target term is transferred completely into the amalgam, while
the source term is generalised. The result is a form of partial unification that conserves all the
information in y; while relaxing y; by generalisation and then unifying one of those more general
terms with y; itself. As before, we would be usually interested only on the asymmetric amalgams
that are maximal.

48 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

This model of analogy as asymmetric amalgam can be used to model the case-based inference
in CBR, as explained in [58]. Essentially, this model clarifies what knowledge is transferred from
source description to target, namely the transfer term o is what case-based inference conjectures
is applicable (is constant with) the target. In the case of a maximal amalgam, o represents as much
information as can be transferred from the source to the target y; such that o, LI y; is consistent.

4.2.2 Comparing Amalgams and Blends

Amalgams and blends are similar in that they combine (parts of) two inputs into a new coher-
ent whole. They diverge however on the assumptions they make about those inputs. Amalgams
approach the problem of combining inputs from the viewpoint of Artificial Intelligence, assum-
ing some representation language is used to specify these inputs (that an be understood as cases,
problems, situations, depending on the context). Although amalgams makes very few demands
on the representation language (only that some kind of subsumption/generalisation relation can be
defined among the formulas of the language), the fact is that it takes very syntactic approach on
what the inputs are and what consistency is (since consistency is itself implicitly defined by the
way a given language defines unification).

Conceptual integration/blending , on the other hand, coming from cognitive psychology, con-
siders blends as a combination of inputs conceived as mental spaces. Mental spaces have been
described as ‘small conceptual packets constructed as we think and talk, for purposes of local
understanding and action’ by Fauconnier and Turner [22]. The nature of the assumptions made
about what the inputs are, therefore, quite disparate. Although we make the additional hypothesis
that mental spaces can be formalised as a formula in a representation language, the properties that
should be preserved in that formalisation remains an open research issue. Probably, a good for-
malisation of mental spaces would add more constraints to the syntactic notions of consistency in
unification and amalgams.

As an example of this issue, we present now an characterisation mental spaces in which a
situation, syntactically described with a formula in a language, is augmented by interpreting it
using an image schema (e.g. the CONTAINER schema). In other words, given an input situation
v € L, and a library of image schemas, we select an image schema 1 with which to interpret y.
This interpretation generates new knowledge about the input, so the augmented input can be seen
as y L7, assuming image schemas are represented in the same representation language.

Let us revise the notion of amalgam when we also have a library of image schemas. An
amalgam, such as introduced above can be characterised as an amalgam tuple (W, Y, 9, Qy, 0%),
as shown in Figure 15. Now, let us assume that we will use two image schemas 1), and 7),, where
a term 7 can be a single image schema or a particular combination of image schemas to be used
in this interpretation. The addition of an image schema based interpretation is defined as follows:

Input Spaces W, = W, Lin, and §, = y, L,
Antiunification y, 1y,
Amalgam ¢ € , Y ;, with constituent terms ¢ = @, LI &,

Constituents @; = o;LUn/ where n/ C n;, for i € {a,b}

611553 October 15, 2014 49



D2.1 Reasoning with Amalgams

Uy =y Uy

o= &aAI_I Qay

Figure 16: A diagram of a blend ¢ based on amalgam ¢ from inputs Y, and ¥}, and image schemas
N, and 1, where ¥ = Q, M p.

See Figure 16 for a diagram of the relations among this terms and compare it to the unrefined
amalgam of Figure 15.

In this approach, a blend ¢ seen as an amalgam plus an image schema based interpretation is
defined as follows:

o=a,Ua,=0o,UoUn,Un,=¢Un,LUn,

Thus, the amalgam now has new content based on the properties contributed by the image schemas
being used in a particular interpretation of the situation inputs. The inputs augmented with the
image schemas are intense to model the ‘mental spaces’ of conceptual integration/blending and,
in that sense, the result is a blend of the input spaces W, and V.

A short example may be helpful in clarifying these ideas.

4.2.3 An Example: Computer Icons

Computer icons are a graphical semiotic system used in GUIs for different purposes in human-
computer interaction: identification, selection, action, etc. From our experience in using icons,
we humans learnt that some patterns can be interpreted as signs that have a (contextual) meaning:
therefore icons can be seen as a semiotic system. Consider the two icons? shown in Figure 17:
a) may be interpreted as sign of a music mobile device or smartphone (i.e. identifying a class of
entities), while b) may be interpreted as a sign representing data synchronisation (i.e. identifying
a class of processes).

Existing icon images can be analysed by image understanding techniques. In this work on
icon blending we select a technique that analyses images to produce a qualitative model of that

2These icons have been adapted, for our purposes here, from icons in an existing library of icons such as
http://www.iconshock.com/flat-icons.

50 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

Figure 17: Two examples of computer icons: a) music mobile device and b) data synchronisation.

N
\J/

Figure 18: An icon example built as an amalgam of the two icons in Figure 17.

image that can be described in natural language®. The result of the analysis is a formula relating
the component objects using a propositional vocabulary of qualitative spatial relations; there are
relative position predicates (e.g. Above(x,y) or LeftOf(y,z)) and general position predicates (e.g.
an object is situated on the upper middle half, or is centered). Moreover the objects being recog-
nised are assigned classes, that can be either generic geometric classes (e.g. ‘octagon’) or pertain
to a domain-dependent vocabulary (e.g. ‘arrow’, or ‘screen’).

Applying an image schema, such as the CONTAINER schema, means that we interpret the
inputs, e.g., the icons in Figure 17, adding the predicates that characterise the CONTAINER schema.
For instance, we can say that icon a) is an octagon that contains three squares (buttons) and an
octagon (screen) that contains a mixed-shape object (quaver). The application of an image schema,
as a high level cognitive pattern, seems to imply also that the predicates belonging to the schema
are more significant than the other —i.e. predicate Contains(x,y) seems to be more significant
than Above(x,y). Consequently, the blends that include more images schema predicates should be
preferred to others that do not>'.

Now consider the icon shown in Figure 18 built as an amalgam of the two icons in Figure 17:
a mobile device that shows in its screen that it is synchronising data. Form the point of view of
the CONTAINER schema the new icon is represented as an octagon that contains three squares
(buttons) and an octagon (screen) that contains two curved arrows (sync sign). The meaning or
interpretation of the new icon seems straightforward: a mobile device in the process of data syn-
chronisation. Clearly, this is one of many possible amalgams (or blends in conceptual blending),
but the process of creating it is straightforward, as shown in Figure 19.

30This unpublished work on icon analysis and blending is done in cooperation with Lledé Museros Cabedo and
Ismael Sanz, from Jaume I University, developers of the image understanding technique [18].

3L At this point, however, we have not incorporated any mechanism for taking into account this preference but is
scheduled to be analysed as future work.

611553 October 15, 2014 51



D2.1 Reasoning with Amalgams

N
\J

Figure 19: An example of the process creating the amalgam icon of Figure 18 from the two input
icons. The ‘cloud’ indicates the parts that are abstracted away by generalisation (upward arrows);
the two downward arrows indicate the unification of the two generalisations creating the final
amalgam.

The two inputs augmented with the CONTAINER schema are generalised in a very simple way.
The icon a) has generalised the mixed-shape object (quaver) to an object without any particular
form (shown as a cloud in Figure 19), while the icon b) has generalised the circle into an object
without any particular form (shown as a cloud). These two generalisations are the constituents of
the amalgam in Figure 19. This amalgam is built unifying the constituents, a process that binds
the formless object contained the screen with the arrows contained in the formless object of icon
b). The result is a an icon that contains the two arrows in the screen contained in the octagon that
forms the icon; since with the CONTAINER schema considers the ‘contains’ relation transitive, the
new icon contains the two arrows, since it contains the screen that contains the arrows.

This added information in the mental spaces can be considered equivalent to the notion of
completion that builds the emergent structure in Conceptual Blending Theory. Recall that the
emergent structure is informational structure added to the blend and that does not come from the
intuit spaces, and completion is a process that uses a person background knowledge to infer new
information that is relevant to or needed in the blend. The main difference is that in Conceptual
Blending Theory, the way it is explained, seems this process takes place after the selective pro-
jection of the input spaces into the blend spaces. However, since Conceptual Blending Theory
does not offer a computational model, we think this temporality is a matter of exposition, and does
not imply a temporality order in computational processes. Thus, in general terms, our proposal
of augmenting inputs and amalgams with image schemas is compatible with the notion of a com-
pletion process that adds relevant knowledge from what we call a rich background —containing
image schemas and past example episodes of the same domain (in this scenario, previous icons
and interpretations of their meaning).

Other possible amalgams or blends are possible, depending on the generalisation steps taken,

52 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

but only some of the syntactically legal combinations seem ‘meaningful’ to us. For instance,
another amalgam may be that the object sign contained one of the buttons of icon a) is generalised
away, and the new blended icon has the two arrows contained in a button; this amalgam can have
again a straightforward interpretation: a button that controls data synchronisation. However, other
possible amalgams have no worthy interpretation: it is possible to generalise a way the arrows in
icon b) and we have then a green circle that can be blended into objects contained in the icon a)
like the screen or one button. These less meaningful combinations are no less amalgams or blends,
they are simply less interesting or significant with respect to some context-dependent optimality
criteria.

4.3 Relating Colimits and Amalgams

In Section 4.1 we mention that it is very appealing to model blending as a colimit in some category
C of conceptual spaces and their structure-preserving mappings. When blending two input spaces,
however, not everything is included into the blend because there may be incompatibilities between
the input spaces. In general, conceptual blending is based on selective projections from the input
spaces into the blend (see Section 2.2).

Consequently, the classical colimit construct in C is inadequate for modelling blending. Goguen
suggested %—colimits in ordered categories instead, where structure-preserving mappings between
conceptual spaces are based on partial functions. We discuss this approach thoroughly in Sec-
tion 4.1.2.

In Definition 4.11 we introduce several alternative ways in which selective projections can be
modelled categorically, without getting into the subtlety of dealing with partial morphisms and
an order between them. In this section we shall focus on MSpan(C) — the category of mono
spans in C — and show that the cocone constructs in MSpan(C) can be seen as an abstraction,
into the category-theoretical setting, of amalgams as introduce in Section 4.2.1. Furthermore, this
construct might be also suitable for modelling and computing conceptual blends, as we shall illus-
trate in Section 5. First, however, we recall some basic notions of category theory not introduced
in Section 4.1 that we are going to need in this section, and we introduce also some additional
notation.

4.3.1 Preliminaries

Let C be a category and f: A — C be a morphism in C. We say that f factors through some
morphism g: B — C if there exists #: A — B such that f = h; g. If g is a monomorphism, then £ is
the pullback of f along g. Following there is a proof of this claim: Letm: D - A andn: D — C
such that m; f = n;g. The morphism m is also the unique morphism from D to the apex A of the
pullback such that m;ids = m and m;h = n. The first equality is trivial. For the second, we know
that m; f = n;g and f = h; g, consequently m;h;g = n;g. But g is a monomorphism, so m;h = n.
And if k is any other morphism from D to the apex A satisfying these properties we would have
that k;id = m, hence k = m.

Let A i> C<- B bea diagram in C. If there is a pullback over this diagram we shall
write f for the pullback of morphism f along morphism g.

611553 October 15, 2014 53



D2.1 Reasoning with Amalgams

B
bT/ ’X;
0 0
I L

[N/

I G° L

Figure 20: Representation in C of a cocone in MSpan (C) over I} < G -2+ I

Remember from Definition 4.11 that a morphism f : A — B in MSpan(C) is in particular a

~ "
span in C. We will represent this span in C with A L< Al f—> B. Recall that f~ is a monomor-

phism, i.e., the span is a mono span.

4.3.2 A Category-Theoretical Account of Amalgams

A poset (£,C) as the one considered in Section 4.2 can be seen as a category such that objects are
the elements of £, and there is a unique morphism from ¢ to Y whenever ¢ C y. Consequently, we
can propose a category-theoretical account of the notion of amalgam as given in Definitions 4.18
and 4.19.

Let C be a category and let A be an object in C. We will say that the generalisations of A
are all monomorphisms with target A. Let f: A — B be a morphism in C. We will say that the
f-bounded generalisations of A are all monomorphisms g: C — B such that f factors through g.

Now, let C be a category with pullbacks, and let 1 LGB L bea V-shaped diagram in

the bicategory MSpan(C) such that a; = a, = idg. (Note that we can see it also as a V-shaped

+ +
diagram [ <[L G a—2> I, in C.) Recall that for I; <h—] B ﬁ> I, to be a cocone over this V-

shaped diagram in MSpan(C) we need that a;;b; = ap;b,. This amounts to say that, in the
b .
C-diagram of Figure 20, the pullbacks of Il-0 L5 G oare isomorphic (G° denotes the apex

of these isomorphic objects, without loss of generality), and a; ;b = a; ;b5 . This brings us to
the categorical notion of amalgam.

Definition 4.21 (Amalgam). Let af: G — [ and a; : G — L, be two morphisms in a cate-
gory C with pullbacks. An amalgam (bfr,b;r ) of af’ and a; is a cocone with apex B over

+

=+ =+
I? Pilye N Ig , where @ are the pullbacks of a;” along generalisations b; : Ii0 — I; of [

(for i € {1,2}), such that GV is the common (up to isomorphism) apex of these pullbacks (see
Figure 20). 4

54 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

In the particular case when C is the poset (£,C) of Section 4.2 the definition above amounts
to Definition 4.18 (taking as G the infimum element L ). If we focus on a;-bounded generalisations
of [; instead, we get Definition 4.19, where G plays the role of the element ). This is so because
in this case the apex G° of the pullback is isomorphic to G.

Definition 4.21 provides us a way to characterise conceptual blending in a manner that is
faithful to the description given by Fauconnier and Turner (see Section 2.2) and is independent of
any particular choice of representation formalism for conceptual spaces and of any implementation
thereof. Furthermore, the definition points to a possible way to compute blends via the classical
colimit construct as implemented in Hets. The next section illustrates this with the Buddhist Monk
Riddle.

5 The Theory at Work

As a proof-of-concept for our theory we provide an in-depth example where blending is used for
creative problem solving. Towards this, we first state the informal description of the problem
to solve, namely the Buddhist Monk Riddle. Then we provide some background information
concerning our implementation machinery, and finally we present our implementation.

5.1 The Buddhist Monk Riddle

The Buddhist Monk Riddle was first related to creativity by Koestler, who gives the following
informal description (see also Figure 21):

“One morning, exactly at sunrise, a Buddhist monk began to climb a tall mountain.
The narrow path, no more than a foot or two wide, spiralled around the mountain to a
glittering temple at the summit.

The monk ascended the path at varying rates of speed, stopping many times along
the way to rest and to eat the dried fruit he carried with him. He reached the temple
shortly before sunset. After several days of fasting and meditation, he began his
journey back along the same path, starting at sunrise and again walking at variable
speeds with many pauses along the way. His average speed descending was, of course,
greater than his average climbing speed.

Prove that there is a single spot along the path the monk will occupy on both trips
at precisely the same time of day.” [41, p. 183-184]

Koestler further states how he experienced his mental process of solving the riddle:

“I tried this and that, until I got fed up with the whole thing, but the image of
the monk in his saffron robe walking up the hill kept persisting in my mind. Then
a moment came when, superimposed on this image, I saw another, more transparent
one, of the monk walking down the hill and I realised in a flash that the two figures
must meet at some point some time - regardless at what speed they walk and how
often each of them stops. Then I reasoned out what I already knew: whether the
monk descends two or three days later comes to the same; so I was quite justified in
letting him descend on the same day, in duplicate so to speak.” [41, p. 184]

611553 October 15, 2014 55



D2.1 Reasoning with Amalgams

< > )
DA )
(a) The monk starting to move up at (b) The monk praying (¢) The monk starting to move
sunrise down another day at sunrise

Figure 21: Illustration of the Buddhist Monk Riddle 32

The Buddhist Monk Riddle has also been chosen by Fauconnier and Turner [22] to illustrate
the constitutive elements of conceptual blending, because the superimposition that Koestler men-
tions can be seen as an act of blending, where the mental image of the monk walking up the
mountain is overlayed with the image of the monk walking down the same mountain on the same
path. The composition of those images is then completed and elaborated with commonsense back-
ground knowledge, i.e., knowledge that two objects that approach each other on the same path will
necessarily meet at some point.

In order to illustrate our theory at work, we specify a categorical diagram that describes the
conceptual integration network underlying this riddle. We further compute an amalgam as a pos-
sible solution to compose the blend. The formalisation presented here is an extension and elabo-
ration of the one presented by Goguen [27].

Our concrete implementation of the riddle is based on formalisations of image schemas, which
according to Fauconnier [19] participate in the framing of mental spaces. From an Al viewpoint,
image schemas take the role of templates for data structures. In the particular example of the
Buddhist monk, we build on the SOURCE-PATH-GOAL (PATH) image schema (see Section 2.4),
which provides the structure to conceptualise the dynamic scene of the monk walking along a path
from a source location (the foot of the mountain) to a goal location (the summit of the mountain)
and back. However, before we provide the details of the implementation, in order to facilitate a
better understanding, we first give a brief overview over the specification language we use, namely
the Common Algebraic Specification Language (CASL) [2].

5.2 CASL and its Application for Blending

In order to represent input spaces for conceptual blending we follow Fauconnier and Turner’s the-
ory and use image schemas as structural templates for the formalisation of input spaces. Hence,
for a computational model, we need an input language that is expressive enough to model image
schemas, and also the complex relations between them. As an example for such relations, consider
that Lakoff and Johnson [47] state that image schemas may be extended with knowledge repre-
sented through other image schemas. Hence, it is required to have a input language that allows for
some form of inheritance. Inheritance is also required to model blend completion, i.e., the step of
the blending process where additional background knowledge is added to the input spaces.

3Images from http: //markturner.org/blending.html, accessed Sept. 2014

56 October 15, 2014 611553


http://markturner.org/blending.html

D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

Apart from expressiveness, the most crucial requirement for the input language we use is
compatibility with theoretical model we develop in Section 4. That is, we require an input language
with a signature that can be understood as a cocomplete category.

Towards this, we use the Common Algebraic Specification Language (CASL) to describe in-
put spaces. CASL is capable or expressing inheritance, and a lot of research on the categorical
properties of CASL has been conducted in the past. In particular its cocompleteness property has
been proven [54].

An excellent brief summary about CASL is given by Astesiano et al. [2]: “The Common Al-
gebraic Specification Language (CASL) is an expressive language for the formal specification of
functional requirements and modular design of software. It has been designed by COFI, the inter-
national Common Framework Initiative for algebraic specification and development. It is based
on a critical selection of features that have already been explored in various contexts, includ-
ing subsorts, partial functions, First-order logic, and structured and architectural specifications.
CASL should facilitate interoperability of many existing algebraic prototyping and verification
tools.”

In addition to its inherent support for inheritance and its categorical properties, CASL also
allows one to infer emergent structure in a blend, in form of axioms, using a theorem prover.
Towards this, we employ the Hets architecture [55], which is capable of translating CASL to
various input languages understood by theorem provers. In Section 5.3.5 we show for the specific
case of the Buddhist monk how we use Hets and a theorem prover to infer additional emergent
structure by emulating the elaboration of a blend via a proof.

CASL syntax. In order to understand our implementation of the Buddhist Monk Riddle it not
necessary to be familiar with the deeper semantics of CASL (for details we refer to [2]). However,
it will be helpful to have an intuitive understanding of the following syntactic elements:

e The pattern spec ... end is used to describe a theory, which consists of sorts, operators,
predicates and axioms, where

sorts indicates a list of sorts;

ops indicates a list of operators that map objects of a certain sort to another sort;

preds indicates a list of predicates that map objects to Boolean values;

axioms are indicated by e symbols, possibly using variables defined via V and 3 quan-
tifiers.

e The pattern “spec TCHILD = TPARENT with <mapping> then <defs>” states that a theory
TCHILD extends a theory TPARENT and inherits all sorts, operators and predicates from
TPARENT. An optional symbol mapping is defined after with. The definitions after then
are additional sorts, operators, predicates and axioms. A child theory can extend more than
one parent theory.

e view defines a morphism, i.e., in terms of CASL a symbolic mapping between sorts, opera-
tors and predicates.

e The keyword combine denotes the category theoretical colimit operation for views.

611553 October 15, 2014 57



D2.1 Reasoning with Amalgams

The category of CASL signatures. We build on the work by Mossakowski [54], who describe
a category of CASL signatures. Signatures are defined as follows:

Definition 5.1 (CASL signature [54]). A CASL subsorted signature (S, F,TF, P, <) consists of

a set S of sorts;
e a S* x S-sorted family F = (F,, ;) es scs of function symbols;

e a S* x S-sorted family TF = (TF, s C F,5)wes- scs of subsets indicating fotal function sym-
bols;

e a S*-sorted family P = (P, ),es+ of predicate symbols, and

e a pre-order (i.e., a reflexive transitive relation) < of subsort embeddings on the set S of
sorts. -

Morphisms between CASL signatures are described in the following Definition 5.2.

Definition 5.2 (Morphisms between CASL signatures (adapted from [54])). Given signatures ¥ =
(S,F,TF,P,<),Y = (§',F',TF',P',<'), a signature morphism o : ¥ — X' consists of

e amapcs:S— S

e amap Oy : Fs— Flo foreachw € §*,s € §

(w),55(s)

e amap Gv’::RV—>P(’)_S* for each w € §*

(w)

such that

e subsorting is preserved, i.e., s; < s, implies 6°(s1) < 65(s2) for 51,5, € S

e totality is preserved, i.e., o1, (T Fy.s) C TF ().05(s)

e overloading relations are preserved, i.e., f:w; — 1 ~pr f:wy— s> implies ok (f) =

wi,51
F
GW2;S2

(f), and similarly for predicate symbols. =

Definition 5.2 directly yields the category of CASL signatures, which is commonly referred to
as CASLSig. Theorem 3.1. in [54] states that CASLSig is cocomplete.

5.3 The Formalisation of the Riddle

The blend for the Buddhist Monk Riddle is based on the SOURCE-PATH-GOAL image schema
(see Section 2.4), which in turn inherits structure from LINK image schema. We also include a
temporal dimension to the schema to be able to talk about the trajector being at the source or goal
location of the path at certain time instances. Hence, in order to represent the SOURCE-PATH-
GOAL schema, we first have to specify the LINK schema and a very simple theory of time, named
TIME.

33The symbol ~f denotes an overloading relation. For details we refer to [54].

58 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

The LINK schema says that for every object of sort Link there are exactly two objects of sort
Entity such that they are linked.

spec LINK =
sorts Link; Entity
preds linked : Entity X Link
V1 : Link, 3 e : Entity
e linked(e,l)
end

For the purpose of this exercise, we only specify a sort 7ime of time instances and a < predicate to
denote a total order of time instances for theory TIME, ignoring the axiomatisation of this theory.

spec TIME =

sorts Time

preds __<__: Time x Time
end

The SOURCE-PATH-GOAL schema —which we abbreviate to PATH— is based on the LINK
schema and includes theory TIME as follows:

spec PATH = LINK
with sorts Link — Path, Entity — Location,
preds linked — endpoint
and TIME
then sort Trajector
preds on : Location x Path
ops source : Trajector — Location; goal : Trajector — Location;
startTime : Trajector — Time; endTime : Trajector — Time;
position : Trajector X Time — Location
Y p : Path; m : Trajector; t : Time
e endpoint(source(m), p) A\ endpoint(goal(m), p)
e source(m) # goal(m)
o startTime(m) < endTime(m)
e position(m, startTime(m)) = source(m) N position(m, endTime(m)) = goal(m)
o startTime(m) < t A\ t < endTime(m) = on(position(m, t), p)
end

Recall that the notation “PATH = LINK with ...” denotes that PATH inherits all sorts, predicates,
operators and axioms from LINK, using a mapping of sorts and predicates defined after the with
keyword by — arrows. Therefore, the PATH schema describes a path as a link where the endpoints
are locations. The axioms are defined within the scope of universal quantifiers over paths, trajec-
tors and time points. The first three axioms represent commonsense knowledge that the source
location and goal location are distinct endpoints of the path, and that the trajector starts the jour-
ney before ending it (in the temporal sense). The fourth and fifth axiom state the obvious relations
between time and location during the trajector’s movement.

611553 October 15, 2014 59



D2.1 Reasoning with Amalgams

5.3.1 Input Spaces

The input spaces are two theories describing that a monk is moving up (resp. down) the mountain.
To show that they are framed by the PATH image schema, they are represented as particularisations
of this schema with the monks as path trajectors from sunrise to sunset.

spec I} = PATH
then sorts Day
TimeOfDay
ops foot, summit : Location;
trail : Path;
monk : Trajector;
di : Day;
sunrise, sunset : TimeOfDay;
time : Day x TimeOfDay — Time
e endpoint(foot, trail) A\ endpoint(summit, trail)
e foot # summit
e source(monk) = foot \ goal(monk) = summit
o startTime(monk) = time(d,, sunrise) \ endTime(monk) = time(d, sunset)
end

The input space describes a situation where a monk is situated at the foot of a mountain at sunrise
and at the summit of the mountain at sunset. Similarly, we define a second input space I, which is
identical to I, except that in I, we have a different day d,, where the start location is the summit
and the end location is the foot of the mountain.

spec I, = PATH
then sorts Day
TimeOfDay
ops foot, summit : Location,;
trail : Path;
monk : Trajector;
d> : Day;
sunrise, sunset : TimeOfDay;
time : Day x TimeOfDay — Time
e endpoint(foot, trail) N\ endpoint(summit, trail)
e foot # summit
o source(monk) = summit N\ goal(monk) = foot
o startTime(monk) = time(d,, sunrise) \ endTime(monk) = time(d,, sunset)
end

5.3.2 The Generic Space
According to Fauconnier and Turner [22, p. 41], “[a] generic mental space maps onto each of the

inputs and contains what the inputs have in common: a moving individual and his position, a path
linking foot and summit of the mountain, a day of travel, and motion in an unspecified direction.”

60 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

Day <+— Day
TimeOfDay <— TimeOfDay
foot <+— foot
summit <—> summit
trail +— trail
monk <+— monk
d 1 d2
sunrise <—> Sunrise
sunset <—» sunset
time <— time

Figure 22: Cross-space mapping

A partial cross-space mapping [22] between the input spaces /; and I, gives hints to generate this
generic space. The cross-space mapping connects counterparts in the input mental spaces, such as
mountain, moving individual, day of travel, and motion (see Figure 22).

To generate the generic space for the Buddhist Monk Riddle we first pursue a naive approach
and include each mapped symbol as an entity of the generic space. Furthermore, we keep only
those axioms that are defined in both spaces.

spec Ggive = PATH
then sorts Day;
TimeOfDay
ops foot, summit : Location,;
trail : Path;
monk : Trajector;
d : Day;
sunrise, sunset : TimeOfDay;
time : Day x TimeOfDay — Time
e endpoint(foot, trail) N\ endpoint(summit, trail)
e foot # summit
o startTime(monk) = time(d, sunrise)
o startTime(monk) = time(d, sunrise) N\ endTime(monk) = time(d, sunset)
end

5.3.3 Composition of the Blend — Amalgamating the Input Spaces

A naive way to blend the input spaces would be to directly compute the colimit of the diagram
formed by I}, I, and G,y With morphisms mapping signature symbols of G to the counterparts
in 11 and I, except for d, which is mapped to d; and d,, respectively (see Figure 23). However,
this colimit computation does not keep the monks separate as in the description of the blend by

611553 October 15, 2014 61



D2.1 Reasoning with Amalgams

B

(Inconsistent
blend with one
monk ascending
and descending
simultaneously)

L

(Monk
ascending on descending on
day d 1) day dz)

Gnaive
(Generic
space)

Figure 23: Naive categorical diagram of the Buddhist Monk Riddle

Fauconnier and Turner [22, p. 42]: “[...] composition of elements from the inputs makes relations
available that do not exist in the separate inputs. In the blend but in neither of the inputs, there
are two moving individuals instead of one. They are moving in opposite directions, starting from
opposite ends of the path, and their positions can be compared at any time of the trip, since they
are travelling on the same day d'”.

In our naive blend we get axioms source(monk) = foot and source(monk) = summit, which
together with foot # summit from an inconsistent theory. Consequently, we need to generalise the
generic space, so as to remove the entity monk, which generated the inconsistency in the blend.
Applying a universal generalisation to the last two axioms we get the following generalised generic
space:

spec G = PATH
then sorts Day;
TimeOfDay
ops foot, summit : Location,;
trail : Path;
d : Day;
sunrise, sunset : TimeOfDay;
time : Day x TimeOfDay — Time
e endpoint(foot, trail) A\ endpoint(summit, trail)
¥V m : Trajector
o startTime(m) = time(d, sunrise)
e endTime(m) = time(d, sunset)
end

To fully capture Fauconnier and Turner’s intuitions, we require also some sort of generalisa-

62 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

tion of the input spaces, so as to ignore the concrete day on which the monk’s journey happens
focussing only on the time instances of the day. These consideration lead to the more complicated
diagram in Figure 24, which reflects the amalgamation cocone of Figure 20 in Section 4.3.2.

All this suggests that blending is an amalgamation where we first generalise the input spaces
to relax some of their structure and then combine these relaxed spaces. In the case of the Buddhist
Monk Riddle, we ignore the calendrical time of the journey and focus only on sunrise and sunset as
times. This generalisation is indeed the key to solving the riddle because it implies that two monks
approach each other simultaneously. We define the respective generalisations 1, Ig as follows:

spec I = PATH
then ops foot, summit : Location;
trail : Path;
monk : Trajector;
sunrise, sunset : Time
e endpoint(foot, trail) N\ endpoint(summit, trail)
e foot 7 summit
o source(monk) = foot A goal(monk) = summit
o startTime(monk) = sunrise N\ endTime(monk) = sunset
end

Note that we generalise the input space [; in that we do not account anymore for the day on
which the journey takes place. Instead, we just focus on time points sunrise and sunset, which are
not connected anymore to a specific day. The second generalised input space 12, is analogous to
I?, except that start location and end location are interchanged.

spec I = PATH
then ops foot, summit : Location,;
trail : Path;
monk : Trajector;
sunrise, sunset : Time
e endpoint(foot, trail) N\ endpoint(summit, trail)
® foot # summit
o source(monk) = summit N\ goal(monk) = foot
o startTime(monk) = sunrise N\ endTime(monk) = sunset
end

The morphisms from IIQ to 1; are the derived signature morphisms that map each symbol to its
counterpart, except for sunrise and sunset, which are mapped to time(d;, sunrise) and time(d;, sunset),
respectively (fori = 1,2).

A generalised generic space G is computed with respect to each generalised input space as
the pullback of the diagram Ilp — I; < G, according to Definition 4.21 of amalgam.

spec G = PATH

then ops foot, summit : Location;
trail : Path;
sunrise, sunset : Time

611553 October 15, 2014 63



D2.1 Reasoning with Amalgams

B
(Two monks,
ascending and
descending
simultaneously)

Iy L
(Monk (Monlk
ascending) descending)

GO
(Generalised
Generic
space)

ascending on
day dy)

descending on
day d>)

Figure 24: Categorical diagram of the Buddhist Monk Riddle amalgam

e endpoint(foot, trail) N\ endpoint(summit, trail)
e foot # summit
YV m : Trajector
o startTime(m) = sunrise N\ endTime(m) = sunset
end

The amalgamation is eventually completed with the combination of the (generalised) input
spaces into a new conceptual space. In Hets, we use the combine operation to compute the colimit
of two morphisms (called views in CASL) from G° to I? and from G° to Ig .

view M) : G* to I{ end
view MY : G° to I? end
spec BLEND_COMPOSITION = combine M?, MY end

The category theoretical diagram that represents this conceptual integration network is illus-
trated in Figure 24.

5.3.4 Completion of the Blend — Adding Background Knowledge

According to Fauconnier and Turner [22, p. 43], “[...] completion brings additional structure to
the blend. This structure of two people moving on the path can itself be viewed as a salient part of
a familiar background frame: two people starting a journey at the same time from opposite ends
of a path. [...] by means of completion, this familiar structure is recruited into the blended space.
At this point, the blend is integrated: It is an instance of a particular familiar frame, the frame of
two people walking on a path in opposite directions. ”

64 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

In terms of our approach, completion involves adding commonsense background knowledge
about the familiar frame of people who walk in opposite directions. Of particular importance for
solving the riddle is the commonsense background knowledge about the existence of a meeting
point within the familiar frame. This knowledge is specified as a “MEETINGSPACE” theory in
CASL as follows:

spec MEETINGSPACE = TIME
then sorts Trajector;
Location
ops source : Trajector — Location; goal : Trajector — Location,;
startTime : Trajector — Time; endTime : Trajector — Time;
position : Trajector x Time — Location
V ml, m2 : Trajector
o source(ml) = goal(m2) N\ goal(m2) = source(ml)
A startTime(ml) = startTime(m2)
= d meetinglLoc : Location; meetingTime : Time
o position(ml, meetingTime) = meetingLoc N position(m2, meetingTime) = meetingLoc
end

The knowledge about the meeting space is combined with the previously composed blend by
simply extending the composition.

spec BLEND_COMPLETION = BLEND_COMPOSITION and MEETINGSPACE end

Note that adding background knowledge coincides with extending image schemas, as described by
Lakoff and Johnson [47, p. 27]: the authors state that image schemas are not fixed; extensions are
possible and likely. In particular, the authors mention an extended SOURCE-PATH-GOAL image
schema that involves several trajectors. This extended schema is a very familiar frame that allows
one to immediately perceive a meeting point when two trajectors move in the opposite direction.

5.3.5 Elaboration of the Blend - Proving the Riddle

The riddle is proven by “running the blend”. According to Fauconnier and Turner [22, p. 44],
“[t]his “running of the blend” is called elaboration. Running of the blend modifies it imagi-
natively, delivering the actual encounter of the two people. This is new structure: There is no
encounter in either of the input mental spaces, even if we run them dynamically. But those two
people in the blend are projected back to the “same” monk in the two input mental spaces. The
meeting place projects back to the “same” location on the path in each of the inputs, and, of
course, the time of day when they meet in the blend is the same as the time of day in the input
spaces when the monk is at that location.”

Though Hets is not a dedicated tool to simulate dynamic narratives, we can specify narra-
tives using PATH image schemas defined in CASL. Consequently, it allows one to draw conclu-
sions of dynamic scenes, as a formal alternative to “mental” simulation, by proving predefined
axioms. In the case of the Buddhist Monk Riddle, we want to prove that the two monks will

611553 October 15, 2014 65



D2.1 Reasoning with Amalgams

SPASS: monks_ordered_Blend_
Goals: Options:

Edit Yiew Havigation Abstraction Layout Options
[+] ax1 Timeout: 10 |2 I
Extra Options:

— Include preceding proven
theorems in next proof attempt

Prove Prove all

Results:

Status: Proved
Used Axioms:

ga_non_empty_sort_path
declaration3
declaration4
declaration9

ax1_2

declaration10

ax2

ax2_13
arg_restriction_endpoint

declaration6

Blend_conposition HeetingPoint
Blend_conpletion

Save dfgFile || Show Details

Help Save config Close

forall ml, m2 : Trajector
. exists t : Time; 1 : ocation
. position(ml, t) = 1 /\ position(m2, t) =1 ¥ (Ax1)% %implied

Save Close

Figure 25: Specification and proof displayed in the Hets GUI

meet at a certain point. This is achieved by adding a respective axiom to the specification of
BLEND_COMPOSITION, followed by the keyword %implied.

spec BLEND_ELABORATION = BLEND_COMPLETION
then V mi, m2 : Trajector
e J¢t: Time; | : Location
e position(ml, t) = | N\ position(m2, t) = | %implied
end

The Hets GUI allows us to graphically represent the entire theory and the proof that the axiom
is correct (see Figure 25).

66 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

6 Concluding Thoughts

The theory of conceptual blending as put forward by Fauconnier and Turner in cognitive linguistics
has been keenly adopted by researchers in the computing sciences for guiding the implementation
of computational systems that aim at exhibiting creative capabilities, particularly when taking into
consideration the creation of new concepts. In Section 3 we have surveyed the most significant
proposals of such systems.

As is common with these early adoptions, each system has made its own choices of inter-
pretation of the core elements that constitute Fauconnier and Turner’s theory. They provide a
formalisation of some fragment of theory that on one hand attempts to be as faithful as possi-
ble to the intuitions stated by Fauconnier and Turner, and on the other hand would be feasible to
implement in a computational system.

What has become evident from these early implementations of conceptual blending is that
they have been designed in a very system-specific manner, without a clear separation of system-
independent issues from those that are more system-specific. This makes it difficult to gain a
deeper insight into the computational aspect of conceptual blending and hence to favour the reuse
of blending technology to domains other than those envisioned by the system implementors.

In this deliverable we have chosen to pursue a more domain- and system-independent approach
to the development of a formal and computational theory of blending. In particular, we have taken
the basic insight of Goguen that a blend might be adequately modelled as some kind of category-
theoretical colimit, and in Section 4 we have expounded on the details of this insight in order to
fully grasp it’s relationship with Fauconnier and Turner’s theory.

Goguen himself proposed the framework of ordered categories to flesh out a mathematical
account of conceptual blending, but he never fully worked out the implications of this proposal, nor
did he show —other than with some small examples— how concrete acts of conceptual blending
actually fit into his framework. The intuitions seemed convincing, but a thorough analysis was
still missing. This is what we have started to do and what we have reported in this deliverable.

What has become clear of our analysis in Section 4 is that dealing with Goguen’s framework
is much more subtle than originally expected. His notion of %—colimit as a way to model blending
is quite complicated to grasp conceptually, not least to act as a guide for the implementation of
computational blending systems. Although the notion of colimit is, in our view, still a powerful
notion to be exploited theoretically for the purpose of giving a precise characterisation of concep-
tual blending, we have considered alternative ways to do so, for instance, exploiting the notion of
colimit in a category of spans or of relations, a so-called allegory. The advantage of such an ap-
proach is that it nicely covers also a generalisation of the notion of amalgam, originally proposed
as a method for knowledge transfer in case-based reasoning. Indeed, the notion of amalgam is
very reminiscent to that of blending, and by modelling blending as colimits in a category of spans
we have been capable of bringing blending and amalgamation of the same theoretical footing.

The in-depth theoretical exploration carried out in this deliverable will guide our subsequent
work to carry out a computational realisation of blending that clearly distinguishes the domain-
independent elements of blending such as amalgamation and colimit construction from the domain-
specific realisations thereof. In Section 5 we have given a glimpse of the potential of our theoretical
analysis at work by specifying and implementing a well-known problem of creative thinking using
the computational components we are bringing into the project.

611553 October 15, 2014 67



REFERENCES

References

[1] ADAMEK, J., HERRLICH, H., AND STRECKER, G. E. 2006. Abstract and concrete cate-
gories: the joy of cats. Reprints in Theory and Applications of Categories 17, 1-507. Reprint
of the 1990 original [Wiley, New York; MR1051419].

[2] ASTESIANO, E., BIDOIT, M., KIRCHNER, H., KRIEG-BRUCKNER, B., MOSSES, P. D.,
SANNELLA, D., AND TARLECKI, A. 2002. CASL: the common algebraic specification lan-
guage. Theor. Comput. Sci. 286, 2, 153—-196. Current trends in algebraic development tech-
niques (Lisbon, 1998).

[3] BARR, M. AND WELLS, C. 1990. Category theory for computing science. Prentice Hall
International Series in Computer Science. Prentice Hall International, New York.

[4] BATEMAN, J. A., MAGNINI, B., AND FABRIS, G. 1995. The generalized upper model
knowledge base: Organization and use. Towards very large knowledge bases, 60-72.

[5] BEsoLDp, T. R., CAMBOUROPOULOS, E., GOMEZ RAMIREZ, D., KALIAKATSOS-
PAPAKOSTAS, M., KUHNBERGER, K.-U., MACLEAN, E., PLAZA, E., AND SMAILL, A.
2014. Specification of the representation formalism and of constraints and requirements of
reasoning. Deliverable D1.1, COINVENT Project. October.

[6] BODEN, M. A. 2004. The Creative Mind: Myths and Mechanisms, Second ed. Routledge.

[7] BORCEUX, F. 1994. Handbook of categorical algebra 1. Basic category theory. Encyclopedia
of Mathematics and its Applications, vol. 50. Cambridge University Press, Cambridge.

[8] BURRIS, S. AND SANKAPPANAVAR, H. P. 2012. A course in Universal Algebra, The
Millennium, 2012 update ed. Electronically available at http://www.math.uwaterloo.ca/
~snburris/htdocs/ualg.html.

[9] CALUGAREANU, G. AND PURDEA, 1. 2011. Examples in category theory. Unpublished
book. Electronically available at http://math.ubbcluj.ro/~calu/B00-0-14.pdf.

[10] CARBONI, A., KELLY, G. M., WALTERS, R. F. C., AND WooOD, R. J. 2008. Cartesian
bicategories II. Theory Appl. Categ. 19, No. 6, 93-124.

[11] CARBONI, A. AND WALTERS, R. F. C. 1987. Cartesian bicategories. I. J. Pure Appl.
Algebra 49, 1-2, 11-32.

[12] CoDEScCU, M., HOROZAL, F., KOHLHASE, M., MOSSAKOWSKI, T., RABE, F., AND SO-
JAKOVA, K. 2010. Towards logical frameworks in the heterogeneous tool set Hets. In Re-
cent Trends in Algebraic Development Techniques - 20th International Workshop, WADT 2010,
Etelsen, Germany, July 1-4, 2010, Revised Selected Papers, T. Mossakowski and H. Kreowski,
Eds. Lecture Notes in Computer Science, vol. 7137. Springer, 139-159.

[13] CODESCU, M. AND MOSSAKOWSKI, T. 2008. Heterogeneous colimits. In Proceedings
of the 2008 IEEE International Conference on Software Testing Verification and Validation
Workshop. ICSTW °08. IEEE Computer Society, Washington, DC, USA, 131-140.

68 October 15, 2014 611553


http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
http://math.ubbcluj.ro/~calu/BOO-0-14.pdf

D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

[14] DIACONESCU, R. 2008. Institution-independent model theory. Studies in Universal Logic.
Birkhiduser Verlag, Basel.

[15] ELIASMITH, C. 2004. Learning context sensitive logical inference in a in a neurobiological
simulation. Compositional connectionism in cognitive science.

[16] ELIASMITH, C. 2013. Holographic Reduced Representation: Distributed Representation
for Cognitive Structures. Oxford University Press.

[17] FALKENHAINER, B., FORBUS, K. D., AND GENTNER, D. 1989. The structure-mapping
engine: Algorithm and examples. Artificial Intelligence 41, 1-63.

[18] FALOMIR, Z., JIMENEZ-RUIZ, E., ESCRIG, M. T., AND CABEDO, L. M. 2011. Describing
images using qualitative models and description logics. Spatial Cognition & Computation 11, 1,
45-74.

[19] FAUCONNIER, G. 1985. Mental Spaces: Aspects of Meaning Construction in Natural Lan-
guage. MIT Press.

[20] FAUCONNIER, G. 1997. Mappings in Thought and Language. Cambridge University Press.

[21] FAUCONNIER, G. AND TURNER, M. 1998. Conceptual integration networks. Cognitive
Science 22, 2, 133-187. Reprinted in [“Cognitive Linguistics: Basic Readings” (edited by D.
Geeraerts), pp. 303-371].

[22] FAUCONNIER, G. AND TURNER, M. 2002. The Way We Think: Conceptual Blending And
The Mind’s Hidden Complexities. Basic Books.

[23] FREYD, P. J. AND SCEDROV, A. 1990. Categories, allegories. North-Holland Mathematical
Library, vol. 39. North-Holland Publishing Co., Amsterdam.

[24] GOGUEN, J. 1999. An introduction to algebraic semiotics, with application to user interface
design. In Computation for Metaphors, Analogy, and Agents, C. L. Nehaniv, Ed. Vol. 1562.
242-291.

[25] GOGUEN, J. 2001. Towards a design theory for virtual worlds: Algebraic semiotics and
scientific visualization as a case study. In Proceedings Conference on Virtual Worlds and Sim-
ulation (Phoenix AZ, 7-11 January 2001), C. Landauer and K. Bellman, Eds. Society for Mod-
elling and Simulation, 298-303.

[26] GOGUEN, J. 2004. Steps towards a design theory for virtual worlds. In Developing Future
Interactive Systems, M. Sanchez-Segura, Ed. Idea Group Publishing, 116-152.

[27] GOGUEN, J. 2006. Mathematical models of cognitive space and time. In Reasoning and
Cognition: Proc. of the Interdisciplinary Conference on Reasoning and Cognition, D. Andler,
Y. Ogawa, M. Okada, and S. Watanabe, Eds. Keio University Press, 125-128.

[28] GOGUEN, J. A. 1991. A categorical manifesto. Mathematical Structures in Computer Sci-
ence 1, 49-68.

611553 October 15, 2014 69



REFERENCES

[29] GOGUEN, J. A. AND HARRELL, D. F. 2005. Foundations for active multimedia narrative:
Semiotic spaces and structural blending. Interaction Studies: Social Behaviour and Communi-
cation in Biological and Artificial Systems.

[30] GOGUEN, J. A. AND HARRELL, D. F. 2010. Style: A computational and conceptual
blending-based approach. In The Structure of Style: Algorithmic Approaches to Understanding
Manner and Meaning, S. Argamon, K. Burns, and S. Dubnov, Eds. Springer, 291-316.

[31] GUHE, M., PEASE, A., SMAILL, A., MARTINEZ, M., SCHMIDT, M., GuUST, H.,
KUHNBERGER, K.-U., AND KRUMNACK, U. 2011. A computational account of conceptual
blending in basic mathematics. Cognitive Systems Research 12, 3-4, 249-265.

[32] HAMPE, B. 2005. Image schemas in cognitive linguistics: An introduction. In From Per-
ception to Meaning: Image Schemas in Cognitive Linguistics, B. Hampe and J. E. Grady, Eds.
Cognitive Linguistic Research, vol. 29. Mouton de Gruyter, 1-12.

[33] HARRELL, D. F. 2005. Shades of computational evocation and meaning: The GRIOT system
and improvisational poetry generation. 6th Digital Arts and Culture Conference.

[34] HARRELL, F. 2007. Theory and technology for computational narrative: an approach to
generative and interactive narrative with bases in algebraic semiotics and cognitive linguistics.
Ph.D. thesis, University of California, San Diego.

[35] HAYMAN, J. AND HEINDEL, T. 2014. On pushouts of partial maps. In Graph Transfor-
mations. Proceedings of the 7th Biannual International Conference (ICGT 2014), H. Giese and
B. Konig, Eds. Lecture Notes in Computer Science, vol. 8571. Chapter 12, 177-191.

[36] HOHLE, U. 2014. Categorical foundations of topology with applications to quantaloid en-
riched topological spaces. Fuzzy Sets and Systems 256, 166-210.

[37] JOHNSON, M. 1987. The Body in the Mind. University Of Chicago Press. The Bodily Basis
of Meaning, Imagination, and Reason.

[38] JOHNSTONE, P. T. 2002. Sketches of an elephant: a topos theory compendium. 2 Volumes.
Oxford Logic Guides, vol. 44. The Clarendon Press Oxford University Press, Oxford.

[39] KAHL, W. 2010a. Co-tabulations, bicolimits and van-Kampen squares in collagories. Elec-
tronic Communications of the EASST 29.

[40] KAHL, W. 2010b. Collagory Notes, version 1. SQRL Report 57. Electronically available at
http://www.cas.mcmaster.ca/sqrl/papers/SQRLreport57.pdf.

[41] KOESTLER, A. 1964. The Act of Creation. Hutchinson & Co.

[42] KuTz, O., MOSSAKOWSKI, T., HOIs, J., BHATT, M., AND BATEMAN, J. 2012. Onto-
logical blending in DOL. In Computational Creativity, Concept Invention, and General In-
telligence - Ist International Workshop. International Workshop on Computational Creativity,
Concept Invention, and General Intelligence (C3GI-12), First, located at ECAI 2012, August
27, Montpellier, France. Publication Series of the Institute of Cognitive Science.

70 October 15, 2014 611553


http://www.cas.mcmaster.ca/sqrl/papers/SQRLreport57.pdf

D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

[43] KuTz, O., NEUHAUS, F., MOSSAKOWSKI, T., AND CODESCU, M. 2014. Blending in
the Hub — towards a collaborative concept invention platform. In Proceedings of the Fifth
International Conference on Computational Creativity ICCC 2014.

[44] LABOVE, W. 1972. The transformation of experience in narrative syntax. Language in the
inner city.

[45] LACK, S. 2010. A 2-categories companion. In Towards higher categories. IMA Vol. Math.
Appl., vol. 152. Springer, New York, 105-191.

[46] LAKOFF, G. 1987. Women, Fire, and Dangerous Things. University Of Chicago Press.

[47] LAKOFF, G. AND JOHNSON, M. 1999. Philosophy In The Flesh: The Embodied Mind And
Its Challenge To Western Thought. Basic Books.

[48] LAKOFF, G. AND NUNEZ, R. 2000. Where Mathematics Come From: How The Embodied
Mind Brings Mathematics Into Being. Basic Books.

[49] LANE, S. M. 1998. Categories for the working mathematician, Second ed. Graduate Texts
in Mathematics, vol. 5. Springer-Verlag, New York.

[50] LEINSTER, T. 1998. Basic bicategories. Electronically available at http://arxiv.org/
abs/math/9810017.

[51] LEINSTER, T. 2002. A survey of definitions of n-category. Theory Appl. Categ. 10, 1-70.

[52] MALcoLM, G. 2000. Software Engineering with OBJ: algebraic specification in action.
Kluwer.

[53] MCLARTY, C. 1992. Elementary categories, elementary toposes. Oxford Logic Guides,
vol. 21. The Clarendon Press Oxford University Press, New York. Oxford Science Publications.

[54] MOSSAKOWSKI, T. 1998. Colimits of order-sorted specifications. In Recent trends in al-

gebraic development techniques (Tarquinia, 1997). Lecture Notes in Computer Science, vol.
1376. Springer, Berlin, 316-332.

[55] M0OSSAKOWSKI, T., MAEDER, C., AND LUTTICH, K. 2007. The heterogeneous tool set,
Hets. In Tools and Algorithms for the Construction and Analysis of Systems, 13th International
Conference, TACAS 2007, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings,
O. Grumberg and M. Huth, Eds. Vol. 4424. Springer, 519-522.

[56] MURPHY, G. L. AND MEDIN, D. L. 1985. The role of theories in conceptual coherence.
Psychological Review.

[57] ONTARNON, S. AND PLAZA, E. 2010. Amalgams: A formal approach for combining multi-
ple case solutions. In Case-Based Reasoning. Research and Development, 18th International
Conference on Case-Based Reasoning, ICCBR 2010, Alessandria, Italy, July 19-22, 2010. Pro-
ceedings, 1. Bichindaritz and S. Montani, Eds. Lecture Notes in Computer Science, vol. 6176.
Springer, 257-271.

611553 October 15, 2014 71


http://arxiv.org/abs/math/9810017
http://arxiv.org/abs/math/9810017

REFERENCES

[58] ONTARNON, S. AND PLAZA, E. 2012. Toward a knowledge transfer model of case-based

inference. In Proceedings of the Fifteenth International Florida Artificial Intelligence Research
Society (FLAIRS). AAAI Press.

[59] PEREIRA, F. C. 2005. A computational model of creativity. Ph.D. thesis, Universidade de
Coimbra.

[60] PEREIRA, F. C., Ed. 2007. Creativity and artificial intelligence a conceptual blending ap-
proach. Applications of Cognitive Linguistics, vol. 4. Mouton de Gruyter, Berlin.

[61] PIERCE, B. C. 1991. Basic category theory for computer scientists. Foundations of Com-
puting Series. MIT Press, Cambridge, MA.

[62] PLATE, T. A. 2003. Holographic Reduced Representation: Distributed Representation for
Cognitive Structures. CSLI Lecture Notes. Center for the Study of Language and Information.

[63] POIGNE, A. 1986. Elements of categorical reasoning: products and coproducts and some
other (co-)limits. In Category theory and computer programming (Guildford, 1985), D. Pitt,
S. Abramsky, A. Poigné, and D. Rydeheard, Eds. Lecture Notes in Computer Science, vol. 240.
Springer, Berlin, 16-42.

[64] QUILLIAN, M. 1968. Semantic memory. Semantic Information Processing.
[65] RAOULT, J. 1984. On graph rewritings. Theoretical Computer Science 32, 1-2, 1-24.

[66] ROBINSON, E. AND ROSOLINI, G. 1988. Categories of partial maps. Information and
Computation 79, 2, 95-130.

[67] SANNELLA, D. AND TARLECKI, A. 2012. Foundations of Algebraic Specification and
Formal Software Development. Monographs in Theoretical Computer Science. An EATCS
Series. Springer.

[68] SCHMIDT, M., KRUMNACK, U., GUST, H., AND KUHNBERGER, K. 2014. Heuristic-
driven theory projection: An overview. In Computational Approaches to Analogical Reasoning:
Current Trends, H. Prade, G. Richard, H. Prade, and G. Richard, Eds. Studies in Computational
Intelligence, vol. 548. Springer, Chapter 7, 163—-194.

[69] SCHWERING, A., KRUMNACK, U., KUHNBERGER, K.-U., AND GUST, H. 2009. Syntactic
principles of heuristic-driven theory projection. Cognitive Systems Research 10, 3, 251-269.

[70] TARLECKI, A. 2014. Category theory in foundations of computer science. Slides of a
Winter Semester Course of 2013/2014. Electronically available at http://www.mimuw.edu.
pl/~tarlecki/teaching/ct/index.html.

[71] THAGARD, P. 2010. The Brain and the Meaning of Life. Princeton University Press.

[72] THAGARD, P. AND STEWART, T. C. 2011. The AHA! experience: Creativity through emer-
gent binding in neural networks. Cognitive Science 35, 1, 1-33.

[73] VEALE, T. AND KEANE, M. 1997. The competence of sub-optimal theories of structure
mapping on hard analogies. In IJCAI. 232-237.

72 October 15, 2014 611553


http://www.mimuw.edu.pl/~tarlecki/teaching/ct/index.html
http://www.mimuw.edu.pl/~tarlecki/teaching/ct/index.html

D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

[74] VEALE, T. AND O’DONOGHUE, D. 2000. Computation and blending. Cognitive Linguis-
tics 11, 3-4, 253-282.

[75] WIGGINS, G. A. 2006. A preliminary framework for description, analysis and comparison
of creative systems. Knowledge-Based Systems 19, 7, 449—-458.

611553 October 15, 2014 73



D2.1 Reasoning with Amalgams

A Characterisation of %-colimits in Pfn

The aim of this section is to provide a characterisation of the notion of %—colimits (see Defini-
tion 4.16) in the case of the ordered category Pfn (with the extension partial order). The content of
such characterisation is stated in Theorem A.4. It is worth saying that most of the argument here
provided can be carried out in the more general setting of having an ordered category with partial
orders that are dcpos and composition being Scott-continuous (cf. Page 43).

To start dealing with %—colimits in Pfn it is convenient to realise that the system of inequations
involved in the definition can be easily solved in the ordered category Rel of binary relations.
Indeed, it is well-known that the following definition

= : Rel(4,C) xRel(A,D) —> Rel(C,D)
(R,S) — R=S8:={(x,y) eCxD|VzeA(if (z,x) €Rthen (z,y) €S)}

fulfills that for every relation Z,
RZCS iff ZCR=S.

Therefore, the previously defined relation R = S happens to be the maximum element of {Z |
R;Z C S}. An immediate consequence of such fact is the following result.

Lemma A.1. Let D be a lax diagram in Pfn and let ¢ be a lax cocone over D. Then, the following
statements are equivalent.

1. cisa %—colimit over D.

2. For every lax cocone 0 over D, it happens that the binary relation (\{cx = 0x | X € Node}
is functional.

Therefore, from now on our purpose is to characterise the second condition in Lemma A.1,
and this is going to be possible using a surjectivity condition. Before doing so we provide a lot
of conditions that happen to be equivalent in the context of Pfn. The following equivalences are
stated dealing with only one morphism, but it is obvious it can also be stated for a family of
morphisms following the same idea given in Footnote 8. Let us also say that the first condition
was seen in Page 45 to hold for all %—colimits.

Proposition A.2. Let f: A — B be a morphism in Pfn. Then, the following statements are all
equivalent.

1. For every morphisms hy and hy, if f;h) = f;hy then hy and hy are compatible.
2. f is surjective.
3. fis an epimorphism (i.e., for every morphisms hy and hy, if f;hy = f;hy then hy = hy).

4. f is a compatibly epimorphism (i.e., for every morphisms hy and hy, if f;h; and f;h; are
compatible functions, then hy and hy are also compatible).

5. fis a semiepimorphism (i.e., for every morphisms hy and hy, if f;hy C f;hy then hy T hy).

74 October 15, 2014 611553



D2.1 Reasoning with Amalgams FP7-1CT-2013-10 Collaborative Project 611553 COINVENT

Proof. Some of these equivalences are very well-known in the literature; and the new ones can be
proved using the same standard arguments (e.g., if f is not surjective then it is easy to provide two
functions h; and hy such that f;h; = f;h, while h; and hy are not compatible). O

Proposition A.3. Let D be a lax diagram in Pfn and let ¢ be a lax cocone over D which is jointly
epimorphic. Then, for every family {Rx | X € Node} of binary functional relations it holds that
the binary relation (\{cx = Rx | X € Node} is functional.

Proof. Let us suppose that both (x,y) and (x,y’) are elements in the binary relation (\{c, = Rx |
X € Node}. Using that ¢ is jointly epimorphic we know that there is some node X and some
element a € src(cy) such that c¢y(a) = x. Thus, (a,x) € c¢x. Using that (x,y) € ¢x = Rx and
(x,¥') € cx = Ry, together with the definition of =, we deduce that (a,y) € Rx and (a,y’) € Rx.
Since Ry is functional we conclude that y = y’, which finishes the proof. ]

Theorem A.4 (Characterization of %—colimits in Pfn). Let D be a lax diagram in Pfn and let ¢ be
a lax cocone over D. Then,

cisa %-colimit over D iff ¢ is jointly epimorphic.

Proof. The rightwards implication is a consequence of what was seen in Page 45 (together with
Proposition A.2). And the leftwards implication is a consequence of Lemma A.1 and Proposi-
tion A.3. U

In the particular case of considering a V-shaped diagram we obtain the following corollary
(cf. Definition 4.17).

Corollary A.5 (Characterization of %—pushouts in Pfn). A %-pushout ofaspan B f@ A £> B

is given by a lax cocone

81 c 82
8
B, C 2 B
f A/sz

such that Im(g,) UIm(g) UIm(g,) = C.

611553 October 15, 2014 75



	Introduction
	Background
	Conceptual Blending
	Constitutional Elements of Conceptual Blending
	Optimality Principles
	The Generic Space
	The Container Image Schema
	The Source-Path-Goal Image Schema


	Computational Models of Conceptual Blending
	The Alloy Algorithm and the Griot System
	Constitutive Elements of Conceptual Blending in Alloy
	Optimality Principles
	Structural Blending
	Strengths and Weaknesses of Alloy and Griot

	Sapper
	Constitutive Elements of Blending
	Optimality Principles
	Strengths and Weaknesses

	Divago
	Constitutive Elements of Blending
	Optimality Principles
	Strengths and Weaknesses

	Blending by Heuristic-Driven Theory Projection (HDTP)
	Constitutive Elements of Blending
	Optimality Principles
	Strengths and Weaknesses

	A Neurological Account on Combinatorial Creativity
	Constitutive Elements of Blending
	Optimality Principles
	Strengths and Weaknesses


	A Formal Theory of Blending as Colimits and Amalgams
	Blending as Colimits
	Category Theory Preliminaries
	Colimits in Ordered Categories

	Blending as Amalgams
	Amalgams
	Comparing Amalgams and Blends
	An Example: Computer Icons

	Relating Colimits and Amalgams
	Preliminaries
	A Category-Theoretical Account of Amalgams


	The Theory at Work
	The Buddhist Monk Riddle
	CASL and its Application for Blending
	The Formalisation of the Riddle
	Input Spaces
	The Generic Space
	Composition of the Blend – Amalgamating the Input Spaces
	Completion of the Blend – Adding Background Knowledge
	Elaboration of the Blend – Proving the Riddle


	Concluding Thoughts
	Bibliography
	Characterisation of 32-colimits in Pfn

