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Abstract

This deliverable describes the e↵orts and work achieved for the Tasks 2.2, 2.4 and 2.4 within the COINVENT project.
The di↵erent articles attached tackle the process of concept invention from di↵erent perspectives using arguments,
values, audiences and conceptual coherence.
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Executive Summary

In this deliverable we tackle two open questions in concept invention processes, in which
we use conceptual blending as a tool for modeling the creation of new concepts. On the one
hand, we investigate how a Rich Background can support the discovery of concepts to be
blended. On the other hand, we study how computational argumentation and coherence
can be used to evaluate creative artefacts.

The deliverable consists of the following articles, three of them published in the In-
ternational Conference of Computational Creativity (editions 2015 and 2016) and one of
them submitted to the C3GI Computational Creativity, Concept Invention, and General
Intelligence Workshop, 2016:

1. R. Confalonieri, J. Corneli, A. Pease, E. Plaza, M, Schorlemmer. Using Argumenta-
tion to Evaluate Concept Blends in Combinatorial Creativity. In Proceedings of the
6th International Conference on Computational Creativity, ICCC 2015.

2. R. Confalonieri, E. Plaza, M, Schorlemmer. A Process Model for Concept Invention.
Accepted in the 7th International Conference on Computational Creativity, ICCC
2016.

3. M, Schorlemmer, R. Confalonieri, E. Plaza, Coherent Concept Invention. Submitted
to the C3GI Computational Creativity, Concept Invention, and General Intelligence
Workshop, 2016.

4. M. Kaliakatsos Papakostas, R. Confalonieri, J. Corneli, A.Zacharakis, E.Cambouro-
poulos. An Argument-based Creative Assistant for Harmonic Blending. Accepted in
the 7th International Conference on Computational Creativity, ICCC 2016.

In [1], we motivate the use of computational argumentation for evaluating concept
blends and other forms of combinatorial creativity. We exemplify our approach in the
domain of computer icon design, where icons are understood as creative artefacts generated
through concept blending. We present a semiotic system for representing icons, showing
how they can be described in terms of interpretations and how they are related by sign
patterns. The interpretation of a sign pattern conveys an intended meaning for an icon.
This intended meaning is subjective, and depends on the way concept blending for creating
the icon is realised. We show how the intended meaning of icons can be discussed in an
explicit and social argumentation process modeled as a dialogue game, and show examples
of these following the style of Lakatos. In this way, we are able to evaluate concept blends
through an open-ended and dynamic discussion in which concept blends can be improved
and the reasons behind a specific evaluation are made explicit. In the closing section,
we explore argumentation and the potential roles that can play at di↵erent stages of the
concept blending process.
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In [2], we propose a computational framework that models concept invention. The
framework is based on conceptual blending, a cognitive theory that models human cre-
ativity and explains how new concepts are created. Apart from the blending mechanism
modeling the creation of new concepts, the framework considers two extra dimensions such
as origin and destination. For the former, we describe how a Rich Background supports
the discovery of input concepts to be blended. For the latter, we show how arguments,
promoting or demoting the values of an audience, to which the invention is headed, can
be used to evaluate the candidate blends created. Throughout the paper, we exemplify
the computational framework in the domain of computer icons.

In [3], we address the problem on how newly invented concepts are evaluated with
respect to a background ontology of conceptual knowledge so as to decide which of them
are to be accepted into a system of familiar concepts, and how this, in turn, may a↵ect
the previously accepted conceptualisation. As technique to tackle this problem we explore
the applicability of Paul Thagard’s computational theory of coherence. In particular, we
propose a formalisation of Thagard’s notion of conceptual coherence for concepts repre-
sented in the AL description logic and explore by means of an illustrative example the
role coherence may play in the process of conceptual blending.

In [4], we describe a tool that assists music experts in the evaluation of harmonic
blending by means of arguments. Conceptual blending is a powerful tool for computational
creativity where, for example, the properties of two harmonic spaces may be combined
in a consistent manner to produce a novel harmonic space. However, deciding about
the importance of property features in the input spaces and evaluating the results of
conceptual blending is a nontrivial task. In the specific case of musical harmony, defining
the salient features of chord transitions and evaluating invented harmonic spaces requires
deep musicological background knowledge. In this paper, we propose a creative tool that
helps musicologists to evaluate and to enhance harmonic innovation. This tool allows a
music expert to specify arguments over given transition properties. These arguments are
then considered by the system when defining combinations of features in an idiom-blending
process. A music expert can assess whether the new harmonic idiom makes musicological
sense and re-adjust the arguments (selection of features) to explore alternative blends that
can potentially produce better harmonic spaces. We conclude with a discussion of future
work that would further automate the harmonisation process.
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Abstract
This paper motivates the use of computational argumentation
for evaluating ‘concept blends’ and other forms of combina-
torial creativity. We exemplify our approach in the domain of
computer icon design, where icons are understood as creative
artefacts generated through concept blending. We present a
semiotic system for representing icons, showing how they
can be described in terms of interpretations and how they
are related by sign patterns. The interpretation of a sign pat-
tern conveys an intended meaning for an icon. This intended
meaning is subjective, and depends on the way concept blend-
ing for creating the icon is realised. We show how the in-
tended meaning of icons can be discussed in an explicit and
social argumentation process modeled as a dialogue game,
and show examples of these following the style of Lakatos
(1976). In this way, we are able to evaluate concept blends
through an open-ended and dynamic discussion in which con-
cept blends can be improved and the reasons behind a specific
evaluation are made explicit. In the closing section, we ex-
plore argumentation and the potential roles that can play at
different stages of the concept blending process.

Introduction
A proposal by (Fauconnier and Turner, 1998) called concept
blending has reinvigorated studies trying to unravel the gen-
eral cognitive principles operating during creative thought.
According to (Fauconnier and Turner, 1998), concept blend-
ing is a cognitive process that serves a variety of cognitive
purposes, including creativity. In this way of thinking, hu-
man creativity can be modeled as a blending process that
takes different mental spaces as input and blends them into
a new mental space called a blend. This is a form of combi-
natorial creativity, one of the three forms of creativity iden-
tified by Boden (2003). A blend is constructed by taking
the existing commonalities among the input mental spaces
(called the generic space) into account, and by projecting the
structure of the input spaces in a selective way. In general
the outcome can have an emergent structure arising from a
non-trivial combination of the projected parts. Different pro-
jections lead to different blends and different generic spaces
constrain the possible projections.

This poses challenges from a computational perspective:
large number of possible combinations exhibiting vastly dif-
ferent properties can be constructed by choosing different
input spaces, using different ways to compute the generic

space, and selecting projections. Within the Concept Inven-
tion Theory project1 (COINVENT), we are currently devel-
oping a computational account of concept blending based on
insights from psychology, Artificial Intelligence (AI), and
cognitive modelling (Schorlemmer et al., 2014). One of our
goals is to address this combinatorial nature. One potential
outcome of this work is a deeper understanding of the way
combinatorial creativity works in general.

The formal and computational model for concept blend-
ing under development in COINVENT (Bou et al., 2014)
is closely related to the notion of amalgam (Ontañón and
Plaza, 2010). Amalgamation has its root in case-based rea-
soning and focuses on the issue of combining solutions com-
ing from multiple cases. Assuming the solution space can be
characterised as a generalisation space, the amalgam opera-
tion combines input solutions into a new solution that con-
tains as much information from the two inputs solutions as
possible. When input solutions cannot be combined, amal-
gamation generalises them by dropping some of their prop-
erties. This process of generalisation and combination can
be expensive from a computational point of view, depending
on the search space to be explored.

The amalgam-based approach for computing blends
makes explicit the combinatorial nature of concept blending,
which raises the issue of evaluating and selecting novel and
valuable blends as opposed to those combinations that lack
interest or significance. Although Fauconnier and Turner
(1998) suggest a number of qualitative criteria that can be
used for evaluating concept blends, it is not straightforward
to chararacterise them in a computational model.

In this paper, we propose to explore an argumentative ap-
proach to understanding and evaluating the meaning, inter-
est, and significance of concept blends. Specifically, we pro-
pose to view evaluating blends as a process of argumenta-
tion, in which the specifics of a blend are pinpointed and
opened up as issues of discussion. Our intuition is that in
the context of new ideas, proposals, or artworks, people use
critical discussion and argumentation to understand, absorb
and evaluate. We also consider the constructive roles that
argumentation can play in concept blending.

Computational argumentation models have recently ap-
peared in AI applications (Bench-Capon and Dunne, 2007;

1See http://www.coinvent-project.eu for details.
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Figure 1: An amalgam diagram with inputs I1 and I2 and
blend B obtained by combining Ī1 and Ī2. The arrows indi-
cate generalisation.

Rahwan and Simari, 2009), and we believe that incorpo-
rating argumentation can foster the development of a fuller
computational account of combinatorial creativity. The cur-
rent paper develops these themes at the level of (meta-)
design; implementation is saved for future work.

Roles of Argumentation in Concept Blending
Consider the amalgam diagram modeling the concept blend-
ing process (Figure 1): two input spaces I1, I2, two of their
possible generalisations Ī1, Ī2, which have a generic space
G and blend B. When two input spaces cannot be combined
because they do not satisfy certain criteria, the inputs have
to be generalised for omitting some of their specifics. The
combination of each specific pair Ī1, Ī2 yields a blend.

Informally, we can imagine argumentation taking place
at various points in the amalgam diagram. In general this
would happen in response to indeterminacy, that is, when
some features of the diagram are underdetermined. We fore-
see that argumentation can be used:
a. to express opinions or points of view that can be used for

guiding the selection/omission of specific parts of the in-
put spaces; in particular, to select a specific pair of gener-
alisation Ī1, Ī2 of the input spaces in the blending process;

b. to provide a computational setting for modeling discus-
sions around the quality of a creative artefact, with the
aim of evaluating and refining the generated blends.
In the first case, arguments would be about generalisation,

i.e. which features should be preserved from I1 and which
features should be preserved from I2. More complex infer-
ences could be involved, for example in a case where I1 is
fixed, and constraints and various optimality criteria on the
blend are imposed, which then yield various constraints on
what the other input I2 should be. We return to this point in
the discussion section, and we focus for the most part on the
second case.

In the second case, argumentation would be used to eval-
uate a range of blends, and the evaluation is carried out post
hoc, by a variation of try-it-and-see. A range of blends are
trialled, each one bringing out different (un)intended mean-
ings. The evaluation is modeled as an argument, or dialogue
in which the specifics of a blend are pinpointed and opened
up as issues of discussion. This dialogue can be considered
as an introspective evaluation, although it usually takes place
among several parties as a means for the social development
and understanding of creative artefacts. In this paper, we
focus on this role.

Our Approach
To exemplify our approach, we take the domain of computer
icons into account. We assume that concept blending is the
implicit process which governs the creative behavior of icon
designers who create new icons by blending existing icons
and signs. To this end, we propose a simple semiotic sys-
tem for modeling computer icons. We consider computer
icons as combinations of signs (e.g. document, magnifying
glass, arrow etc.) that are described in terms of interpre-
tations. Interpretations convey actions-in-the-world or con-
cepts and are associated with shapes. Signs are related by
sign-patterns modeled as qualitative spatial relations such
as above, behind, etc. Since sign-patterns are used to com-
bine signs, and each sign can have multiple interpretations,
a sign-pattern used to generate a computer icon can convey
multiple intended meanings to the icon. These are subjec-
tive interpretations of designers when they have to decide
what is the best interpretation an icon can have in the real
world. In this paper, we show how the intended meaning of
new designed (blended) icons can be evaluated and refined
by means of Lakatosian reasoning.

Background
Computational argumentation
Computational argumentation in AI aims at modeling the
constitutive elements of argumentation, that are i) argu-
ments, ii) attack relations modeling conflicts, and iii) ac-
ceptibility semantics for selecting valid arguments (Bench-
Capon and Dunne, 2007; Rahwan and Simari, 2009).

The most well-known computational argumentation
framework is due to Dung (1995). Dung defines an abstract
framework to represent arguments and binary attack rela-
tions, modeling conflicts, by means of a graph. He defines
different acceptibility semantics to decide which arguments
are valid and, consequently, how conflicts can be resolved
(Figure 2).

a1 a2 a3

Figure 2: Dung framework example: Nodes represent argu-
ments and edges (binary) attack relations. Argument a1 is
attacked by a2 which is attacked by a3. Thus, a2 is defeated
and a1 can be accepted. a3 is also accepted.

Abstract argumentation frameworks do not deal with how
arguments are generated and exchanged. They merely fo-
cus on attack relations between arguments and acceptibility
semantics. However, the intrinsic dialectical nature of argu-
mentation is fully explored when an explicit argumentation
process is considered. Then, the purpose of a dialogue be-
comes essential to determine how arguments should be gen-
erated and exchanged, and how a dialogue should be struc-
tured (Walton and Krabbe, 1995).

Lakatosian argument and dialogue
Lakatos (1976) was a philosopher of mathematics who de-
veloped a model of argument, presented as a dialogue, to
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Figure 3: Our interpretation of Lakatos’s game patterns.

describe ways in which mathematicians explore and develop
new areas of mathematics. In particular, he looked at the
role that conflict plays in such explorations, presenting a ra-
tional reconstruction of a dialogue in which claims are made
and counterexamples are presented and responded to in var-
ious different ways. His resulting model describes concep-
tual continuity and change in the growth of knowledge, and
contains dialogue moves, or methods, which suggest ways
in which concepts, conjectures and proofs are fluid and open
to negotiation, and gradually evolve via an organic process
of interaction and argument between mathematicians. These
dialogue moves are:
Surrender consists of abandoning a conjecture in the light

of a counterexample.
Piecemeal exclusion is an exception-barring method that

deals with exceptions by excluding a class of counterex-
amples, i.e., by generalising from a counterexample to a
class of counterexamples which have certain properties.

Strategic withdrawal is an exception-barring method that
uses positive examples of a conjecture and generalises
from these to a class of object, and then limits the domain
of the conjecture to this class.

Monster-barring/monster-adjusting is a way of exclud-
ing an unwanted counterexample. This method starts with
the argument that a ‘counterexample’ can be ignored be-
cause it is not a counterexample, as it is not within the
claimed concept definition. Rather, the object is seen as a
monster which should not be allowed to disrupt a harmo-
nious conjecture. Using this method, the original conjec-
ture is unchanged, but the meaning of the terms in it may
change. Monster-adjusting is similar, in that one reinter-
prets an object in such a way that it is no longer a coun-
terexample, although in this case the object is still seen as
belonging to the domain of the conjecture.
The moves above are not independent processes; much of

Lakatos’s work stressed the interdependence of creation and
justification. These moves describe the evolution of both ar-
guments and conclusions in mathematics, and as such con-
stitute argument patterns, or schemes. However, they are
a rational representation of exchanges between mathemati-
cians and describe dynamic, rather than static arguments,
presented as a dialogue. Thus, they also have temporal struc-
ture, and can be seen as a dialogue game, in which at any
point various dialogue moves are applicable (see (Pease et
al., 2014) for a description of Lakatos’s methods in these

terms). The fact that we include negotiations over definitions
and changes in the conclusions being argued means that it is
difficult to apply traditional abstract argumentation frame-
works, which assume that such aspects are stable. However,
we can see some of the moves in terms of Dung’s frame-
work: for instance if an initial argument for a conjecture
forms a1 in Figure 2, then a2 might be a counterexample to
the conjecture, and a3 might be the monster-barring move.

The Lakatosian way of conceiving the reasoning as an
open-ended discussion about a problem suggests that we
can exploit Lakatos’s moves for structuring dialogues for
the evaluation of creative artefacts. Evaluation in creativity
is not a static and rigid process, and the discussion should
flow in a dynamic way. As such, in this paper, we propose
to use Lakatosian reasoning to model the negotiation about
the intended meaning of generated blends (icons). Figure 3
shows the dialogue game we will adopt to model these di-
alogues. For another formal framework of dialogue games
for argumentation see (Prakken, 2005).

Icons and Signs
We follow a semiotic approach to specify the intended mean-
ing of computer icons. Semiotics is a transdisciplinary ap-
proach that studies meaning-making with signs and symbols
(Chandler, 2004). Although it is clearly related to linguis-
tics, semiotics also studies other forms of non-linguistic sign
systems and how they may convey meaning; this includes
not only designation, but also analogy, and metaphor. Al-
though some people may regard Peirce’s Sign Theory as the
origin of semiotics, Saussure founded his semiotics (semi-
ology) in the social sciences. Currently, cognitive semiotics
and computational semiotics take their own perspectives on
the relation between sign and meaning-making. In this pa-
per, we take a semiotic approach to describe computer icons
in the sense that icons, as a spatial pattern of shapes, are
viewed as signs, and compositions of signs are interpreted
to convey a meaning, as when we say ‘this icon means the
download is still active’.

The shapes recurrently used in icons are interpreted as
signs; screens, magnifying glasses and folders are examples
of signs. A magnifying glass sign can be used in different
icons in such a way that its meaning is context-dependent,
that is, it depends on other signs related to it in different
icons. We associate to each sign a set of interpretations, that
encode the kinds of intended meaning associated to that sign
as actions-in-the-world or concepts.

An icon is represented as a pattern defined by a collection
of signs and qualitative spatial relations like above, behind,
etc. We can find patterns of meaning that are shared among
different icons by analysing recurrent patterns of signs and
their spatial relation. We call them sign patterns. A sign
pattern has an associated collection of interpretations that
encode the intended meanings associated to that sign pattern.

Signs, sign patterns, and interpretations, which we will
use in the paper, can be built by analysing and annotating
existing libraries of computer icons. As we shall see, the in-
herent polysemy of signs, sign patterns and icons opens the
way to use arguments for evaluating the quality or adequacy
of new icons created by concept blending.
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Sign ID

Intepretations

Document

{info-container, document, text, page, file}

SIGN

(I) The structure of the DOCUMENT sign, including as-
sociated shapes and interpretations.

Shapes

Sign ID

Intepretations

MagnifyingGlass

{examine, analyse, preview, search, find-in}

SIGN

(II) The structure of the MAGNIFYINGGLASS sign, in-
cluding associated shapes and interpretations.

Figure 4: Example of signs

(a) (b) (c) (d)

Up
Down
Arrow

X

(I) (a) the sign pattern FROM-DOWNARROW with three examples of
the pattern where X is a sign for (b) cloud content, (c) document con-
tent, and (d) audio content.

(a) (b) (c)

Down
Arrow

X
Up

(II) (a) the sign pattern DOWNARROW-TOWARD with
two examples of the pattern where X is a sign for (b) a
hard disk storage, and (c) an optical disk storage.

Figure 5: Example of different sign patterns used with the same sign DOWNARROW

A semiotic system for icons
In this section, we will formalise the notions presented
above. A sign S is a tuple hid, F , Ai where id is a sign iden-
tifier, F is a set of shapes embodying the sign S and A is a
set of interpretations. We use S to denote the available set
of signs. Figure 4 provides two examples. Figure 4I shows
the structure of the DOCUMENT sign, with several shapes
embodying the sign, and a list of interpretations that express
how this sign is used in different ways to convey meanings
such as info-container, document, text, page, file. Intuitively,
this means that the shapes used in the icons are sometimes
interpreted as a document and other times as a page, etc.
Moreover, the specific shapes can be used interchangeably to
embody a DOCUMENT, i.e. there is no clear distinction, re-
garding the shapes, between document vs. page vs. file. An-
other example of a sign is the MAGNIFYINGGLASS shown
in Figure 4II, with interpretations examine, analyse, preview,
search, and find-in.

We will also describe a library of annotated icons I,
where each icon I 2 I consists of two parts: (1) a spatial
configuration of signs and (2) the intended meaning of that
icon. For instance, in Figure 5I, the icon (b) has the spatial
configuration of a ‘cloud on top of a downward-arrow’ and
its meaning is ‘downloading content from the cloud’.

Sign patterns
In our framework, sign patterns relate signs in icons using
spatial qualitative relationships such as above, behind, up,
down, left, etc. We assume that these relationships are rep-
resented as binary predicates, Above(X,Y), Up(X,Y), etc.,
where X and Y are variables ranging over signs in S . For
our current purposes, we use the qualitative spatial relation-

ships defined in (Falomir et al., 2012).
Let us consider two examples of sign patterns that in-

clude the DOWNARROW sign. DOWNARROW has a vertical
downward-pointing arrow shape and is associated with the
interpretations {down, downward, downloading, download-
from and download-to}. The sign pattern called FROM-
DOWNARROW (shown in the schema labelled (a) in Fig-
ure 5I) uses the qualitative spatial relationship up between
a variable X and the sign DOWNARROW. Examples (b),
(c) and (d) in Figure 5I illustrate the intuitive meaning of
the sign pattern FROM-DOWNARROW: ‘downloading X’.
Thus, example (b) refers to downloading cloud content, (c)
document content, and (d) audio content.

The inherent asymmetry of arrows in general, and arrow
signs particularly, can be appreciated when considering the
opposite spatial relation, when the sign DOWNARROW is
“up” from another sign (Figure 5II). Then, the sign pattern
DOWNARROW-TOWARD is used to mean that X is the des-
tination of the downloading. Example icons (b) and (c) are
intended to mean that the data being downloaded (whose
type or origin is now elided) is to be stored in a destination
such as a hard disk or an optical disk.

Evaluating Blends using Argumentation
As briefly described previously, the amalgam-based compu-
tation of concept blending amounts to combine different in-
put spaces into a new space, called blend, by taking the com-
monalities of the inputs into account, by generalising some
of their specifics and by projecting other elements. In the
following, we describe how concept blending can account
for modeling the creative process of a designer of computer
icons.
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Figure 6: Generating an icon interpreted as Preview-Page
through amalgam-based concept blending.

A design scenario
Assume a designer is looking for creating a new icon with
the intended meaning of previewing a document or a page.
The creation of such icon can be achieved by the following
amalgam-based concept blending process (Figure 6). In ad-
dition to the DOCUMENT and MAGNIFYINGGLASS signs,
we assume we have available a HARDDISK sign and a PEN
sign which have already been used to make icons.

The input mental spaces. The input mental spaces
of the designer are an icon of a hard-disk with a mag-
nifying glass hovering above it, whose meaning is
Search-HardDiskContent, and an icon of a document
with a pen above it, whose meaning is Edit-Document.

The generic space. The sign pattern Above(X,Y)
is used in both icons. The first icon contains
the relation Above(MAGNIFYINGGLASS, HARDDISK)
between the MAGNIFYINGGLASS and the HARD-
DISK, and the second contains the relation Above
(PEN,DOCUMENT) between the PEN and the DOCU-
MENT.

Further generalisation. Two generalisation steps
are needed: Above(MAGNIFYINGGLASS,HARDDISK)
! Above(MAGNIFYINGGLASS,Y); correspondingly,
Above(PEN,DOCUMENT) ! Above(X,DOCUMENT).

Combination via variable substitution. We com-
bine the schemas Above(MAGNIFYINGGLASS, Y) and
Above(X, DOCUMENT) via [X/MAGNIFYINGGLASS,
Y/DOCUMENT]. The icon of a page with a magnifying
glass hovering above it is generated.

The intended meaning. The designer associates to
the icon the intended meaning of Preview-Page, by
selecting the interpretations (Preview, Page) for the
MAGNIFYINGGLASS and DOCUMENT signs.

In this case, the designer decided that the intended
meaning of Above(MAGNIFYINGGLASS, DOCUMENT) is
Preview-Page, that is, a page can be examined without open-
ing it. However, during the creative process, the designer
could have generated other blends, not only by combin-
ing other signs, but also by selecting different interpreta-
tions associated to the MAGNIFYINGGLASS and DOCU-
MENT signs. For instance, the icon in Figure 7 still repre-
sents a page with a magnifying glass hovering above it, but
it has been given a different intended meaning.

Find-in-Page Magnifying 
Glass Document Object Level

Above

Interpretation LevelFind-in Page

Figure 7: An example of interpreting the sign pattern of an
icon as Find-in-Page.

The meaning of a blended icon cannot simply be considered
right or wrong: interpretation depends on different points of
view. Thus the evaluation of whether it is useful or valid for
a specific purpose can be the object of a discussion.

Arguments about intended meanings
In the icon domain, arguments may include a clear interpre-
tation of any constituent signs in the icon if it is a composi-
tion of signs, or a good fit with other icons in the icon set.

For example, we can consider a counter-argument, i.e. an
argument that attacks the interpretation a1 “magnifying
glass above document means Preview-Page” in Figure 6, to
be phrased as follows:

a2 : “However, the icon in Figure 6 can also be inter-
preted to mean Find-in-Page.”

The rationale is that the MAGNIFYINGGLASS sign can often
be understood as finding or searching for something. Thus,
the icon can be also interpreted as Find-in-Page by associat-
ing the interpretation find-in instead of preview for the same
sign MAGNIFYINGGLASS (Figure 7).

This attacking argument can be made at an ab-
stract/conceptual level, for instance, by taking other possible
blends of the DOCUMENT and MAGNIFYINGGLASS signs
related by the sign pattern Above(X,Y) into account. Or, al-
ternatively, if there is an icon library that contains an icon
that ‘satisfies’ the argument above, then this attacking argu-
ment can be supported by a specific counterexample. Any
of these two forms of attack evaluates negatively the icon in
Figure 6. Therefore, if there are several alternative designs
for a new icon, this attacking argument diminishes the de-
gree of optimality/adequacy of that design with respect to
alternative designs.

The original interpretation can be defended, as usually
done in computational argumentation models, by a new ar-
gument that attacks the attacking argument a2. For instance,
the designer may say:

a3 : “The icon in Figure 6 can only be interpreted dif-
ferently if MAGNIFYINGGLASS is understood to mean
find-in instead of preview. However, the other icons in



my library use MAGNIFYINGGLASS to mean preview,
not find-in.”

Argumentation semantics can then be used, once a network
of arguments is built, to determine the outcome. For instance
whether argument a1, the original interpretation, is defeated
or not can be determined as follows (Figure 2): in this ex-
ample a3 has no attack, so it is undefeated, which means
it defeats a2; since a2 is defeated, the attack against a1 is
invalid and a1 is undefeated (i.e. is accepted).

Arguments about the intended meanings of an icon can
be embedded in a dialogue modeled in terms of Lakatos’s
moves and the dialogue pattern shown in Figure 3.

Lakatosian reasoning for blend evaluation
Here we present a Lakatos-style dialogue between two play-
ers, a proponent P and an opponent O. The goal of each
player is to persuade the other player of a point of view, in
this paper, the intended meaning of a new blended icon. In
such a setting, we expect to see negotiations over the mean-
ing of an icon take place between experts and novices, or
between people designing icons and people using (interpret-
ing) them, or various combinations.

To discuss a given icon using Lakatosian reasoning, we
assume that an initial conjecture is about the interpretation
of an icon usually being an action-in-the-world or a concept,
together with an example of a particular icon and a partic-
ular interpretation. The conjecture could be constructed by
inductive generalisation.
Example 1. In this example, Lakatosian reasoning is used
for discussing the intended meaning of a new icon generated
by concept blending:

P1: “An icon with a magnifying glass over a page means
Preview-Page” (Conjecture)

O1: “I disagree, this icon (Figure 7) means Find-in-page.”
(Counterexample)

P2: “No, this is a different case because the magnifying
glass must be over pages with text on them to magnify (it
shows what we’re about to magnify).” (Monster-barring)

After this dialogue, it is agreed that the intended meaning of
the icon is Preview-Page and the icon itself has been clar-
ified. Alternatively, the proponent and the opponent could
make a different evaluation by following different moves.
For instance, if the proponent accepts the counterexample,
then the intended meaning of the icon can be refined due to
piecemeal exclusion:

P1: “An icon with a magnifying glass over a page mean
Preview-Page” (Conjecture)

O1: “I disagree, this icon (Figure 7) means Find-in-page.”
(Counterexample)

P3: “Ok, only icons with a magnifying glass over a page
with text mean Preview-Page”. (Piecemeal exclusion)

After this dialogue the intended meaning about the new icon
has been changed by modifying the conjecture and taking
the counterexample into account.

Sometimes players have different points of view due to
the sign patterns they have used in their concept blending.

(I) Composite cloud icon (II) Stateful component (III) Processing component

Figure 8: Interpreting the design of cloud icons2

Example 2. Let us imagine that the proponent has gen-
erated an intended meaning for an icon using the FROM-
DOWNARROW sign pattern, whereas the opponent has used
the DOWNARROW-TOWARD pattern (Figure 5 illustrates
these cases). The two players can engage in the following
dialogue:
P1: “Look at icons in Figure 5I, icons with a DOWNARROW

relate to content.” (Initial Conjecture)
O1: “The icon in Figure 5IIb has a DOWNARROW but

doesn’t relate to content.” (Counterexample)
O2: “The icon in Figure 5IIc also has a DOWNARROW but

doesn’t relate to content.” (Counterexample)
P2: “The conjecture is right because the two examples ac-

tually do relate to content as they are to do with storage
and content is part of storage.” (Monster-adjusting)

In this case, the proponent excludes the counterexamples us-
ing monster-adjusting, and reinterpreting them in a way that
they are not counterexamples anymore.

A conjecture might even be at a higher level, for asserting
that a particular metaphor is appropriate or inappropriate.

Example 3. For example, someone who is familiar with the
‘gear means adjust setting’ metaphor in one program may be
comfortable with it in another program:
P1: “ An icon containing the ‘gear’ sign is a good one for

Settings, because it invokes the idea of a gear change on a
bicycle” (Initial Conjecture)

O1: “The ‘gear’ sign does not invoke the idea of a gear
change on a bicycle from my point of view.” (Counterex-
ample)

P2: “Ok, you’re right, it does not invoke the idea of a gear
change on a bicycle, but it is often used for Settings.”
(Monster-adjusting)

Example 4. Argumentation may also consider the role a
given abstract design plays within a given icon set.
P1: “Even without knowing what the first or third icon in

Figure 8I stands for, I can make a conjecture that it has
to do with a server or a user interface accessed via the
cloud. However, with the second icon, I’m not sure what
it means. It is composed of various signs that I don’t un-
derstand. It’s probably badly designed.” (Conjecture)

O1: “Did you notice that icons in Figure 8II and Figure 8III
are both defined as part of the same icon set? They
mean ‘Stateful component’ and ‘Processing component’
respectively. Therefore, the second icon is actually well
designed, because it uses signs appearing in other icons
of the same icon set.” (Counterexample)
2From http://cloudcomputingpatterns.org.



P2: “But the second icon contains a pipe sign that is not
used anywhere within the icon set, so I still don’t know
what the second icon means. If there were an icon with
a pipe sign with a clear meaning, then I could understand
the second icon better. ” (Strategic withdrawal)

The main characteristic of employing Lakatosian reasoning
is that it allows a dynamic and social development of the in-
tended meaning of blended icons. This cannot be achieved
by using only abstract argumentation frameworks, since
they assume that the object of discussion does not evolve.
Therefore, having an argumentation process of this kind has
several advantages: it promotes not only open-discussions
around the meaning of an icon, but also the construction of
a discourse about how an intended meaning is obtained.

This is a desirable characteristic in computational cre-
ativity when evaluating creative outcomes such as concept
blends. In this way, the evaluation evolves into a refinement
process of an initial created concept, giving much more flex-
ibility at the moment of deciding whether a blend is suitable.

Discussion
We have illustrated the use of argumentation to evaluate
completed blends. We alluded earlier to the role argumenta-
tion can play in the generation of blends, for instance by sug-
gesting different ways to generalise the input spaces. Indeed,
successive statements may serve to carry out the steps in the
blending process iteratively, relaxing or refining as needed.
These steps can be modelled using Lakatos’s moves. From a
conjectural candidate solution, to additional criteria that re-
veal this blend to be a ‘monster’ (i.e. which identify features
of the candidate solution that cannot be allowed in the final
solution for one reason or another), to adjustments that yield
a more complete description of the problem and point the
way toward a more satisfactory solution. An example of us-
ing argumentation for deciding which generalisations to use
for creating a new icon is the following:

A: “We can create a different blend icon starting from the
same icons of before.” (see Figure 6)

B: “We could use the HARDDISK sign from the first icon
and the DOCUMENT sign from the second icon.”

A: “But putting the DOCUMENT sign above the HARD-
DISK does not make sense from my point of view.”

B: “You’re right, let’s use the HARDDISK sign from the first
icon and the PEN sign from the second icon.“

A: “Sounds good, now we have a Write-HardDisk icon.”

From this discussion and the previous sections, we think
that it is feasible to bring the framework of argumentation in-
side the concept blending process. Moreover, this appears to
work in a symmetric direction: the steps in an argumentation
process can be carried out through blending. For instance,
concept blending could be seen as the process behind the
creation of rational arguments (Coulson and Pascual, 2006).

One area closely akin to the icon domain is the domain
of sentences in a natural or artificial language. These can be
evaluated for their coherence, succinctness, and fitness-to-
purpose from a semantic standpoint (including relationship

to other sentences), among other criteria; cf. (Abramsky and
Sadrzadeh, 2014) for a category-theoretic view.

Since people have different standards for evaluation, they
frequently disagree about what constitutes a satisfactory re-
sult, be it a final outcome or a design decision that is only a
step the way to developing an artefact. They may also dis-
agree at a more fundamental level about what can be consid-
ered a valid point of view or an appropriate manner of con-
ducting an argument. For example, “Godwin’s law” states
that an online discussion ends when someone compares one
of the discussants to Hitler and whoever made the compar-
ison automatically loses the debate. Naturally, the validity
of this principle is itself debatable. During the course of ar-
gumentation, the goalposts may shift, as new information is
revealed about the domain under discussion, and about the
discussants themselves. The relationship between argumen-
tation and decision-making has been explored (Ouerdane,
2009), including the case of updating models of preferences
(Ouerdane et al., 2014); the latter is quite similar to our pre-
vious work on Lakatos’s games (Pease et al., 2014).

Conclusion and Future Work
Computational models of combinatorial creativity faces the
daunting issue of evaluating a large number of possible
novel combinations. Particularly, Fauconnier and Turner
(1998) propose a model that includes a collection of opti-
mality principles to guide the construction of a ‘well-formed
integration network’. Our computational model, based on
generalisations of input spaces and amalgams, makes this
combinatorial nature more explicit. The heuristic criteria
called ‘optimality principles’ are too underspecified to be
used as computational measures to evaluate and select pos-
sible blends. Moreover, alternative numeric measures may
be not enough to evaluate the quality or novelty of creative
artefacts. Our intuition is that in the context of creative out-
comes, people use argumentation to understand, criticise,
modify and evaluate them, and that computational argumen-
tation is a useful tool for computational creativity.

The domain of computer icons generated by blending,
where the evaluation of new icons is focused on their in-
tended meaning, shows that symbolic argumentation is a
process that is adequate to distinguish well-formed icons
from mix-and-match combinations, unambiguous and clear
icons from ambiguous or incomprehensible icons. This
domain supports our claim that numeric heuristic evalua-
tion measures are insufficient to recognise good blends, and
shows the usefulness of an argumentation-based process for
identifying good blends, detecting their critical problems,
and refining them in an evolving, open-ended process.

We have shown how Lakatosian reasoning can be used in
evaluating concept blending for icon design. Our approach
offers two main advantages. Firstly, the evaluation process
can improve the blend, since the dialogue about it refines
resulting blends. Secondly, the reasons behind a particular
evaluation are made explicit. This is crucial given recent
work on the importance of context in creativity judgments
(Charnley, Pease, and Colton, 2012; Colton, Pease, and
Charnley, 2011). Argumentation offers a framing story that



shows how and why a particular artefact was constructed,
which can be presented alongside the artefact itself.

We envision several future works. First, we intend to
specify an ontology for modelling the semiotic system pre-
sented and to build a library of icons. Having a domain
knowledge will allow us to generate arguments by induc-
tion, for instance, by analysing icons cases. Moreover, it will
also open the possibility to explore the use of value-based ar-
gumentation (Bench-Capon, Doutre, and Dunne, 2002) for
selecting the input icons to be used in the concept blend-
ing process. This latter point is important, since usually
the inputs of a blending process are assumed to be already
provided. Second, as far as the interpretation of icons is
concerned, we are thinking to take advantage of existing
approaches to natural language processing and understand-
ing, especially Construction Grammars (CxG). In CxG, the
grammatical construction is a pairing of form and content.
In our semiotic system, sign patterns seem equivalent to the
form, while interpretations would be akin to the content.
Working with a grammar would make evaluation more ex-
plicit, e.g. we could use quantitative measures of ambiguity;
and this would open many other domains for application.

Finally, we plan to implement Lakatosian reasoning by
employing existing computational tools for argumentation
(Devereux and Reed, 2010; Wells and Reed, 2012). Our goal
is to provide a computational argumentation framework and
to integrate it into the framework for computational creativ-
ity we are developing in the COINVENT project.

Acknowledgements
This work is partially supported by the COINVENT project
(FET-Open grant number: 611553).

References
Abramsky, S., and Sadrzadeh, M. 2014. Semantic unifica-

tion – A sheaf theoretic approach to natural language. In
Categories and Types in Logic, Language, and Physics,
volume 8222 of LNCS, 1–13. Springer.

Bench-Capon, T. J. M., and Dunne, P. E. 2007. Argu-
mentation in artificial intelligence. Artificial Intelligence
171(10-15):619–641.

Bench-Capon, T. J. M.; Doutre, S.; and Dunne, P. E. 2002.
Value-based argumentation frameworks. In Artificial In-
telligence, 444–453.

Boden, M. A. 2003. The Creative Mind - Myths and Mech-
anisms (2nd ed.). Routledge.

Bou, F.; Eppe, M.; Plaza, E.; and Schorlemmer, M.
2014. D2.1: Reasoning with Amalgams. Techni-
cal report, COINVENT Project. http://www.coinvent-
project.eu/fileadmin/publications/D2.1.pdf.

Chandler, D. 2004. Semiotics: The Basics. Routledge.

Charnley, J.; Pease, A.; and Colton, S. 2012. On the notion
of framing in computational creativiy. In Proc. of the 3rd
Int. Conf. on Computational Creativity, 77–81.

Colton, S.; Pease, A.; and Charnley, J. 2011. Computa-
tional creativity theory: The FACE and IDEA descriptive
models. In 2nd Int. Conf. on Computational Creativity.

Coulson, S., and Pascual, E. 2006. For the sake of argu-
ment: Mourning the unborn and reviving the dead through
conceptual blending. Ann. Rev. of Cognitive Linguistics
4:153–181.

Devereux, J., and Reed, C. 2010. Strategic argumentation in
rigorous persuasion dialogue. In ArgMAS, volume 6057
of LNCS. Springer Berlin Heidelberg. 94–113.

Dung, P. M. 1995. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence
77(2):321 – 357.

Falomir, Z.; Cabedo, L. M.; Abril, L. G.; Escrig, M. T.; and
Ortega, J. A. 2012. A model for the qualitative description
of images based on visual and spatial features. Computer
Vision and Image Understanding 116(6):698–714.

Fauconnier, G., and Turner, M. 1998. Principles of concep-
tual integration. In Koenig, J. P., ed., Discourse and Cog-
nition: Bridging the Gap. Center for the Study of Lan-
guage and Information. 269–283.

Lakatos, I. 1976. Proofs and refutations: the logic of math-
ematical discovery. Cambridge University Press.
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Abstract

In this paper, we propose a computational framework that
models concept invention. The framework is based on con-
ceptual blending, a cognitive theory that models human cre-
ativity and explains how new concepts are created. Apart
from the blending mechanism modeling the creation of new
concepts, the framework considers two extra dimensions such
as origin and destination. For the former, we describe how a
Rich Background supports the discovery of input concepts to
be blended. For the latter, we show how arguments, promot-
ing or demoting the values of an audience, to which the inven-
tion is headed, can be used to evaluate the candidate blends
created. Throughout the paper, we exemplify the computa-
tional framework in the domain of computer icons.

Introduction
The cognitive theory of conceptual blending by Fauconnier
and Turner (2002) models human creativity as a mental pro-
cess according to which two input (mental) spaces are com-
bined into a new mental space, called a blend. This theory,
which was developed in the context of cognitive linguistics,
posits that input mental spaces are somehow packaged by
humans with the relevant information in the context in which
the blend is created, and that blends are evaluated against
some optimality principles (Fauconnier and Turner, 2002).

Existing computational models for concept invention —
see the Related Work section for an overview— especially
focus on the core mechanism of blending, that is, how blends
are created, and re-interpret the optimality principles to eval-
uate the blends. In this position paper, we claim that a com-
putational model also need to deal with two extra dimen-
sions to which we refer as the origin and destination of con-
cept invention. The origin considers from where and how
input spaces are selected, whereas the destination considers
to whom the creation is headed. These dimensions are justi-
fiable if we think that there is no creation ex nihilo — thus,
there is an origin — and there is usually a purpose in creat-
ing something new, and, consequently, there is a destination.

To this end, in this paper we propose to model concept
invention by means of a process that consists of different
sub-processes and components (Figure 1):

• Rich Background and Discovery: The origin consists
of a Rich Background, the set of concepts available to

DISCOVERY EVALUATION

VALUES & 
AUDIENCE

BLENDING

ORIGIN DESTINATIONMECHANISM

RICH 
BACKGROUND

Figure 1: A process model for concept invention.

be blended. This set is finite but complex, diverse, poly-
mathic and heterogeneous. Concepts are associated with
a background, understood as a person’s education, expe-
rience, and social circumstances. The Rich Background
supports a discovery process that finds pairs of concepts
that can be blended.

• Blending: Conceptual blending is the mechanism accord-
ing to which two concepts are combined into a blended
concept. Blending is here characterised in terms of amal-
gams, a notion that was developed for combining cases
in case-based reasoning (Ontañón and Plaza, 2010). Con-
ceptual blending is modeled in terms of an amalgam-
based workflow. The blending of two concepts may result
in a large number of blends, that need to be evaluated.

• Arguments, Values, Audiences and Evaluation: Values
are properties expected from a good blend. Values are
considered as points of view and can be of different kinds,
e.g., moral, aesthetic, etc. A destination or audience is
characterised by a preference relation over these values.
Arguments in favor or against a blend are built to eval-
uate the generated blends. An argument can promote or
demote a value. In this way, the blends are evaluated de-
pending on the audience for which they are created.
The above process model can be made more concrete in

a domain such as computer icon design. In such a case,
the Rich Background is what we can learn from, program
about, specify of computer icons, such as a semiotic model
of shapes, signs and relations between signs. This is under-
stood as a finite and specific number of concepts given a
particular set of icons (an icon library or a collection of li-
braries). Values, on the other hand, can be aesthetics such
as simplicity or ambiguity, that matter for a specific type of



audience. These values serve to identify good icons that are
created by the blending mechanism.

In the next section, we capture the process model above in
terms of feature terms. This computational model is exem-
plified by means of a running example that shows the main
processes that undergo the concept invention of new icons.

Related Work
Several approaches of formal and computational models for
concept invention, inspired by the work of Fauconnier and
Turner (2002), have been proposed.

Amalgam-based conceptual blending algorithms have
been developed to blend CASL theories and EL`` concepts
in (Confalonieri et al., 2015b; Eppe et al., 2015a,b). In these
works, input spaces are assumed to be given. Good blends
are selected by re-interpreting some optimality principles.

The Alloy algorithm for conceptual blending by Goguen
and Harrell (2005) is based on the theory of algebraic semi-
otics (Goguen, 1999). Alloy has been integrated in the Griot
system for automated narrative generation (Goguen and Har-
rell, 2005; Harrell, 2005, 2007). The input spaces of the
Alloy algorithm are theories defined in the algebraic spec-
ification language OBJ (Malcolm, 2000). In the algorithm,
input spaces are assumed to be given, hence there is no dis-
covery. The optimality principles by Fauconnier and Turner
(2002) are re-interpreted as structural optimality principles,
and serve to prune the space of possible blends.

Sapper was originally developed by Veale and Keane
(1997) as a computational model of metaphor and analogy.
It computes a mapping between two separate domains —
understood as graphs of concepts— that respects the rela-
tional structure between the concepts in each domain. Sap-
per can be seen as a computational model for conceptual
blending, because the pairs of concepts that constitute its
output can be manipulated as atomic units, as blended con-
cepts (Veale and Donoghue, 2000). Strictly speaking, Sap-
per does not work with a priori given input spaces. It is the
structure mapping algorithm itself which determines the set
of concepts and relations between these concepts. In Sapper,
most of the optimality principles are captured and serve to
rank and filter the correspondences that comprise the map-
pings computed by the algorithm.

Divago, by Pereira (2007), is probably the first complete
implementation of conceptual blending. The Divago’s ar-
chitecture includes different modules. A knowledge base
contains different micro-theories and their instantiations. Of
these, two are selected for the blending by the user or ran-
domly, thus, no discovery is taken into account. A mapper
then generates the generic space between the inputs, and
passes it to a blender module which generates the ‘blendoid’,
i.e., a projection that defines the space of possible blends. A
factory component is used to select the best blends among
the blendoid by means of a genetic algorithm. A dedicated
module implements the optimality principles. Given a blend,
this module computes a measure for each principle. These
measures yield a preference value of the blend that is taken
as the fitness value of the genetic algorithm.

Finally, another work that relates to ours is (Confalonieri
et al., 2015a). The authors use Lakatosian reasoning to

model dialogues in which users engage to discuss the in-
tended meaning of an invented concept. The main difference
with the current work relies on the way in which arguments
are generated and used. Here, an argument is a reason for
choosing a blend and it is generated automatically, whereas,
in (Confalonieri et al., 2015a), an argument is a reason to
refine the meaning of a blend and is provided by the user.

Computational Model
Rich Background
Let the Rich Background be a collection of computer icons.
We assume that computer icons are described in terms of
form and a meaning . The form consists of a finite set of
signs which are related by spatial relationships. Figure 2b(I)
shows an example of an icon in which two signs, a MAGNI-
FYINGGLASS and a HARDDISK, are related by relation on .
The meaning, on the other hand, is the interpretation that is
given to an icon. For instance, a possible meaning associated
to the icon in Figure 2b(I) is SEARCH-HARDDRIVE. We al-
low a sign to have different interpretations depending on the
icons in which it is used.

We shall model the Rich Background by means of a finite
set C of feature terms (Carpenter, 1992; Smolka and Aı̈t-
Kaci, 1989), each representing a concept. In this paper, fea-
ture terms are defined over a signature ⌃ “ xS, F , ®, X y,
where S is finite set of sort symbols, including J and K,
which represent the most specific and the most general sort,
respectively; F is a finite set of feature symbols; ® is an
order relation inducing an inheritance hierarchy such that
K ® s ® J, for all s P S; and X is a denumerable set of
variables. Then, a feature term  has the form:

 :“ x : srf1 “  1, . . . , fn

“  
n

s

with n • 0, and where x P X is called the root variable
of  (denoted as rootp q), s P S is the sort of x (denoted
as sortpxq), and, for all j with 1 § j § n, f

j

P F are the
features of x (denoted as featurespxq) and the values  

j

of
the features are finite, non-empty sets of feature terms and/or
variables (provided they are root variables of feature terms
ocurring in ). When the set of values of a feature is a single-
ton set, we will omit the curly brackets in our notation. We
will write varsp q to denote the set of variables occurring in
a feature term  .

We choose to model icons as concepts represented by fea-
ture terms over the signature with the following sort hierar-
chy S:1

ICON
SIGN † tARROW, MAGNIFYINGGLASS, DOCUMENT,

PEN, HARDDISK, CLOUDu

MEANING † tACTION, OBJECTTYPEu

ACTION † tMODIFY, VIEWSEARCH, TRANSFERu

MODIFY † tEDIT, WRITEu

VIEWSEARCH † tSEARCH, FIND, ANALYSEu

TRANSFER † tUPLOAD, DOWNLOADu

OBJECTTYPE † tINFOCONTAINER, DATACONTAINERu

INFOCONTAINER † tPAGE, DOC, FILEu

DATACONTAINER † tHARDDRIVE, CLOUDu

1The notation s † ts1, . . . , snu denotes that s1, . . . , sn are
sub-sorts of s.
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(a) Feature term representation of a computer icon.

I.
Search 

HardDrive

III.
Edit 
Doc

IV.
Download

Doc
Cloud

II.
Download
HardDrive

V.
Search 

Document

VI.
Search

Doc
Cloud

(b) Examples of computer icons.

Figure 2: Rich Background about computer icons.

and features F “ tform,meaning , on, below , left , right ,
action, objectTypeu.

In addition, feature terms representing icons need to be of
the following form. A representation of the structure of an
icon is presented below and its description follows.

Icon

s
n

s2s1

m2m1 m
n

f
si

f
s1

f
mn

f
m2

f
mn

form

meaning

Root variables are of sort ICON and have at most two fea-
tures form and meaning , modelling the signs (s1, . . . , sn

)
and the meaning (m1, . . . , mn

) of these signs in the context
of the icon. Each sign is again represented by means of a fea-
ture term whose root variable is of sort s © SIGN, and each
meaning by means of feature terms whose root variable is of
sort s © MEANING.

Features of sign terms (f
s1 , . . . fsn in the schema above)

are at most one of on , left , right , or below , specifying
the spatial relationship between signs; and at most one
of action or objectType , specifying the meaning of signs
(f

m1 , . . . fmn in the schema above). The values of spa-
tial relation features are root variables of feature terms that
are in the value of the form feature; and those of features
action and objectType are root variables of feature terms
that are in the value of the meaning feature. In addition the
root variables in the value of the action feature are of sort
s © ACTION, while those of the objectType feature are of
sort s © OBJECTTYPE. Figure 2a shows the feature term
representation of the icon in Figure 2b(I).

A fundamental relation between feature terms is that of
subsumption (Ñ). Intuitively, a feature term  1 subsumes
another one  2, or  1 is more general than  2, denoted as
 1 Ñ  2, if all the information in  1 is also in  2.2 We omit
the formal definition of subsumption, which can be found in
(Ontañón and Plaza, 2012) for feature terms as represented

2Notice that, in Description Logics, A Ñ B has the inverse
meaning “A is subsumed by B”, since subsumption is defined from
the set inclusion of the interpretations of A and B.

in this paper. The subsumption relation induces a partial or-
der on the set of all features terms L over a given signature,
that is, xL, Ñy is a poset.

Discovery
In cognitive theories of conceptual blending, input spaces to
be blended are givens that represent how humans package
some relevant information in the context in which the blend
is created.

In our computational model, an input space is a con-
cept belonging to a library of concepts. The packaging of
some relevant information corresponds to a discovery pro-
cess that takes certain properties, which the blends need to
satisfy, into account. In the creation of computer icons, we
can imagine that an icon designer knows the meaning of an
icon he wishes to create, but he ignores its form.

The discovery takes a query over the meaning of an icon
concept as input, looks for concepts in the Rich Background,
and returns an ordered set of pairs of concepts that can be
blended. The query is modeled as a feature term  

q

in which
only the meaning part of an icon is specified. For instance,
a query asking for an icon with meaning SEARCH-DOC is
modeled as:

 q :“ x1 : ICON

„
meaning “

"
x2 : SEARCH
x3 : DOC

* ⇢
(1)

The matching of the query is not always a perfect match,
since icon concepts in the Rich Background can have only
one part of the meaning or similar meanings w.r.t. the mean-
ing searched. To this end, the query resolution is modeled as
a similarity-based search.

The main idea behind the similarity-based search is that,
for each icon concept  

i

in the Rich Background, we mea-
sure how  

q

and  
i

are similar and, we use this measure to
rank the results. The similarity between two feature terms
can be defined by means of their anti-unification or Least
General Generalisation (LGG) (Ontañón and Plaza, 2012).

Definition 1 (Least General Generalisation) The least
general generalisation of two feature terms  1 and  2,
denoted as  1 [ 2, is defined as the most specific term that
subsumes both:  1 [ 2 “ t |  Ñ  1 ^ Ñ  2 ^ E 1 :
 Ä  1

^  1 Ñ  1 ^  1 Ñ  2u.



The least general generalisation encapsulates all the infor-
mation that is common to both  1 and  2 and, for this rea-
son, is relevant for defining a similarity measure.

The least general generalisation can be characterised as
an operation over a refinement graph of feature terms. The
refinement graph is derived from the poset xL, Ñy by means
of a generalisation refinement operator �.

�p q “ t 1
P L |  1 Ñ  and E 2 s.t.  1 Ä  2 Ä  u

The above definition essentially says that � is an operation
that generalises a feature term to a set of feature terms that
is an anti-chain. The refinement graph, then, is a directed
graph whose nodes are feature terms, and for which there is
an edge form feature term  1 to  2, whenever  2 P �p 1q.
We shall call generalisation paths all finite paths  �

›Ñ  1 in
a refinement graph, and denote with �p 

�

›Ñ  1
q its length.

Ontañón and Plaza (2012) describe a generalisation oper-
ator for feature terms that consist of:
Sort generalisation, which generalises a term by substitut-

ing the sort of one of its variables by a more general sort;
Variable elimination, which generalises a term by remov-

ing the value of one of the features in one variables of the
term (a variable is removed only when the variable does
not have any features);

Variable equality elimination, which generalises a term
by removing a variable equality and ensuring that K can
be reached from any term.

We refer to (Ontañón and Plaza, 2012) for the formal details
of the operator.

It is worthy noticing that, in case of variable equalities, it
is not possible to define a generalisation operator that finds
all possible generalisations of a feature term. However, for
the purpose of defining a least general generalisation-based
similarity, an operator which ensures that K is reachable in
a finite number of steps will suffice.
Example 1 (LGG example) Let us consider the feature
terms  

q

in Eq. 1 and  1 in Figure 2a. The LGG  
q

[ 1 is:

x1 : ICON

„
meaning “

"
x2 “ SEARCH
x3 “ OBJECTTYPE

* ⇢

 
q

[  1 captures the information shared among the icon
concept  1 and the query  

q

. Both of them have two mean-
ings. According to the ontology previously defined, the most
general sorts for variables x2 and x3 are SEARCH and OB-
JECTTYPE respectively. The form feature of  1 is removed,
since  

q

does not contain this information.

As previously said, the least general generalisation of two
feature terms  1 [  2 is a symbolic representation of the
information shared by  1 and  2. It can be used to measure
the similarity between feature terms in a quantitative way.
The refinement graph allows us to estimate the quantity of
information of any feature term  . It is the length of the
(minimal) generalisation path that leads from  to the most
general term K. Therefore, the length �p 1 [  2

�

›Ñ Kq

estimates the informational content that is common to  1

and  2. In order to define a similarity measure, we need to

compare what is common to  1 and  2 with what is not
common. To this end, we take the lengths �p 1

�

›Ñ  1 [

 2q and �p 2
�

›Ñ  1 [  2q into account. Then a similarity
measure can be defined as follows.
Definition 2 (LGG-based similarity) The LGG-based
similarity between two feature terms  1 and  2, denoted by
S
�

p 1, 2q, is:

�p 1 [  2
�›Ñ Kq

�p 1 [  2
�›Ñ Kq ` �p 1

�›Ñ  1 [  2q ` �p 2
�›Ñ  1 [  2q

The measure S
�

estimates the ratio between the amount of
information that is shared and the total information content.
From a computational point of view, S

�

requires to compute
two things. The LGG and the three lengths defined in the
above equation. The algorithms for computing S

�

can be
found in (Ontañón and Plaza, 2012).
Example 2 (Similarity example) Let us consider the fea-
ture terms  

q

in Eq. 1,  1 in Figure 2a and their LGG in
Example 1. Lengths �1 “ �p 1 [  

q

�

›Ñ Kq “ 8, �2 “

�p 1
�

›Ñ  1 [ 
q

q “ 12, and �3 “ �p 
q

�

›Ñ  1 [ 
q

q “ 2.
Notice that �3 is very small (2 generalisations), while �2 is
larger since  1 has more generalised content. Therefore, the
similarity between  

q

and  1 is:

S
�

p 1, q

q “

8

12 ` 2 ` 8
“ 0.36

S
�

p 1, q

q expresses that these two concepts share the 36%
of the total information.
Given the above definitions, the discovery of concepts can
be implemented by a discovery algorithm. The algorithm ac-
cepts a Rich Background of concepts C, a query  

q

, and the
generalisation operator � as input, and returns a ranked set
of pairs of concepts. This ranking can be done according to
different strategies. One way is to build all pairs of concepts
and rank them in a lexicographical order. The discovery re-
turns a set of pairs of concepts xp 

j

,�
j

q, p 
j`1,�j`1qy in

which �
j

• �
j`1.

Blending
The computational model of concept blending is based on
the notion of amalgams (Ontañón and Plaza, 2010). This
notion was proposed in the context of case-based reasoning.
Amalgams have also been used to model analogy (Besold
and Plaza, 2015). According to this approach, input concepts
are generalised until a generic space is found, and pairs of
generalised input concepts are ‘unified’ to create blends.

Formally, the notion of amalgams can be defined in any
representation language L for which a subsumption relation
Ñ between formulas (or descriptions) of L can be defined,
together with an anti-unifier operation—playing the role of
the generic space— and a unifier operation. Therefore, it can
be defined for feature terms. We already defined the anti-
unification of two feature term descriptions (Definition 1).
Now, we proceed to define their unification.
Definition 3 (Unification) The unification of two feature
terms  1 and  2, denoted as  1 \ 2, is defined as the most
general term that is subsumed by both:  1 \  2 “ t |

 1 Ñ  ^ 2 Ñ  ^ E 1 :  1 Ä  ^ 1 Ñ  1
^ 2 Ñ  1

u.



 1  2

 ̄1

 
b

�  ̄1 �  ̄2

 ̄2

 
g

�  1 �  2

Figure 3: A diagram of a blend  
b

from inputs  1 and  2.

Intuitively, a unifier is a description that has all the informa-
tion in both the original descriptions. If joining this infor-
mation leads to inconsistency, this is equivalent to say that
 1 \  2 “ J, e.g., they have no common specialisation
except ‘none’.

An amalgam or blend of two descriptions is a new de-
scription that contains parts from these two descriptions. For
instance, an amalgam of ‘a red French sedan’ and ‘a blue
German minivan’ is ‘a red German sedan’; clearly, there
are always multiple possibilities for amalgams, like ‘a blue
French minivan’.

For the purposes of this paper, we define an amalgam or
blend of two input descriptions as follows:

Definition 4 (Blend) A description  
b

P L is a blend of two
inputs  1 and  2 (with LGG  

g

“  1 [  2) if there exist
two generalisations  ̄1 and  ̄2 such that: 1)  

g

Ñ  ̄1 Ñ  1,
2)  

g

Ñ  ̄2 Ñ  2, and 3)  
b

”  ̄1 \  ̄2 ı J.

The above definition is illustrated in Figure 3, where the
LGG of the inputs is indicated as  

g

, and the blend  
b

is
the unification of two concrete generalisations  ̄1 and  ̄2

of the inputs. Equality (”) here should be understood as Ñ-
equivalence, that is,  1 ”  2 iff  1 Ñ  2 and  2 Ñ  1.

Usually one is interested only in maximal blends, e.g., in
those blends that contain the maximal information of their
inputs. A blend  

b

of two inputs  1 and  2 is maximal if
there is no other blend  1

b

of  1 and  2 such that  
b

Ä  1
b

.
The reason why one is interested in maximal blends is that
a maximal blend captures as much information as possible
from the inputs. Moreover, any non-maximal blend can be
obtained by generalising a maximal blend.

However, the number of blends that satisfies the above
definition can still be very large and selection criteria for
filtering and ordering them are therefore needed. Fauconnier
and Turner (2002) discuss optimality principles, however,
these principles are difficult to capture in a computational
way, and other selection strategies need to be explored.

We interpret blend evaluation in two steps. First, we dis-
card those blends that do not satisfy a query  

q

. Then, we
order the blends by means of arguments, values and audi-
ences in order to decide which blend is the best one.

Arguments, Values and Audiences
An argument is a central notion in several models for rea-
soning about defeasible information (Dung, 1995; Pollock,
1992), decision making (Amgoud and Prade, 2009; Bonet

and Geffner, 1996), practical reasoning (Atkinson, Bench-
Capon, and McBurney, 2004), and modeling different types
of dialogues such as persuasion (Bench-Capon, 2003). In
most existing works on argumentation, an argument is a rea-
son for believing a statement, choosing an option, or doing
an action. Depending on the application domain, an argu-
ment is either considered as an abstract entity whose origin
and structure are not defined, or it is a logical proof for a
statement where the proof is built from a knowledge base.

In our model, arguments are reasons for accepting or re-
jecting a given blend. They are built by the agent when cal-
culating the different values associated with a blend. Values
are considered as points of view and can have different ori-
gins, e.g., they can be moral, aestethic, etc.

Generally, there can be several values V “ tv1, . . . , vk

u.
Each value is associated with a degree that belongs to the
scale � “ p0, . . . , 1s, where 0 and 1 are considered the
worst and the best degree respectively. For our purposes, we
will consider values such as simplicity and unambiguity.

The main idea behind simplicity is that we want to esti-
mate how simple an icon is from a representation point of
view. This can be done by counting the quantity of infor-
mation used in the feature term describing an icon. We can
assume that simple icons are those described with less in-
formation. Therefore, simplicity is defined to be inversely
proportional to the total number of features and sorts used in
the variables of a feature term  

b

.

Simplicityp 
b

q “

1∞
xPvarsp bq

featurespxq ` sortspxq

Unambiguity, on the other hand, measures how many in-
terpretations an icon has w.r.t. the Rich Background. Since
icons are polysemic —they can be interpreted in different
ways— there can be icons that contain the same sign but
the sign is associated with a different meaning. To define the
unambiguity value, let us first define the polysemic set of  

b

as:

Polp 
b

q “t 
j

P C | Ds P formp 
j

q X formp 
b

q

^ meaningp 
j

, sq ‰ meaningp 
b

, squ

where formp 
j

q is a function that returns the value of fea-
ture form , i.e., the set of signs used in the icon represented
by feature term  

j

; and meaningp 
j

, sq is a function that
returns the sort of the variable that is the value of feature
action or objectType of the variabe of sort s, i.e., the mean-
ing used for the sign represented by sort s in feature term
 

j

. Then, the unambiguity value is defined to be inversely
proportional to the cardinality of Pol.

Unambiguityp 
b

q “

"
1{|Polp 

b

q| if |Polp 
b

q| ‰ 0
1 otherwise

Values play a different role depending on the target or audi-
ence towards which the creation is headed. Audiences are
characterised by the values and by a preferences among
these values. Given a set of values V , there are potentially
as many audiences as there are orderings on V .
Definition 5 (Audience) An audience is a binary relation
R Ñ V ˆ V which is irreflexive, asymmetric, and transitive.



We say that v
i

is preferred to v
j

in the audience R, denoted
as v

i

°R v
j

, if xv
i

, v
j

y P R. We say that a value v
j

covers
v

i

in the audience R, denoted as v
i

ÍR v
j

, if v
i

°R v
j

and
Ev

i

1 such that v
i

°R v
i

1 °R v
j

.

Given a blend, an argument is generated for each value.
The degree of the value characterises the ‘polarity’ of the
argument which can be pro or con a blend. Arguments pros
promote a blend whereas arguments cons demote it. Given a
set of blends B, the tuple xB, V,�y will be called a theory.

Definition 6 (Argument) Let xB, V,�y be a theory.
• An argument pro a blend b is a tuple xpv, �q, by where v P

V , � P � and 0.5 § � § 1
• An argument con b is a pair xpv, �q, by where v P V , � P �

and 0 † � † 0.5

A function Val returns the value v associated with an argu-
ment and a function Deg returns �.

The blend evaluation can be formulated as a decision
problem in which one has to decide an order relation ©B
on the set of candidate blends B. The definition of this re-
lation is based on the set of arguments pros and cons asso-
ciated with the candidate blends. Depending on the kind of
arguments that are considered and how they are handled, dif-
ferent decision criteria can be defined (Amgoud and Prade,
2009):
• Unipolar decision criteria: they focus either only on ar-

guments pros or arguments cons;
• Bipolar decision criteria: they take both arguments pros

and cons into account;
• Meta-criteria: they aggregate arguments pros and cons

into a meta-argument.
In what follows, we denote the set of arguments pros and
cons as A

p

“ t↵1, . . . ,↵n

u and A
c

“ t↵1, . . . ,↵m

u re-
spectively. Besides, we assume to have the following func-
tions: M

p

: B Ñ 2Ap and M
c

: B Ñ 2Ac that return the set
of arguments pros and the set of arguments cons associated
with a blend respectively; M : B Ñ 2ApYAc that returns all
arguments associated with a blend.

A basic decision criterion for comparing candidate blends
can be defined by comparing the number of arguments pros
associated with them.

Definition 7 Let b1, b2 P B. b1 ©B b2 if and only if
|M

p

pb1q| • |M
p

pb2q|.

Notice that the above criterion guarantees that any pair of
blends can be compared.

When the audience is taken into account, one may think
of preferring a blend that has an argument pro whose value is
preferred to the values of any argument pro the other blends.

Definition 8 Let b1, b2 P B. b1 ©B b2 if and only if D↵ P

M
p

pb1q such that @↵1
P M

p

pb2q, Valp↵q °R Valp↵1
q.

In the above definition, ©B depends on the relation °R.
Since °R is a preference relation, some of the values of
the arguments can be incomparable. Consequently, b1 and
b2 will not be comparable neither. This definition can be re-
laxed, for instance, by ignoring these arguments.

The counter-part decision criteria of Definitions 7-8 for
the case of arguments cons can be defined in a similar way
and we omit them.

In the case of bipolar decision criteria, we can combine
the criterion dealing with arguments pros with the criterion
dealing with arguments cons.
Definition 9 Let b1, b2 P B. b1 ©B b2 if and only if
|M

p

pb1q| • |M
p

pb2q| and |M
c

pb1q| § |M
c

pb2q|.
Unfortunately, the above definition does not ensure that

we can compare all the blends.
Finally, meta-criteria for deciding which blends are pre-

ferred can be defined by aggregating arguments pros and
cons into a meta-argument. Then, comparing two blends
amounts to compare the resulting meta-arguments. A sim-
ple criterion can be defined by aggregating the degrees of
the arguments associated with a blend.
Definition 10 Let b1, b2 P B. b1 ©B b2 if and only if

ÿ

↵PMpb1q
Degp↵q •

ÿ

↵

1PMpb2q
Degp↵1

q

This definition can be extended to take the audience into ac-
count. To this end, we consider a rank function that maps
each value of R to an integer. The rank function is defined
as follows:

RankRpvq “

#
1 if Ev1 s.t. v1

ÍR v

max
v

1ÍRv

tRankRpv1
qu ` 1 otherwise

Essentially, Rank counts how many values a certain value
covers. This ranking is then used to define the following
audience-based aggregation decision criterion.
Definition 11 Let b1, b2 P B. b1 ©B b2 if and only if

ÿ

↵PMpb1q

Degp↵q

RankRpValp↵qq

•

ÿ

↵

1PMpb2q

Degp↵1
q

RankRpValp↵1
qq

This definition also guarantees that all the blends are com-
parable.

The Model at Work
Let us imagine an agent that has access to a Rich Back-
ground C “ t 1, 2, 3, 4u consisting of four of the icons
depicted in Figures 2b(I-II-III-IV). As previously described,
 1 is a feature term representing an icon with meaning
SEARCH-HARDDISK.  2 represents an icon that consists of
two sorts of type sign, an ARROW and a CLOUD, whose
meaning is DOWNLOAD-CLOUD.  3 represents an icon
with two sorts of type sign, a PEN and a DOCUMENT, whose
meaning is EDIT-DOC; finally,  4 is a feature term that con-
sists of three sorts, ARROW, DOCUMENT and CLOUD with
the intended meaning of DOWNLOAD-DOC-CLOUD.

The agent receives as input a query asking for an icon
with meaning SEARCH-DOC,  

q

(Eq. 1), and an audience,
that is, a preference order over the values. For the sake of
this example, we assume that Simplicity °R Unambiguity.

The discovery retrieves the following pairs of concepts:

txp 1, 0.36q, p 3, 0.36qyu, txp 1, 0.36q, p 2, 0.27qyu



Figure 4: Amalgam-based blending of feature terms  1 and  3.

txp 3, 0.36q, p 2, 0.27qyu, txp 1, 0.36q, p 4, 0.25qyu

txp 3, 0.36q, p 4, 0.25qyu, txp 2, 0.27q, p 4, 0.25qyu

The agent proceeds to blend the first pair in the list. To
this end, it applies the amalgam-based blending. The least
general generalisation of  1 and  3 is an icon with two
sorts of type SIGN, one on the other one, and with mean-
ing ACTION and OBJECTTYPE respectively. The agents ex-
plores the space of generalisations and finds two maximal
blends; a blend  

b1 describing an icon with two sorts of
type MAGNIFYINGGLASS and DOCUMENT whose mean-
ing is SEARCH-DOC; another blend  

b2 describing an icon
with sorts of type PEN and HARDDISK whose meaning is
EDIT-HARDDRIVE. Since  

b2 does not satisfy the query, is
discarded, and only  

b1 is kept. The creation of  
b1 is illus-

trated in Figure 4.
The agents repeats the above procedure for each pair

discovered. Finally, it finds another blend, which satisfies
 

q

, by blending the pair  1 and  4. It is a blend describ-
ing an icon with three sorts of type MAGNIFYINGGLASS,
DOCUMENT, and CLOUD whose meaning is SEARCH-DOC-
CLOUD. Intuitively, this blend can be obtained by generalis-
ing HARDDISK from  1 and ARROW from  4, and by keep-
ing the other input icons’ specifics. We denote this blend as
 

b2 . The set of blends is B “ t 
b1 , b2u. A representation

of  
b1 and  

b2 is given in Figures 2b(V-VI).
The agent evaluates these blends by means of the argu-

ments and values described in the previous section. The
blend  

b1 contains 10 variables whereas  
b2 contains 14.

Therefore, the simplicity value’s degrees of  
b1 and  

b2 are
0.1 and 0.07 respectively. Their unambiguity, on the other
hand, is 1, since the Rich Background does not contain icons

with the same signs used in  
b1 and  

b2 , but with a different
meaning. The arguments built by the agent are:

Simplicity Unambiguity

 
b1 0.1 1

 
b2 0.07 1

Therefore, both blends have an argument pro regarding their
simplicity and an argument con w.r.t. their unambiguity
value. It is easy to see that the blends are ranked in differ-
ent ways when using the criteria we defined. For instance,
 

b1 and  
b2 are equally preferred when counting their argu-

ments pros (or cons) (Definition 7), and when considering
both arguments pros and cons (Definition 9). Instead,  

b1 is
preferred to  

b2 when using the criteria that take the audi-
ence into account (Definitions 8 and 11).

Conclusion and Future Work
In this paper, we described a process model for concept in-
vention that is based on and extends the conceptual blend-
ing theory of Fauconnier and Turner (2002). According to
this process, concept invention is characterised by differ-
ent sub-processes—discovery, blending, and evaluation—
that together account for concept invention. We proposed
its computational model in terms of feature terms, a formal
knowledge representation language. This allowed us to cap-
ture the concept invention process in terms of well-defined
operators such as anti-unification—for computing a generic
space—and unification—for computing a blend. Pairs of
input concepts are retrieved from a Rich Background by
means of a discovery process that takes a similarity measure
into account. Blending is realised according to the notion



of amalgam, and blend evaluation is achieved by means of
arguments, values and audience.

We exemplified the computational framework in the do-
main of computer icon design, but the framework is general
enough to be used in other domains such as music or poetry
generation. We plan to explore the use of arguments, values
and audiences as a means to evaluate concept blends in such
domains as future work.

We also aim at extending the process model by includ-
ing the notion of coherence by Thagard (2000). Coherence
theory, when used to explain human reasoning, proposes that
humans accept or reject a cognition depending on how much
it contributes to maximising the constraints imposed by sit-
uations or other cognitions. In the case of concept invention,
coherence can be defined and used, for instance, to measure
to what extent a blend coheres or incoheres with the Rich
background and other blends.
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Abstract. We address the problem on how newly invented concepts are
evaluated with respect to a background ontology of conceptual knowl-
edge so as to decide which of them are to be accepted into a system of
familiar concepts, and how this, in turn, may a↵ect the previously ac-
cepted conceptualisation. As technique to tackle this problem we explore
the applicability of Paul Thagard’s computational theory of coherence.
In particular, we propose a formalisation of Thagard’s notion of concep-

tual coherence for concepts represented in the AL description logic and
explore by means of an illustrative example the role coherence may play
in the process of conceptual blending.
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1 Introduction

Combinational creativity —when novel ideas (concepts, theories, solutions, works
of art) are produced through unfamiliar combinations of familiar ideas— is, of
the three forms of creativity put forward by Boden, the most di�cult to cap-
ture computationally [2]. Putting concepts together to generate new concepts is,
in principle, not a di�cult task; but doing this in a computationally tractable
way, and being able to recognise the value of newly invented concepts for better
understanding a certain domain, is not as straightforward.

An important recent development that has significantly influenced the cur-
rent understanding of the general cognitive principles operating during concept
invention is Fauconnier and Turner’s theory of conceptual blending [6, 7]. Fau-
connier and Turner proposed conceptual blending as the fundamental cognitive
operation underlying much of everyday thought and language, and modelled it
as a process by which humans subconsciously combine particular elements and
their relations of originally separate conceptual spaces into a unified space, in
which new elements and relations emerge, and new inferences can be drawn.

The theory has been primarily applied as an analytic tool for describing
already existing blends of ideas and concepts in a varied number of fields, such as
linguistics, music theory, poetics, mathematics, theory of art, political science,
discourse analysis, philosophy, anthropology, and the study of gesture and of
material culture [20]. But it has been also widely recognised to be a theory that
can serve as a basis for computational models of creativity [5, 9, 10, 15, 21].



To guide the concept invention process, in addition to the blending mecha-
nism per se, at least two additional dimensions need to be considered, namely
the origin and destination of concept invention, i.e., from where (and how) input
concepts are selected and to whom the concept invention is headed. Confalonieri
et al. have proposed a process model for concept invention in which these dimen-
sions are taken into account [3]. Inputs are selected based on a similarity measure
that is computed relative to a Rich Background, and blends are evaluated us-
ing an argumentation framework based on value preferences of the audience for
which concepts are invented.

In this paper, we aim at showing how Thagard’s computational theory of co-
herence [19] could also serve as an additional mechanism for triggering concept
invention and evaluating newly blended concepts. In [18], Thagard suggested to
use coherence as a model for the closely related cognitive process of conceptual
combination, where the focus is primarily on language compositionality such
as noun-noun or adjective-noun combinations [17]. Kunda and Thagard, for in-
stance, show how conceptual coherence can be used for describing how we reason
with social stereotypes [12].

Building upon Thagard’s intuitions and principles for modelling coherence,
we propose a formalisation of Thagard’s notion of conceptual coherence for con-
cepts represented in a description logic —we take the basic description logic AL
as a start— and further explore its applicability to conceptual blending. But in-
stead of interpreting coherence or incoherence based on statistical correlations or
causal relations (i.e., on frequencies of positive or negative association), we deter-
mine coherence and incoherence as dependent on how concept descriptions are
stated. Failure to find conceptual blends that cohere with some given background
knowledge leads to a search for alternative conceptual blends that eventually in-
crease the overall coherence of the blend with the background knowledge.

The paper is organised as follows: In Section 2 we give a brief overview of
Thagard’s computational theory of coherence, in Section 3 we introduce some
core definitions regarding coherence and coherence graphs, and in Section 4 we
provide a formalisation of conceptual coherence for the description logic AL.
Conceptual blending in AL is described in Section 5, and coherence is applied
to blending in Section 6. We conclude in Section 7.

2 Thagard’s Computational Theory of Coherence

Thagard addresses the problem of determining which pieces of information, such
as hypotheses, beliefs, propositions or concepts, to accept and which to reject
based on how they cohere and incohere among them, given that, when two
elements cohere, they tend to be accepted together or rejected together; and
when two elements incohere, one tends to be accepted while the other tends to
be rejected [19].

This can be reformulated as a constraint satisfaction problem as follows.
Pairs of elements that cohere between them form positive constraints, and pairs
of elements that incohere between them form negative constraints. If we partition



the set of pieces of information we are dealing with into a set of accepted elements
and a set of rejected elements, then a positive constraint is satisfied if both
elements of the constraint are either among the accepted elements or among
the rejected ones; and a negative constraint is satisfied if one element of the
constraint is among the accepted ones and the other is among the rejected ones.
The coherence problem is to find the partition that maximises the number of
satisfied constraints.

Note that in general we may not be able to partition a set of elements as to
satisfy all constraints, thus ending up accepting elements that incohere between
them or rejecting an element that coheres with an accepted one. The objective
is to minimise these undesired cases. The coherence problem is known to be
NP-complete, though there exist algorithms that find good enough solutions of
the coherence problem while remaining fairly e�cient.

Depending on the kind of pieces of information we start from, and on the way
the coherence and incoherence between these pieces of information is determined,
we will be dealing with di↵erent kinds of coherence problems. So, in explanatory
coherence we seek to determine the acceptance or rejection of hypotheses based
on how they cohere and incohere with given evidence or with competing hypothe-
ses; in deductive coherence we seek to determine the acceptance of rejection of
beliefs based on how they cohere and incohere due to deductive entailment or
contradiction; in analogical coherence we seek to determine the acceptance or
rejection of mapping hypotheses based on how they cohere or incohere in terms
of structure; and in conceptual coherence we seek to determine the acceptance or
rejection of concepts based on how they cohere or incohere as the result of the
positive or negative associations that can be established between them. Thagard
discusses these and other kinds of coherence.

Although Thagard provides a clear technical description of the coherence
problem as a constraint satisfaction problem, and he enumerates concrete prin-
ciples that characterise di↵erent kinds of coherences, he does not clarify the ac-
tual nature of the coherence and incoherence relations that arise between pieces
of information, nor does he suggest a precise formalisation of the principles he
discusses. Joseph et al. have proposed a concrete formalisation and realisation
of deductive coherence [11], which they applied to tackle the problem of norm
adoption in normative multi-agent system. In this paper, we shall focus on the
problem of conceptual coherence and its applicability to conceptual blending.

3 Preliminaries: Coherence Graphs

In this section we give precise definitions of the concepts intuitively introduced
in the previous section.

Definition 1. A coherence graph is an edge-weighted, undirected graph G =
hV, E, wi, where:

1. V is a finite set of nodes representing pieces of information.



2. E � V (2) (where V (2) = {{u, v} | u, v 2 V }) is a finite set of edges
representing the coherence or incoherence between pieces of information.

3. w : E ! [�1, 1]\{0} is an edge-weighted function that assigns a value to the
coherence between pieces of information.

Edges of coherence graphs are also called constraints.

When we partition the set V of vertices of a coherence graph (i.e., the set of
pieces of information) into a set A of accepted elements and a set R = V \ A
of rejected elements, then we can say when a constraint —an edge between
vertices— is satisfied or not by the partition.

Definition 2. Given a coherence graph G = hV, E, wi, and a partition (A, R)
of V , the set of satisfied constraints C(A,R) � E is given by:

C(A,R) =
�

{u, v} 2 E
��� u 2 A i� v 2 A, whenever w({u, v}) > 0

u 2 A i� v 2 R, whenever w({u, v}) < 0

�

All other constraints (i.e., those in E \ C(A,R)) are said to be unsatisfied.

The coherence problem is to find the partition of vertices that satisfies as
much constraints as possible, i.e., to find the partition that maximises the co-
herence value as defined as follows, which makes coherence to be independent of
the size of the coherence graph.

Definition 3. Given a coherence graph G = hV, E, wi, the coherence of a par-
tition (A, R) of V is given by

�(G, (A, R)) =

X

{u,v}2C(A,R)

|w({u, v})|

|E|

Notice that there may not exist a unique partition with a maximum coherence
value. Actually, at least two partitions have the same coherence value, since
�(G, (A, R)) = �(G, (R, A)) for any partition (A, R) of V .

4 Conceptual Coherence in Description Logics

Thagard characterises conceptual coherence with these principles [19]:

Symmetry: Conceptual coherence is a symmetric relation between pairs of con-
cepts.

Association: A concept coheres with another concept if they are positively
associated, i.e., if there are objects to which they both apply.

Given Concepts: The applicability of a concept to an object may be given
perceptually or by some other reliable source.



Negative Association: A concept incoheres with another concept if they are
negatively associated, i.e., if an object falling under one concept tends not
to fall under the other concept.

Acceptance: The applicability of a concept to an object depends on the appli-
cability of other concepts.

To provide a precise account of these principles we shall formalise Association
and Negative Association between concepts expressed in a description logic, since
these are the principles defining coherence and incoherence. We shall assume
coherence between two concept descriptions when we have explicitly stated that
one subsumes the other (“there are objects to which both apply”); and we shall
assume incoherence when we have explicitly stated that they are disjoint (“an
object falling under one concept tends not to fall under the other concept”).

Definition 4. Given a Tbox T in description logic AL and a pair of concept
descriptions C, D �2 {�, �}, we will say that:

– C coheres with D, if C � D 2 T , and that
– C incoheres with D, if C � ¬D 2 T or C � D � � 2 T .

In addition, coherence and incoherence between concept descriptions depend on
the concept constructors used, and we will say that, for all atomic concepts A,
atomic roles R, and concept descriptions C, D �2 {�, �}:
– ¬A incoheres with A;
– C � D coheres both with C and with D;
– �R.C coheres (or incoheres) with �R.D, if C coheres (or incoheres) with D.1

Symmetry follows from the definition above, and Acceptance is captured by
the aim of maximising coherence in a coherence graph. For this we need to define
how a TBox determines a coherence graph, and, in order to keep the graph
finite, we express coherence and incoherence only between non-trivial concept
descriptions (i.e., excluding � and �) that are explicitly stated in the TBox.

Definition 5. Let T be a TBox in AL. The set of non-trivial subconcepts of
T is given as

sub(T ) =
�

C�D2T
sub(C) � sub(D)

where sub is defined over the structure of concept descriptions as follows:

sub(A) = {A}
sub(�) = �
sub(�) = �

sub(¬A) = {¬A, A}
sub(C � D) = {C � D} � sub(C) � sub(D)

sub(�R.C) = {�R.C} � sub(C)

sub(�R.�) = {�R.�}
1 Note that since AL allows only for limited existential quantification we cannot pro-

vide a general rule for coherence between concept descriptions of the form �R.�.



Definition 6. The coherence graph of a TBox T is the edge-weighted, undi-
rected graph G = hV, E, wi whose vertices are non-trivial subconcepts of T (i.e.,
V = sub(T )), whose edges link subconcepts that either cohere or incohere accord-
ing to Definition 4, and whose edge-weight function w is given as follows:

w({C, D}) =

�
1 if C and D cohere

�1 if C and D incohere

5 Conceptual Blending in AL

We follow the modelling principles and techniques of [4], where the process of
conceptual blending is characterised by the notion of amalgams [1, 14]. According
to this approach, the process of conceptual blending can be described as follows:

1. We take a taxonomy of concepts described in a background ontology ex-
pressed as a Tbox T .

2. A mental space of an atomic concept A is modelled, for the purpose of con-
ceptual blending, by means of a subsumption A � C specifying the necessary
conditions we are focusing on.

3. The new concept to be invented is represented by the concept description
that conjoins the atomic concepts to be blended.

4. With amalgams we generalise the input spaces based on the taxonomy in
our TBox until a satisfactory blend is generated.

Formally, the notion of amalgams can be defined in any representation lan-
guage L for which a subsumption relation between formulas (or descriptions) of
L can be defined, and therefore also in the set of all AL concept descriptions
with the subsumption relation �T .

To formally specify an amalgam we first need to introduce some notions. Let
N

C

be a set of concept names, N
R

be a set of role names, and L(T ) be the finite
set of all AL concept descriptions that can be formed with the concept and role
names occurring in an AL TBox T . Then:

Definition 7. Given two descriptions C1, C2 2 L(T ):

– A most general specialisation (MGS) is a description C
mgs

such that C
mgs

�T
C1 and C

mgs

�T C2 and for any other description D such that D �T C1

and D �T C2, then D �T C
mgs

.
– A least general generalisation (LGG) is a description C

lgg

such that C1 �T
C

lgg

and C2 �T C
lgg

and for any other description D such that C1 �T D
and C2 �T D, then C

lgg

�T D.

Intuitively, an MGS is a description that has some of the information from both
original descriptions C1 and C2, while an LGG contains what is common to
them.

An amalgam or blend of two descriptions is a new description that contains
parts from these original descriptions and it can be formally defined as follows.



Definition 8 (Amalgam). Let T be an AL TBox. A description C
am

2 L(T )
is an amalgam of two descriptions C1 and C2 (with LGG C

lgg

) if there exist two
descriptions C1 and C2 such that: C1 �T C1 �T C

lgg

, C2 �T C2 �T C
lgg

, and
C

am

is an MGS of C1 and C2.

The number of blends that satisfies the above definition can be very large and
selection criteria for filtering and ordering them are therefore needed. Faucon-
nier and Turner discussed optimality principles [7], however, these principles are
di�cult to capture in a computational way, and other selection strategies need
to be explored. Since we use a logical theory such as AL, one way to evaluate
a blend is consistency checking. Another alternative, that we will investigate in
this paper, is to evaluate blends in terms of conceptual coherence.

The LGG and the generalised descriptions, needed to compute the amalgam
as defined above, are obtained by means of a generalisation refinement operator
that allows us to find generalisations of AL concept descriptions.

5.1 Generalising AL descriptions

Roughly speaking, a generalisation operator takes a concept C as input and
returns a set of descriptions that are more general than C by taking a Tbox T
into account.

In order to define a generalisation refinement operator for AL, we define
the upward cover set of atomic concepts. In the following definition, sub(T )
(Definition 5) guarantees the following upward cover set to be finite.

Definition 9. Let T be an AL TBox with concept names from N
C

. The upward
cover set of an atomic concept A 2 N

C

� {�, �} with respect to T is given as:

UpCov(A) := {C 2 sub(T ) � {�, �} | A �T C (1)

and there is no C � 2 sub(T ) � {�, �}
such that A �T C � �T C}

We can now define our generalisation refinement operator for AL as follows.

Definition 10. Let T be an AL TBox. We define the generalisation refinement
operator � inductively over the structure of concept descriptions as follows:

�(A) = UpCov(A)

�(�) = UpCov(�) = �
�(�) = UpCov(�)

�(C � D) = {C � � D | C � 2 �(C)} � {C � D� | D� 2 �(D)} � {C, D}

�(�r.C) =

�
{�r.C � | C � 2 �(C)} whenever �(C) �= �
{�} otherwise.

�(�r.�) = �



House � Object Resident � Person
Boat � Object Passenger � Person
Land � Medium Person � Medium � �
Water � Medium Object � Medium � �
Water � Land � � Object � Person � �

Fig. 1. The background ontology of the House and Boat.

We should notice at this point that � can return concept descriptions that are
equivalent to the concept being generalised. One possible way to avoid this sit-
uation is to discard these generalisations [4]. Given a generalisation refinement
operator �, AL concepts are related by refinement paths as described next.

Definition 11. A finite sequence C1, . . . , Cn

of AL concepts is a concept refine-
ment path C1

��! C
n

from C1 to C
n

of the generalisation refinement operator �
i� C

i+1 2 �(C
i

) for all i : 1 � i < n. �⇤(C) denotes the set of all concepts that
can be reached from C by means of � in a finite number of steps.

The repetitive application of the generalisation refinement operator allows us to
find a description that represents the properties that two or more AL concepts
have in common. This description is a common generalisation of AL concepts,
the so-called generic space that is used in conceptual blending.

Definition 12. An AL concept description G is a generic space of the AL
concept descriptions C1, . . . , Cn

if and only if G 2 ��⇤(C
i

) for all i = 1, . . . , n.

5.2 An Example: The House-Boat Blend

The process of conceptual blending in terms of amalgams can be illustrated by
means of a typical blend example: the house-boat [7, 8]. The precise formalisation
is not critique at this point, di↵erent ones exist [9, 15], but all provide similar
distinctions.

The AL theories for House and Boat introduce the axioms modelling the
mental spaces for house and boat.

House � �usedBy.Resident � �on.Land

Boat � �usedBy.Passenger � �on.Water

The House and Boat theories cannot be directly blended since they generate
an inconsistency. This is due to the background ontology stating that the medium
on which an object is situated cannot be land and water at the same time
(Figure 1). Therefore, some parts of the House and Boat descriptions need to be
generalised in a controlled manner before these concepts can be blended. The
generic space between a house and a boat—an object that is on a medium and
used-by a person—is a lower bound in the space of generalisations that need
to be explored in order to generalise these concepts and to blend them into a
house-boat. The generic space is obtained according to Definition 12 by applying
the refinement operator �.



House

Boat

House

House � Boat

Boat

GenericSpace

Fig. 2. A diagram of an amalgam HouseBoat from descriptions House and Boat and
their respective generalisations House and Boat. Arrows indicate the subsumption of
the target by the source of the arrow.

Example 1. Let us consider the House and Boat concepts. Their generic space
is: �usedBy.Person� �on.Medium and is obtained as follows. In the House concept,
the subconcepts �usedBy.Resident and �on.Land are generalised to �usedBy.Person

and �on.Medium respectively. In the Boat concept, the subconcepts �usedBy.
Passenger and �on.Water are generalised in a similar way.

From a conceptual blending point of view, the house-boat blend can be created
when the medium on which a house is situated (land) becomes the medium
on which boat is situated (water), and the resident of the house becomes the
passenger of the boat. This blend can be obtained when the input concepts house
and boat are generalised as follows:

House � �usedBy.Resident � �on.Medium

Boat � �usedBy.Person � �on.Water

The house-boat blend is obtained by conjoining the generalised mental spaces
House and Boat (Figure 2). It is easy to see that House � Boat is an amalgam
according to Definition 8.

6 Evaluating the Coherence of Conceptual Blends

This section describes how coherence is used to evaluate blends. That is, how
coherence graphs are built, and how the di↵erent coherence values are to be
interpreted. The overall idea is to compute the coherence graph and maximsing
partitions for each blend, and use the maximal coherence degree of the coherence
graphs to rank the blends.

Let T be the TBox of the background ontology, let A � C and B � D be
the axioms representing our mental spaces, and let A�B be the new concept we
would like to invent. The process of evaluating blends according to conceptual
coherence can be described as follows:

1. Given the mental spaces, we generate a candidate blend according to Defi-
nition 8.



2. We form the coherence graph for T �{A � C, B � D}, including node A�B,
according to Definition 6.

3. We compute the coherence maximising partitions according to Definition 3
and we associate it to the blend.

4. We repeat this procedure for all the blends that can be generated from the
mental spaces.

Once the maximising partitions are computed, the coherence of the blend could
be measured in terms of the coherence value of the coherence-maximising par-
titions. The degree of the coherence graph directly measures how much a blend
coheres with the background ontology.

Definition 13. Let G = hV, E, wi the coherence graph of a blend B and let P
the set of partitions of G. The maximal coherence value of B of G is deg(B) =
max
P2P

{�(G, P )}.

This maximal coherence value can be used to rank blends as follows.

Definition 14. Let T be a TBox of a background ontology, let A � C and
B � D be the axioms representing mental spaces, let B be the set of blends that
can be generated from them. For each b1, b2 2 B, we say that b1 is preferred to
b2 (b1 � b2) if and only if deg(b1) � deg(b2).

To exemplify how the coherence degree can be used to evaluate blends, we
consider the house-boat example. According to the amalgams process of concep-
tual blending described in the previous section, several blends can be generated
by blending the mental space of House and Boat. In particular, the concept
House � Boat is a valid blend.

The coherence graph blending the House and Boat directly is shown in
Figure 3. As expected the concepts House and Boat positively coheres with
the axioms representing the mental spaces and with the concept House � Boat,
which is representing the blend. The incoherence relation between �on.Land and
�on.Water is due to the fact that the concepts Water and Land incohere, since
the background ontology contains the disjointness axiom Water � Land � �. The
coherence graph of House and Boat has a maximal coherence value of 0.84.

For the sake of our example, we generate new blends by generalising the ax-
ioms modelling our mental spaces. For instance, by applying the generalisations
seen in the previous section that lead to the creation of the house-boat blend, we
obtain the coherence graph in Figure 4.2 The coherence graph of blending House

and Boat has a maximal coherence value of 0.9. This graph yields a higher coher-
ence degree since generalising �on.Land to �on.Medium prevents the appearance
of the incoherence relation between �on.Land and �on.Water.

It is easy to see that the blend House � Boat is preferred to House � Boat

since it has a maximal coherence degree that is higher.

2 Concepts belonging to the background ontology are omitted.
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Fig. 3. The coherence graph of the House � Boat blend, showing the main concepts and
their coherence relations. Blue and green coloured boxes represent concepts belonging
to the background ontology and to the input mental spaces respectively.
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Fig. 4. The coherence graph of the House � Boat blend, showing the main concepts
and coherence relations. Generalised concepts are displayed in a darker tonality.

7 Conclusion

This paper should be seen as a first attempt to (a) provide a formal account of
conceptual coherence for a particular concept representation language, and (b)
to explore its applicability for guiding the process of conceptual blending.

With respect to (a), we proposed a formalisation of conceptual coherence
between concept descriptions expressed in the basic AL description logic. This is
only a starting point, and obviously this formalisation exercise should be carried
out for more expressive concept representation languages. Usually, coherence and
incoherence are not treated only in binary terms, but it is also natural to take
certain degrees of coherence or incoherence into account. This, for instance, has
also been the approach of Joseph et al. when formalising deductive coherence
[11]. Although there is not an obvious way to do so with the formalisation of



conceptual coherence of AL proposed in this paper, we do not discard that this
could be done for more expressive concept representation languages. One could
imagine that description logics with number restrictions or nominals, such as
SROIQ for instance, would allow for expressing degrees of concept overlap that
could be interpreted as degrees of coherence or incoherence.

With respect to (b), we have so far only focused on how the coherence val-
ues of a graph of concept descriptions were evolving dependent on how these
descriptions were changing in our amalgam-based conceptual blending process.
However, we have not discussed yet an other important aspect of coherence the-
ory, namely how to interpret the two parts of a coherence-maximising partition:
the set of accepted and of rejected concepts. The information that a particular
concept description falls in the set of accepted concepts or in the set of rejected
concepts could also be taken into account to decide the acceptance or rejection of
newly invented concepts; or even of already existing concepts in the background
knowledge, in the light of newly invented concepts. With the formalisation in
AL given in this paper we could not see yet a clear way to provide such an in-
terpretation of acceptance and rejection, but we think this aspect might become
clearer as a wider range of concept representation languages is explored.

In this paper we attempted to see how coherence could be used as another
tool for guiding the process of conceptual blending and for evaluating conceptual
blends in the task of concept invention; an additional technique to those already
proposed, such as optimality principles [16], logical consistency [13], and values
of audiences [3]. We believe it is worth to further study the proper combination
of these techniques and to carry out a comprehensive evaluation.

An implementation of conceptual coherence presented in this paper using the
OWL API and Answer Set Programming is available at: https://rconfalonieri@
bitbucket.org/rconfalonieri/coinvent-coherence.git.
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Abstract
Conceptual blending is a powerful tool for computational cre-
ativity where, for example, the properties of two harmonic
spaces may be combined in a consistent manner to produce
a novel harmonic space. However, deciding about the impor-
tance of property features in the input spaces and evaluating
the results of conceptual blending is a nontrivial task. In the
specific case of musical harmony, defining the salient features
of chord transitions and evaluating invented harmonic spaces
requires deep musicological background knowledge. In this
paper, we propose a creative tool that helps musicologists to
evaluate and to enhance harmonic innovation. This tool al-
lows a music expert to specify arguments over given transi-
tion properties. These arguments are then considered by the
system when defining combinations of features in an idiom-
blending process. A music expert can assess whether the new
harmonic idiom makes musicological sense and re-adjust the
arguments (selection of features) to explore alternative blends
that can potentially produce better harmonic spaces. We con-
clude with a discussion of future work that would further au-
tomate the harmonisation process.

Introduction
The invention of new harmonic spaces in this paper is con-
ceived as a computational creative process according to
which a new harmonic idiom is created by means of blend-
ing the ‘atoms’ of harmony, i.e., transitions between chords.
The blended transitions are created by combining the fea-
tures characterising pairs of transitions belonging to two id-
ioms (expressed as sets of potentially learned transitions) ac-
cording to an amalgam-based algorithm (Confalonieri et al.,
2015; Eppe et al., 2015b) that implements Fauconnier and
Turner (2002)’s theory of conceptual blending. The transi-
tions are then used in an extended harmonic space that ac-
commodates the two initial harmonic spaces, linked with the
new blended transitions.

When modeling creative processes computationally, one
of the key questions is how good are the created artefacts.
The approach to evaluation that has been applied most fre-
quently within computational creativity requires a human to
evaluate attributes of the created work or the system’s op-
eration. Basic measures consider the typicality of a gener-
ated artefact within a particular genre, or the quality of the
generated work according to the users’ aesthetic judgement
(Ritchie, 2007).
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Figure 1: A schematic diagram of the system’s workflow.

In music blending, the evaluation of artefacts is not a triv-
ial matter. This is due not only to the time evolving nature
of the final output, but also to the lack of clearly defined
criteria for their assessment. In the particular case of transi-
tion blending, the evaluation of the blends is of key impor-
tance, in order to produce musically meaningful extended
harmonic spaces. To evaluate the set of blended transitions
and the corresponding generated extended harmonic space,
several musical features need to be taken into account ac-
cording to indications by musicologists. The importance of
each particular feature, however, is not known in advance
and musicologists need to make adjustments by experiment-
ing with a large set of test cases.

To ease this task, in this paper, we propose a creative tool
(Figure 1) that assists a musicologist with the evaluation of
harmonic blends. The system allows a musicologist to spec-
ify arguments — abstracting the properties of chords and
transitions — and to use them for iterative evaluation of the
blended outcome, based on the transitions that the system
proposes in order to connect two (potentially remote) har-
monic spaces.

Using arguments to make and explain decisions has been
proposed and explored in Artificial Intelligence (Bench-
Capon and Dunne, 2007), where an argument is a reason



for believing a statement, choosing an option, or doing an
action. In most existing works on argumentation, an argu-
ment is either considered as an abstract entity whose origin
and structure are not defined (Dung, 1995), or it is a logical
proof for a statement where the proof is built from a knowl-
edge base (Amgoud and Prade, 2009).

In our approach, arguments encapsulate desirable proper-
ties that the user would like to have in the resulting transition
blends. Arguments are specified by the user by ‘answering’
specific questions over the features of the idioms selected
as input for the transition blending process. Providing some
higher level arguments as inputs to the system is equivalent
to allowing a musical expert to interact with it in a language
he/she understands. This offers the user a flexible way to
adjust the harmonic blending properties according to dif-
ferent input scenarios in order to improve the creativity of
the system. Extended experimentation with the system —by
making use of the available arguments— can enable music
experts to provide valuable feedback regarding the function-
ality of transition features, thus directly intervening in the
blending process by answering simple questions. In a fu-
ture scenario, the assessment of the system will be based
on merely musicological criteria that should be more clearly
defined.

The paper is organised as follow. In the next section, we
describe the harmonic blending creative process embedded
in a creative assistant tool we implemented. Next, we de-
scribe the methodology of transition blending and extending
harmonic spaces. We show how user arguments are used
to evaluate transition blends based on two criteria resem-
bling two of the optimality principles of conceptual blend-
ing. Then, we present a process-based system evaluation
that focuses on the creative acts of programmers (Colton et
al., 2014). This evaluation is helpful in guiding further de-
velopments of the system. These are discussed in a conclud-
ing section.

System overview and test cases
Figure 1 illustrates a diagram of the presented system. The
user (music expert) interacts with the system through the
Graphical User Interface (GUI), where she/he selects two
initial idioms (harmonic spaces) in � and defines the im-
portant features used in conceptual blending by answering
to specific questions (argumentation) in �. The selected
initial idioms are described as sets of chord transitions,
while the provided answers to questions are mapped to en-
abling/disabling features of transitions (see Section ‘Chord
transitions description and blending’) that define the out-
come of transition blending (see Section ‘Evaluation of tran-
sition blending via arguments’).

Afterwards, pairs of transition in the two initial harmonic
spaces are given as inputs to the transition blending sys-
tem in ✏ where new transitions are invented through con-
ceptual blending. These transitions are then integrated into
an extended musical idiom that includes the initial idioms
selected by the user, while the role of the new transitions
is to provide musically meaningful connections between the
initial harmonic spaces. The created extended idiom is dis-
played to the user in the GUI in terms of a transition matrix

(see Section ‘From transition blends to transition matrices’).
By observing the matrix, the music expert evaluates (◆) the
results produced by the current blending setup, i.e., the given
questions to the argumentation module (�), and re-adjusts
her/his answers in � accordingly.

Several scenarios for initial idiom combinations are avail-
able to the user. The system included several harmonic
blending test cases according to which the user could blend
simple ‘artificial’ harmonic spaces as well as harmonic
spaces trained from data in different tonalities. The artifi-
cial harmonic spaces are constructed to include simple tran-
sitions in order to allow clear interpretations of the results,
e.g., a C major space included the chords C, F and G7.
Among the trained idioms that have been examined, there
are sets of Bach chorales in major and minor mode, and sets
of modal chorales in several modes.

The test cases, in which harmonic spaces in different
tonalities are blended, resemble the musical task of find-
ing transition paths for tonality modulations (changing the
tonality of a given harmonic space). This task allowed mu-
sic experts to identify arguments for defining the features
of transition blending that connect potentially remote har-
monic spaces (e.g., C major with F] major) in a manner that
is explainable in music theory in terms of tonality modu-
lations. Through the processes offered by the system, the
music experts were able to come to conclusions about what
transition features are important for constructing meaning-
ful connections between different combinations of pairs of
initial harmonic spaces.

Methodological aspects of transition blending
and extending harmonic spaces

The cognitive theory of conceptual blending by Faucon-
nier and Turner (2002) has been extensively used in lin-
guistics, music composition (Zbikowski, 2002), music cog-
nition (Antovic, 2009, 2011) and other domains mainly as
an analytical tool, which is useful for explaining the cogni-
tive process that humans undergo when engaged in creative
acts. According to this theory, human creativity is modeled
as a process by which a new concept is constructed by tak-
ing the commonalities among two input spaces into account,
to form a so-called generic space, and by projecting their
non-common structure in a selective way to a novel blended
space, called a blend.

In computational creativity, conceptual blending has been
modeled by Goguen (2006) as a generative mechanism, ac-
cording to which input spaces are modeled as algebraic
specifications and a blend is computed as a categorical col-
imit. A computational framework that extends Goguen’s ap-
proach has been developed in the context of the COncept
INVENtion Theory1 (COINVENT) project (Schorlemmer et
al., 2014) based on the notion of amalgams (Ontañón and
Plaza, 2010). According to this framework, input spaces are
described as sets of features, properties and relations, and an
amalgam-based workflow finds the blends (Confalonieri et
al., 2015; Eppe et al., 2015b). The amalgam-based workflow
generalises input concepts until a generic space is found and

1
http://www.coinvent-project.eu
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Figure 2: Conceptual blending based on amalgam. The
generic space is computed (1) and the input spaces are suc-
cessively generalised (2), while new blends are constantly
created (3). Some blends might be inconsistent or purely
evaluated according to blending optimality principles or do-
main specific criteria.

‘combines’ generalised versions of the input spaces to cre-
ate blends that are consistent or satisfy certain properties that
relate to the knowledge domain (Figure 2).2

Amalgam-based conceptual blending has been applied
to invent chord cadences (Eppe et al., 2015a; Zacharakis,
Kaliakatsos-Papakostas, and Cambouropoulos, 2015). In
this setting, cadences are considered as special cases of
chord transitions—pairs of chords, where the first chord is
followed by the second one— that are described by means
of features such as the roots or types of the involved chords,
or intervals between voice motions, among others. When
blending two transitions, the amalgam-based algorithm first
finds a generic space between them (point 1 in Figure 2).
For instance, in the case of blending the perfect with the
Phrygian cadences (Figure 3)—described by the transitions
I1: G7 ! C and I2: B[m ! C5 respectively— their generic
space consists of any transition that has a second chord with
the root note C, since this is the root note of both inputs’
second chords (C and C5).

After a generic space is found, the amalgam-based pro-
cess computes the amalgam of two input spaces by unifying
their content. If the resulting amalgam is inconsistent, then
it iteratively generalises the properties of the inputs (point
2 in Figure 2), until the resulting unification is consistent
(point 3 in Figure 2). For instance, trying to directly unify
the transitions I1: G7 ! C and I2: B[m ! C5 would yield an
inconsistent amalgam, since a transition cannot both include
and not include a leading note to the second chord’s tonic
(which is a property of I1 and the I2 respectively). There-
fore, the amalgam-based process generalises the clashing
property in one of the inputs (e.g., the property describing
the absence of leading note would be left empty in I2) and
tries to unify the generalised versions of the inputs again.

2In the process of blending through amalgams, the notions of
‘amalgam’ and ‘blend’ are the same. Therefore, in the following
paragraphs they are used interchangeably.

Figure 3: Example of blending cadences, which are special
case of transitions, where blending the perfect and the Phry-
gian produce the tritone substitution cadence blend.

After a number of generalisation steps are applied (point 2
in Figure 2), the resulting blend is consistent (point 3 in Fig-
ure 2). However, it may be the case that the blend is not
complete, in the sense that this process may have generated
an over-generalised term.

Blending completion (Fauconnier and Turner, 2002) is a
domain-specific process that uses background knowledge to
consistently assign specific properties to generalised terms.
In the hitherto discussed example, blend completion is used
for completing the A[ note as the chord’s fifth in blending
the perfect and Phrygian cadence in order to obtain the tri-
tone substitution cadence (Figure 3).

After several blends have been computed, an evaluation
process ranks them according to some optimality princi-
ples (Fauconnier and Turner, 2002, Chapter 16). These prin-
ciples are a necessary aspect of conceptual blending since
they allow to filter interesting blends from the (potentially
too) many possible ones3. A complete description of opti-
mality principles is out of the scope of this paper and the
reader is referred to Goguen and Harrell (2010) for appli-
cations of such principles in the Alloy algorithm. We give,
however, two extreme examples of ‘bad blends’ for clarify-
ing the importance of using optimality principles in concep-
tual blending.
• Example 1, violating the symmetry principle: Each of the

input spaces is a trivial form of a blend. This is a bad
blend, because no information from the other input spaces
is considered.

• Example 2, violating the web principle: Consider a blend
that includes all properties of the generic space, but all
other information are filled by properties that are not in-
cluded in any of the input spaces. This blend has the least
possible connections with the input spaces and therefore,
the least amount of information from the inputs is identi-
fiable in this blend.

These examples suggest two criteria for ranking the blends;
we provide a computational characterisation of them below.

Chord transitions description and blending
Individual chord transitions are the ‘atoms’ of the method-
ology followed herein to construct new transition matrices.
Specifically, transition sets from two musical idioms provide

3The amalgam-based algorithm produces many blends by fol-
lowing alternative generalisation paths.



input transitions for blending, producing a list of blended
transitions that are afterwards embeded in an extended har-
monic space. This methodology is described briefly in the
next section while some definitions regarding chord transi-
tions follow.
Definition 1. A chord transition c is described by a set of
features F .
In this work a transition is represented by 17 features. Fea-
tures 1-6 refer to the involved chords. Features 8 to 10 indi-
cate changes during the transitions and are based on the Di-
rected Interval Class (DIC) vector (Cambouropoulos, Katsi-
avalos, and Tsougras, 2013; Cambouropoulos, 2012). Fea-
ture 7 accounts for the change that occurred regarding the
chords’ root notes. The features considered important in this
work are the following:

1. fromRoot: the root pitch class of the first chord,
2. toRoot: the root pitch class of the second chord,
3. fromType: the type of the first chord (GCT base),
4. toType: the type of the second chord (GCT base),
5. fromPCs: the pitch classes included in the first chord,
6. toPCs: the pitch classes included in the second chord,
7. DICinfo: the DIC vector of the transition,
8. DIChas0: Boolean value indicating whether the DIC of

the transition has 0,
9. DIChas1: Boolean value indicating whether the DIC of

the transition has 1,
10. DIChasMinus1: Boolean value indicating whether the

DIC of the transition has �1,
11. ascSemZero: Boolean value indicating whether the first

chord has the relative pitch class value 11,
12. descSemZero: Boolean value indicating whether the first

chord has the relative pitch class value 1,
13. semZero: Boolean value indicating whether the first chord

has the relative pitch class value 11 or 1,
14. ascSemNextRoot: Boolean value indicating whether the

first chord has a pitch class with ascending semitone rela-
tion with the pitch class of the second chord’s root,

15. descSemNextRoot: Boolean value indicating whether the
first chord has a pitch class with descending semitone re-
lation with the pitch class of the second chord’s root,

16. semNextRoot: Boolean value indicating whether the first
chord has a pitch class with ascending or descending
semitone relation with the pitch class of the second
chord’s root, and

17. 5thRootRelation: Boolean value indicating whether the
first chord’s root note is a fifth above of the second’s.
Each feature can be considered as a function that assigns

a value to a chord transition c. Features’ values are defined
differently depending on the properties they represent. For
instance, features 3 to 8 are set-value functions that assign
a set of values to a chord. We refer to them as F

i

(c). The
value of the feature 7 is a vector and we refer to it as ~f(c).

Finally, all the other features are binary functions and we
refer to them as f

i

(c).

From transition blends to transition matrices
In the literature, an effective and common way to describe
chord progressions in a music idiom in a statistical manner
is by using Markov models (see Kaliakatsos-Papakostas and
Cambouropoulos (2014); Simon, Morris, and Basu (2008),
among others). Such models reflect the probabilities of each
chord following other chords in the idiom, as trained or sta-
tistically measured throughout all the pieces in the examined
idiom. First-order Markov models, specifically, indicate the
probability of transitions from one chord to another, disre-
garding information about previous chords. Therefore, indi-
vidual transitions play an important role on indicating par-
ticular characteristics of an idiom.

A convenient way to represent a first order Markov model
is through transition matrices, which include one respective
row and column for each chord in the examined idiom. The
probability value in the i-th row and the j-th column ex-
hibits the probability of the i-th chord going to the j-th —
the probabilities of each row sum to unit. The utilised chords
are actually represented by chord group exemplars, obtained
by the method described in Kaliakatsos-Papakostas et al.
(2015), while transitions between chords that pertain to the
same chord group are disregarded (this neutralises the diag-
onal). The representation of chords is based on the General
Chord Type representation (Cambouropoulos, Kaliakatsos-
Papakostas, and Tsougras, 2014).

Then, an important question is: How would a blended id-
iom be expressed in terms of a transition matrix, provided
that the transition matrices of two initial idioms are avail-
able?

Among many possible answers, the idea examined in the
present system is to create an extended transition matrix that
includes not only an altered version of the initial ones, but
also new transitions that allow moving across chords of the
initial idioms by potentially using new chords. The exam-
ined methodology uses transition blending to create new
transitions that: (a) maximally preserve the common parts
of transitions between the two initial spaces, and (b) incor-
porate blended characteristics for creating a smooth ‘morph-
ing’ harmonic effect when moving from chords of one space
to chords of the other. An abstract illustration of an extended
matrix is given in Figure 4.

By analysing the graphical representation of an extended
matrix as depicted in Figure 4 the following facts are high-
lighted:

1. By using transitions in Ii, only chords of the i-th idiom
are used. When using the transition probabilities in Ii, the
resulting harmonisations preserve the character of idiom
i.

2. Transitions in Ai�j create direct jumps from chords of
the i-th to chords of the j-th idiom. If a blended tran-
sition happens to be in Ai�j there is no need for further
considerations – such a transition can be included in the
extended matrix.
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Figure 4: Graphical description of an extended matrix that
includes transition probabilities of both initial idioms and of
several new transitions generated through transition blend-
ing. These new transitions allow moving across the initial
idioms, creating a new extended idiom that is a superset of
the initial ones.

3. Transitions in Bi�X constitute harmonic motions from a
chord of idiom i to a newly created chord by blending.
Similarly, transitions in the BX�j arrive at chords in idiom
j from new chords. For moving from idiom i to idiom j
using one external chord c

x

that was produced by blend-
ing, a chain of two transitions is needed: c

i

! c
x

followed
by a transition c

x

! c
j

, where c
i

in idiom i and c
j

in id-
iom j respectively. A chain of two consecutive transitions
with one intermediate external chord from chords of i to
chords of j will be denoted as Bi�X�j.

4. Sector C transitions incorporate pairs of chords that ex-
ist outside the i-th and j-th idioms. Having two external
chords, transitions in C violate our hypothesis for moving
from one known chord sets to the other using one new
chord at most; therefore, blends resulting to C-type blends
are disregarded.
Based on this analysis of the extended matrix, a method-

ology is proposed for using blends between transitions in I1
and I2. Thereby, transitions in I1 are blended with ones in
I2 and a number of the best blends is stored for further inves-
tigation, creating a pool of best blends. Based on multiple
simulations, a large number of the best blends (i.e. 100) in
each blending simulation should be inserted in the pool of
best blends (B), so that several commuting scenarios can be
created between the initial transition spaces. Thus, a greater
number of blends in the pool of best blends introduces a
larger number of possible commuting paths in Ai�j or in
Bi�X�j.

Evaluation of transition blending via arguments
By applying the aforementioned blending process a pool
of best blends is created that is afterwards used for con-
necting the transition blocks of two initial idioms, through
forming an extended matrix. When a music expert is us-

Question Chord Properties Transition Changes

Q1

fromRoot
toRoot
fromType
toType

Q2 fromRelPCs
toRelPCs

Q3 DIChas0
Q4 DIChas1

DIChasN1
Q5 DIChas2

DIChasN2
Q6 DICinfo
Q7 ascSemZero

descSemZero
semZero

Q8 ascSemNextRoot
descSemNextRoot
semNextRoot

Q9 5thRootRel

Table 1: Abstraction of chords’ and transition changes’ fea-
tures.

ing the system, she/he is able to select pairs of initial in-
put idioms, choose which aspects of blending are important
through arguments (analysed in the following paragraphs)
and evaluate/re-adjust this choice by observing the produced
results in the extended matrix.

The user evaluates the importance of several transition
features by answering questions based on the connecting
transitions produced by blending in the extended matrix.
The features related to the transitions and their constituent
chords are classified into 9 questions (Table 1).
Q1: Are roots and types of chords important?
Q2: Are individual pitch classes of chords important?
Q3: Are repeating pitch classes in transitions important?
Q4: Are semitone steps in transitions important?
Q5: Are tone steps in transitions important?
Q6: Are the intervalic contents of transitions important?
Q7: Are semitone motions to the tonic important?
Q8: Are semitones to the second chord’s root important?
Q9: Are motions of the chord roots by 5th important?
The first two questions concern characteristics of the chords
that constitute the transition, mapping the user answers to
features from 1 to 6, while the remaining seven questions
concern intervalic changes that occur within the transition,
mapping the user answers to features from 7 to 17. Relat-
ing questions to transition features was performed with the
involvement of music experts, to ensure that the mapping is
as accurate and as informative to the user as possible.

We denote the set of questions available to the user as Q.
When a user selects a question, an argument is automatically
generated. For the sake of this paper, an argument is defined
as follows.



Definition 2. An argument A is a tuple hq, F i, where q 2 Q
and F ⇢ F .
The user can specify at most 9 arguments, each of them is
mapped to a set of properties. The set of user arguments
{A1, . . . , A9} corresponding to answers to Q will be de-
noted by A. We assume to have a function  : A ! F
that returns the set of chord and transition properties associ-
ated with an argument (e.g, for the purposes of the current
analysis, Table 1 specifies  as a look-up function). The ar-
guments are used to compute two criteria in order to rate a
blend: total association and symmetry.

The total association indicates the total number of prop-
erties that a blend inherits from the inputs. A blend with
higher input associations is preferable since it is structurally
more deeply related with the inputs. The total association
is calculated by taking the individual association of a blend
w.r.t. the input chord transitions into account. The individ-
ual association of a blend b w.r.t. to an input I , denoted as
a(b, I), is defined as:

a(b, I) =
X

Ai2A
Val(A

i

, b, I)

where Val : A ! R is a function that takes an argument as
input and aggregates the values of the chord and transition
change properties associated with the argument, by inter-
preting them according to some music background knowl-
edge. Depending on the type of argument, Val is defined in
different ways.

When an argument refers to the roots and types of chords
(A1), Val is defined as:

Val(A1, b, I) =
X

Fj2 (A1)

equals(F
j

(I), F
j

(b))

The value of A1 is calculated by counting how many proper-
ties —among fromRoot, toRoot, fromType and toType— are
equals between a blend b and an input I . equals is a function
that returns 1 when two sets are equals and 0 otherwise.

When an argument refers to the individual pitch classes of
chords (A2), Val is defined as:

Val(A2, b, I) =
X

Fj2 (A2)

|F
j

(I) \ F
j

(b)|

The value of A2 is calculated as the number of elements
that are common in the set-value properties fromRelPCs and
toRelPCs of a blend b and an input I .

When an argument refers to the intervalic contents of tran-
sitions (A6), Val is defined as:

Val(A6, b, I) = norm[0,1](⇢~
f(I),~f(b))

The value of A6 is calculated as the Pearson’s correlation
coefficient of the vector-value property DICinfo of a blend b
and an input I . Higher correlations in the DIC vectors of two
transitions indicate higher resemblance; norm is a function
that normalises the Pearson’s coefficient from the interval
[�1, 1] to the interval [0, 1].
For all the other types of arguments, Val is defined as:

Val(A
i

, b, I) =
X

fj2 (Ai)

1 � (f
j

(I) � f
j

(b))

Based on the above definitions, the total association value is
the sum of the individual associations.

assoc(b) =
X

Ii2I
a(b, I

i

)

where I is the set of input spaces, containing in this specific
case, I1 and I2.

Symmetry, on the other hand, reflects the balance of prop-
erties that a blend inherits from both input spaces. A blend
has a high symmetry when it inherits an almost equal pro-
portion of properties from both input spaces. Blends having
higher symmetry are preferred to those with lower symme-
try, since a high symmetry reflects a stronger hybridisation
of structural characteristics. Hybridisation is an important
principle to evaluate transition blends.

The blend symmetry is defined in terms of its ‘asymme-
try’. The asymmetry of a blend w.r.t. the inputs, denoted as
asym(b), is calculated as:
����
a(b, I1)2 + a(b, I1)a(b, I2)

a(b, I1)2 + a(b, I2)
� a(b, I2)2 + a(b, I1)a(b, I2)

a(b, I2)2 + a(b, I1)

����

The value of asym(b) is defined in [0, 1], where 0 stands
for a perfect symmetry (equal association with both inputs)
and 1 stands for total asymmetry (association only with one
input). Additionally, the non-absolute version of the above
equation suggests the prevailing input, with a negative value
indicating dominating association of the blend with the first
input and a positive value contrarily.

The total rate of a blend is computed by taking the input
association and asymmetry values into account.

rate(b) =
assoc(b)(1 � asym(b))

assoc(b) + (1 � asym(b))

The above expression promotes pairs of association and
symmetry that are both high, while a simple sum would al-
low a low value of the one to be covered by the other.

Finally, a decision making criterion to compare any pair
of blends b1, b2 2 B can be defined as follows.
Definition 3 (Decision criterion). A blend b1 is preferred to
a blend b2 if and only if rate(b1) � rate(b2).

It is worthy to notice that the above criterion guarantees
that any pair of blends is comparable, and, consequently, it
allows to decide which blends are the best ones. This is an
important property for blend evaluation and, generally, for
approaches to argumentation-based decision making (Am-
goud and Prade, 2009; Bonet and Geffner, 1996).

System evaluation
Referring to Figure 1, via the interface ↵, the user has access
to modules �, and � which can be used to specify concepts
that will inform the resulting product, namely, the input id-
ioms and arguments that impose constraints on the gener-
ated blend. These are translated by the system into process-
friendly formats. Module ✏ embodies the (process-level)
concept of a system that make use of the supplied idioms
and the blending properties to generate example transition



matrices, ⇣. In the current version of the system, these transi-
tions are evaluated by the user (music expert) in step ◆ using
sophisticated harmonic knowledge that reflects historically
established musical aesthetic. The user can then return to
the GUI ↵, and adjust the settings of � and � to regenerate
the transitions.

This is illustrated in Figure 5 in box P1, using the dia-
grammatic extension to the FACE model by Colton et al.
(2014). Here, capital letters F , A, C, or E are creative
acts that generate a framing, aesthetic, concept, or exam-
ple, respectively. Administrative acts S and T denote selec-
tion and translation. Lower-case letters denote the generated
artefact in each case (e.g., the concept c corresponding to
the concept-creation act C). Subscripts p, g, or m indicate
whether the act takes place at the process, ground, or meta
level. Inside each box, stacks show the dependence in devel-
opment epochs, and arrows show run-time message passing.
Acts taken by the programmer or user are decorated with a
bar, whereas acts taken by the system itself receive no extra
decoration.

In the current version of the system, apart from the pro-
grammer’s creative acts specifying the modules and their in-
terconnections, and the algorithm C✏

p

that turns inputs into
blends, the user, who is assumed to be a music expert, must
intervene in the system in two places.

First, the user defines system settings C�

g

, C�

g

that cor-
respond to the selection of input idioms and of arguments
respectively. Second, after the run completes, he or she eval-
uates the system output via A◆

g

.
The system’s primary responsibilities take place through

the creative acts E✏

g

, which generate blends, and
S[a�,�

g

](e✏⇤), in which the aesthetic A�,�

g

(a unified label for
assoc and asym, which are defined anew in each run, based
on a fixed translation of the user’s arguments, as specified in
the previous section) is applied to rate the possible blends,
and select to a final extended transition matrix.

Therefore, the key idea behind what has been imple-
mented so far is an ‘automated ranking/evaluation’ step that
guides the selection of blends, S[a�,�

g

](e✏⇤) according to
the arguments defined by the user. The development of the
programmatic components that operationalise this process
has relied on both computer science and musicological in-
sights. This approach has been characterised as meaningful
per se through informal feedback provided by musical ex-
perts – but is perhaps especially valuable because it consti-
tutes a prototype for more involved automated evaluation of
computer-generated harmonic spaces.

Indeed, the next step towards the development of a more
autonomously creative system using the same architecture is
fairly clear: future work would need to ‘close the loop’ com-
putationally, connecting the evaluation of generated tran-
sition matrices with the parameter-setting (i.e., argumenta-
tion) stage, and making this run autonomously to refine the
system’s behavior. This as-yet hypothetical situation is il-
lustrated in the box P2.

Here, the programmer has translated some of the user-
specified aesthetics into code T [A◆

g

], and invented a meta-
level concept C↵

m

defining a system component that can au-

A�,�

g

= hT (C�

g

, C�

g

)i

hE✏

g
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Figure 5: The current implementation P1 prototypes auto-
mated evaluation of blends according to user’s arguments;
this points to a proposed future implementation P2 with fur-
ther automation.

tomatically apply these aesthetics to the generated transition
matrices e⇣

g

as in order to automatically generate new system
settings C�

g

, C�

g

.

Conclusion, Discussion and Future Work
In this paper, we described a methodology for harmonic
blending and we proposed a creative system that assists
musicologists with the evaluation and enhancement of har-
monic innovation. We defined some harmonic features of
chord transitions utilised for evaluating blends of transitions,
leading to the invention of novel harmonic spaces. The sys-
tem allows a musicologist to specify arguments over these
features that are taken into account in the generation of new
harmonic spaces. The music expert can then assess whether
the new harmonic idiom makes musicological sense and re-
adjust the arguments to explore alternative blends that can
potentially produce better harmonic spaces.

The main advantage of the current system is the agile in-
teraction through which the user can express desirable prop-
erties over the transition blends and their argument-based
evaluation in order to produce musically meaningful results.
The added value of argumentation is the ranking/evaluation
of blended transition – obtained by conceptual blending of
two input transition belonging to two musical idioms – by
answering questions which abstract several properties of
chord transitions. On the other hand, the evaluation of the
creative output of the system, i.e., an extended harmonic
space that includes blended transitions, is carried out by the
user via an introspective argumentative dialogue.

In a future work we intent to use the argumentation-based
process for evaluating the blended harmonisations of user
defined melodies, i.e., actual music output. Additionally,
mapping the properties of the blended idiom or, at a latter
stage of a harmonised melody, back to the parameter-setting
stage opens an interesting direction for future research and
further improvements of the system. The added value of
argumentation can be stressed, for instance, by letting the
system suggest possible refinements of the initial user ar-
guments, progressively converting part of the introspective
user evaluation into a more explicit format. For example,
a future version of the system would be based on identify-
ing harmonic features of the input spaces that automatically
suggest an ‘optimal’ set of initial arguments. The current
version of the system is an already-usable prototype on the
way towards the development of a more autonomous cre-
ative system.
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