
D3.3
Resolving Opposition and Contradiction for

Concept Invention

Authors Oliver Kutz, Fabian Neuhaus
Reviewers Tarek R. Besold, Marco Schorlemmer

Grant agreement no. 611553
Project acronym COINVENT - Concept Invention Theory
Date April, 30, 2016
Distribution PU

Disclaimer

The information in this document is subject to change without notice. Company or product names mentioned in this document may
be trademarks or registered trademarks of their respective companies.

The project COINVENT acknowledges the financial support of the Future and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the European Commission, under FET-Open Grant number 611553.

Abstract
This deliverable D3.3 of the COINVENT project addresses issues related to the problem of resolving undesired consequences and/or
inconsistencies in the concept invention workflow. It discusses variations of the basic workflow for concept invention, methods for
generalisation resp. weakening of theories, and methods for the discovery resp. description of base spaces. A major focus is on the
use of (formalisations of) image schemas as base spaces, in order to both steer the selection of interesting blends as well as to help
debug inconsistencies.

Keyword list: Conceptual Blending, Reasoning, Distributed Ontology Language DOL, Image Schemas, ASP, Generalisation,
Amalgams

Executive Summary

Conceptual blending is a mental process that serves a variety of cognitive purposes, including hu-
man creativity. In this line of thinking, human creativity is modeled as a process that takes different
mental spaces as input and combines them into a new mental space, called a blend. According to
this form of combinational creativity, a blend is constructed by taking the commonalities among
the input mental spaces into account, to form a so-called generic space, and by projecting the
non-common structure of the input spaces in a selective way to the novel blended space.

The theory of conceptual blending has been applied very successfully in cognitive science to
explain the process of concept invention. In previous COINVENT deliverables D3.1 and D3.2, we
have elaborated on a formalisation and implementation of conceptual blending borrowing tech-
niques from logic, ontological engineering, and algebraic specification, and in particular employ-
ing the Distributed Ontology Language DOL.

This deliverable D3.3 of the COINVENT project addresses issues related to the problem of
resolving undesired consequences and/or inconsistencies in the concept invention workflow. It
discusses variations of the basic workflow for concept invention, methods for generalisation resp.
weakening of theories, and methods for the discovery resp. description of base spaces. A major
focus is on the use of (formalisations of) image schemas as base spaces, in order to both steer the
selection of interesting blends as well as to help debug inconsistencies.

The deliverable is based on four papers accepted for publication. In “Fabricating Monsters is
Hard: Towards the Automation of Conceptual Blending”, by Fabian Neuhaus, Oliver Kutz, Mihai
Codescu, and Till Mossakowski [4], the general concept invention workflow and its automation
are addressed. So far, most approaches for concept invention in the literature have been recon-
structive. That is to say, they show how a particular concept (e.g., houseboat) can be ‘discovered’
by computationally blending two carefully selected input spaces (e.g, a house and a boat) and
a suitable base. This paper describes an attempt to take the next step and automate the concept
generation based on a database of input spaces. Particularly, it is shown how to create ‘monsters’
from a library of animals formalised as OWL ontologies.

The next two papers deal with the relationship between concept invention and image schemas. Im-
age schemas are recognised as a fundamental ingredient in human cognition and creative thought.
They have been studied extensively in areas such as cognitive linguistics. In cognitive science,
image schemas are identified as fundamental patterns of cognition. They are seen as schematic
prelinguistic conceptualisations of events and serve as conceptual building blocks for concepts.
However, the very notion of an image schema is still ill-defined, with varying terminology and
definitions throughout the literature. In the work presented in this deliverable, it is proposed and
outlined in what way image schemas can play an important role in computational concept inven-
tion, particularly within the computational realisation of conceptual blending.

With the goal of exploring the potential role of image schemas in computational creative sys-
tems, in “Choosing the Right Path: Image Schema Theory as a Foundation for Concept Invention”,

by Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus [2], the viability of the idea to formalise
image schemas as graphs of interlinked theories is studied. In particular, a selection of image
schemas related to the notion of ‘path’ is discussed, and it is shown how they can be mapped to
a formalised family of micro theories reflecting the different aspects of path following. Finally,
the potential of this approach in the area of concept invention is illustrated, namely by providing
several examples showing in detail in what way formalised image schema families support the
computational modelling of conceptual blending.

In “Image schemas in computational conceptual blending”, by Maria M. Hedblom, Oliver
Kutz, and Fabian Neuhaus [3], a library of formalised image schemas is proposed, and it is illus-
trated how they can guide the search for a base space in the concept invention work flow. Their
schematic nature is captured by the idea of organising image schemas into families. Formally, they
are represented as heterogeneous, interlinked theories.

The last paper in this deliverable, “Upward Refinement Operators for Conceptual Blending
in the Description Logic EL++” by Roberto Confalonieri, Manfred Eppe, Marco Schorlemmer,
Oliver Kutz, Rafael Peñaloza, and Enric Plaza [1], focuses on a particular formal approach to re-
solve inconsistencies arising in conceptual blending. Since input spaces for interesting blends are
often initially incompatible, a generalisation step is needed before they can be blended. In this
paper, this idea is applied to blend input spaces specified in the description logic EL++ and it is
proposed to use an upward refinement operator for generalising EL++ concepts. It is shown how
the generalisation operator is translated to Answer Set Programming (ASP) in order to implement
a search process that can find possible generalisations of input concepts. The generalisations ob-
tained by the ASP process are used in a conceptual blending algorithm that generates and evaluates
possible combinations of blends. Finally, it is illustrated how the approach can be employed in the
domain of computer icons for the generation and evaluation of new icons.

iii

Bibliography

[1] Roberto Confalonieri, Manfred Eppe, Marco Schorlemmer, Oliver Kutz, Rafael Peñaloza, and
Enric Plaza. Upward refinement operators for conceptual blending in the description logic
EL++. Annals of Mathematics and Artificial Intelligence, 2016. (Forthcoming).

[2] Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus. Choosing the Right Path: Image
Schema Theory as a Foundation for Concept Invention. Journal of Artificial General In-
telligence, 6:21–54, 2015.

[3] Maria M Hedblom, Oliver Kutz, and Fabian Neuhaus. Image schemas in computational con-
ceptual blending. Cognitive Systems Research, 39:42–57, 2016.

[4] Fabian Neuhaus, Oliver Kutz, Mihai Codescu, and Till Mossakowski. Fabricating Monsters is
Hard: Towards the Automation of Conceptual Blending. In Proc. of Computational Creativity,
Concept Invention, and General Intelligence (C3GI-14), volume 1-2014, pages 2–5, Prague,
2014. Publications of the Institute of Cognitive Science, Osnabrück.

Table of Contents

Fabricating Monsters is Hard: Towards the Automation of Conceptual Blending 1
Fabian Neuhaus, Oliver Kutz, Mihai Codescu, and Till Mossakowski

Choosing the Right Path: Image Schema Theory as a Foundation for Concept Invention . . . 11
Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus

Image schemas in computational conceptual blending . 45
Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus

Upward Refinement Operators for Conceptual Blending in the Description Logic EL++ . . . 71
Roberto Confalonieri, Manfred Eppe, Marco Schorlemmer, Oliver Kutz,
Rafael Peñaloza, and Enric Plaza

Fabricating Monsters is Hard: Towards the Automation of
Conceptual Blending

Fabian Neuhaus, Oliver Kutz, Mihai Codescu, and Till Mossakowski

1 Introduction

Conceptual blending in the spirit of Fauconnier and Turner operates by combining two input ‘con-
ceptual spaces’, construed as rather minimal descriptions of some thematic domains, in a manner
that creates new ‘imaginative’ configurations [3, 24]. A classic example for this is the blending
of the concepts house and boat, yielding as most straightforward blends the concepts of a house-
boat and a boathouse, but also an amphibious vehicle. These examples illustrate that, typically,
the blended spaces inherit some features from either space and combine them to something novel.
The blending of the input spaces involves a base space, which contain shared structures between
both input spaces. The structure in the base space is preserved in the blended space (the blendoid).

Goguen defines an approach that he terms algebraic semiotics in which certain structural as-
pects of semiotic systems are logically formalised in terms of algebraic theories, sign systems,
and their mappings [4]. In [7], algebraic semiotics has been applied to user interface design and
conceptual blending. Algebraic semiotics does not claim to provide a comprehensive formal the-
ory of blending – indeed, Goguen and Harrell admit that many aspects of blending, in particular
concerning the meaning of the involved notions, as well as the optimality principles for blending,
cannot be captured formally. However, the structural aspects can be formalised and provide in-
sights into the space of possible blends. The formalisation of these blends can be formulated using
the algebraic specification language OBJ3 [6].

In [9, 13, 15], we have presented an approach to computational conceptual blending, which
is in the tradition of Goguen’s proposal. In these earlier papers, we suggested to represent the
input spaces as ontologies (e.g., in the OWL Web Ontology Language1). We moreover presented
how the Distributed Ontology Language (DOL) can be used to specify conceptual blends with
the help of blending diagrams. These diagrams encode the relationships between the base space
and the (two or more) input spaces. These blending diagrams can be executed by Hets, a proof
management system. Hets is integrated into Ontohub,2 an ontology repository which allows users
to manage and collaboratively work on ontologies. DOL, Hets, and Ontohub provide a powerful
set of tools, which make it easy to specify and computationally execute conceptual blends.

In this paper, we will discuss how we utilised DOL, Hets, and Ontohub in an attempt to build a
prototype system that automates concept invention. The goal is to make the step from a reconstruc-
tive approach, where computational conceptual blending is illustrated by blending one concept
(e.g., houseboat) with the help of some carefully selected input spaces (e.g, a house and a boat) to
a system that autonomously selects two (or more) ontologies from a repository in Ontohub and at-
tempts to blend them in a way that meets some given requirements. Within the extensive literature

1 With ‘OWL’ we refer to OWL 2 DL, see http://www.w3.org/TR/owl2-overview/
2 www.ontohub.org

http://www.w3.org/TR/owl2-overview/
www.ontohub.org

on conceptual blending, few attempts have been made at a (more or less) complete automation of
the blending process, notable exceptions include [7], [19], [16], and [25, 26].

In our experiment we use a repository of ontologies about animals as input spaces and try to
blend them into monsters. In the next section, we are going to discuss the underlying model of our
approach and how we simplified it in our prototype implementation. Finally, we summarise our
initial results and discuss future work.

2 The Approach

We follow a variation of Goguen’s approach to computational conceptual blending, which has been
proposed within the COINVENT research project (see Figure 1 and www.coinvent-project.
eu) and summarised by Marco Schorlemmer. In the next sections we discuss the various elements
of this revised blending approach which we will refer to as the Schorlemmer model. Details of
this revised model have not been published elsewhere so far, but the general background of the
approach can be found in [21].

2.1 (Weakened) Input Spaces

In this model there are two (or more) input spaces I1 and I2, which are in our case represented as
OWL ontologies. These ontologies are randomly selected from a repository of animal ontologies
in Ontohub. These ontologies are not ‘fine-tuned’ for a particular blend, but represent some fea-
tures of types of animals, in particular their habitat, their diet, and some anatomical information
(see Figure 2). The goal is that in the future we will be able to easily both increase the depth
of information that is provided in the animal ontologies as well as add new ontologies covering
additional organism.

The Schorlemmer model differs from the model proposed in [7] by introducing an extra step:
the ontologies I1 and I2 are not blended directly, but are first weakened to two theories I1∗ and I2∗

(see Figure 1). There are different strategies that can be used to generate the weaker theories from
the input ontologies; the only constraint is that input ontologies logically entail their weakened
counterparts. The purpose of this extra step is to remove some of the information from the input
spaces that is undesired for the blend. There are several reasons why such a step might be neces-
sary. Firstly, when blending a concept from a given ontology, typically large parts of the ontology
are in fact off-topic. Logically speaking, when extracting a module for the concept in question,
large parts of the ontology turn out to be logically irrelevant (module extraction is typically based
on conservative extensions, see e.g. [12]). Secondly, when running the blend it may become obvi-
ous that the blendoid preserved too many properties from the input spaces. In this case, weakening
the input spaces will lead to a better result.

We will discuss these issues in more detail below in the context of evaluation.

2.2 Base and Interpretations

The weakened input ontologies I1∗ and I2∗ are used to generate the base ontology. The base
ontology is identifying some structure that is shared across I1∗ and I2∗. Or, to put it differently, the

2

www.coinvent-project.eu
www.coinvent-project.eu

I1 I2

C

Base Ontology

Input theory 1 Input theory 2Blendoid

I1* I2*

Weakend input theory 2Weakend input theory 2

Rich Background Knowledge

Consistency / Evaluation

Fig. 1: The core Schorlemmer model for computational blending enriched with evaluation and
background layers

Class: Tiger
SubClassOf: Mammal
SubClassOf: Carnivore
SubClassOf: has_habitat some Jungle
SubClassOf: has_body_shape some QuadrupedShape
SubClassOf: has_part some Fang
SubClassOf: has_part exactly 4 Claw
SubClassOf: has_part exactly 1 Tail
SubClassOf: covered_by some Hair

Class: Viper
SubClassOf: Reptile
SubClassOf: Carnivore
SubClassOf: has_habitat some

(Grasslands or Wetlands or Rocks)
SubClassOf: has_body_shape some SnakeShape
SubClassOf: has_part only (not Leg)
SubClassOf: has_part some PoisonFang
SubClassOf: covered_by some Scales

Fig. 2: Input space example

3

base ontology contains some theory, which can be found in both the input spaces, but it abstracts
from the peculiarities of the input spaces and generalises the theory in some domain-independent
way.

From the perspective of the workflow the base ontology is a more general theory that is gen-
erated from the (weakened) input ontologies. From a logical point of view, there exist two inter-
pretations which embed the base ontology into I1∗ and I2∗. (In Figure 1 these are represented by
the thinly dotted connectors between the base and I1∗ and I2∗.) These interpretations are a key
element to make the automatic blending process work (see next section).

2.3 The Blend

The ontologies I1∗ and I2∗ together with the base ontology and the two interpretations that connect
the base to I1∗ and I2∗ determine the blendoid. Informally, what happens is that the blendoid is a
disjoint union of I1∗ and I2∗, where the shared structure from the base is identified.3

For example, assume one of our input ontologies is about tigers and the other about vipers.
I1∗ and I2∗ are weakened versions of these input ontologies, where only some of the properties
of tigers and vipers, respectively, are included. If the base ontology is empty, then the resulting
blendoid consists of a theory that contains both tigers and snakes, but nothing is blended. If the
base ontology identifies the tiger with the viper, the blendoid will be a monster that combines all
the features of tigers and vipers that have been preserved in I1∗ and I2∗; e.g. you may get a tiger
with a forked tongue and scales instead of hair. A different base may identify the viper with the
tail of the tiger, in that case the resulting blend may consist of a tiger whose tail has eyes and
poisonous fangs.

2.4 Background Knowledge and Requirements

To make the Schorlemmer model work in practice, the background knowledge and requirements
have to play an essential role. Figure 1 represents a static view of how two input spaces are blended.
However, since there are a vast number of potential blends, most of which are poor, computational
concept blending is an iterative process. In each cycle, a new blendoid is created, and is evaluated
against ontological constraints, i.e. a set R1 of axioms drawn from (common sense) background
knowledge and with which a blendoid should not be in conflict, as well as a set R2 of consequence
requirements, i.e. a collection of desired entailments a blendoid should yield. If the blendoid is
rejected according to these criteria, the next cycle is started with different weakened input spaces
and/or a different base. Ideally, the results of the evaluation is supposed to guide the changes in
the next cycle. We will discuss the role of evaluation in more detail below.

2.5 Our Initial Implementation

For the purpose of our experiment we created a small library of ontologies of animals, describing
some of their anatomy, their habitats, and their diets. Further, we developed several ontologies that
contained background information. All ontologies were written in OWL Manchester Syntax.

3 Technically, the blendoid is the co-limit of the underlying diagram. For the formal details see [1] and [13].

4

In order to automate the blending process as modelled in Figure 1, we had to provide the
following functionality: given two selected ontologies from the repository, repeat the following
steps until the blend is successful:

(i) weaken the input spaces and generate I1∗ and I2∗,
(ii) create the base ontology and the interpretations that link the base to I1∗ and I2∗,
(iii) execute the blend and generate the blendoid, and
(iv) evaluate the blendoid.

Weakening the input space. For the purpose of the initial implementation we wrote a simple
script that removes some axioms in an OWL file. The script preserves the declaration of classes,
individuals, and properties (thus, the signature of the ontology is not changed). The selection of
the axioms that are deleted is randomised.

Generating the base ontology. For the purpose of an initial implementation we are currently work-
ing with a very simplified approach, where the bases consist basically of the shared signature of
I1∗ and I2∗, which allows for trivial interpretations from the base. The only exception is the class
Monster, which is mapped to the animals within the input spaces. E.g., Monster in the base on-
tology is mapped to the input ontologies I1∗ and I2∗, namely to Tiger and Viper, respectively.4

Figure 3 shows the complete base and both interpretations for our running example.

ontology base =
ObjectProperty: has_habitat
ObjectProperty: has_body_shape
ObjectProperty: has_part
ObjectProperty: covered_by
Class: Carnivore
Class: Monster

interpretation base2Viper: base to viper =
Monster |-> Viper

interpretation base2Tiger: base to tiger =
Monster |-> Tiger

ontology monsterblend =
combine base2Viper, base2Tiger

Fig. 3: Base and Interpretations

While this approach works, it limits the number of interesting blends severely. E.g., in our
example of blending Tiger with Viper, the approach allows blendoids like a tiger with poisonous
fangs and scales, but no tigers with a viper-like tail, because this would require the base to identify
the tail of the tiger with the snake. This, however, can be easily obtained by allowing more complex
base mappings.

4 This approach presupposes that the same terminology is used consistently across the animal ontologies. However,
since the ontologies were all developed in-house, this was not an issue.

5

Running the Blend. Hets provides the capability to run the blend. Technically, this is a colimit
computation, a construction that abstracts the operation of disjoint unions modulo the identification
of certain parts specified by the base and the interpretations, as discussed in detail in [5, 13, 14].

Figure 4 shows an example of a blendoid that is derived from the input spaces in Figure 2 with
a weakening of both input spaces. In this case the monster inherits most of the tiger qualities, but
it has poisonous fangs and is (partially) covered by scales.

Class: Monster
SubClassOf: Carnivore
SubClassOf: has_part some PoisonFang
SubClassOf: covered_by some Scales
SubClassOf: Mammal
SubClassOf: has_habitat some Jungle
SubClassOf: has_body_shape some QuadrupedShape
SubClassOf: has_part some Fang
SubClassOf: has_part exactly 4 Claw
SubClassOf: has_part exactly 1 Tail
SubClassOf: covered_by some Hair

Fig. 4: Example Blendoid

Evaluation. Hets integrates a number of theorem prover and consistency checkers. We used Pellet
and Darwin for the evaluation of the blendoids.

We evaluate blendoids both by considering its internal consistency and by looking for potential
clashes with our background knowledge. For this purpose we use DOL to specify a new ontology
that combines a blendoid with the background knowledge. This combined ontology is evaluated for
logical consistency via Hets. The reason why the background knowledge is essential here is that the
detection of problems often requires more information than is contained within the blendoid. To
return to our example about tigers and vipers, assume the input spaces in Figure 2 were weakened
and that I1∗ contains the information that tigers have four claws, and I2∗ contains the information
that vipers have no legs. In this case, the resulting blend will be a leg-less monster with claws.
Without the additional background knowledge that claws are part of legs, it is impossible for a
consistency checker to detect the inconsistency.

One requirement for a good blendoid is that it needs to combine information from both input
spaces. In other words, if the information in the blendoid is contained in one of the input ontolo-
gies, then the blendoid is not a good conceptual blend. Since our approach involves a weakening
of the input ontologies, it may happen that one of the ontologies is weakened so extremely that it
does not contribute anything significant to the blendoid.

Often, a blending process is done with certain requirements in mind. E.g., in our example we
may look for monsters that have four appendages. These requirements can be stated in DOL as
proof obligations that have to be proven from the blendoid together with the background knowl-
edge.

6

3 Discussion and Future Work

Our prototype implementation works in the sense that the system creates monsters by blending
two animals. It works, in spite of the fact that two essential components of the blending model are
handled quite bluntly:

(i) the base space is fixed to the shared signatures of the weakened input spaces and, thus, trivial;
and

(ii) the weakening of the input spaces does not utilise the results of the evaluation, but happens
randomly.

We here focused on making the workflow work, while accepting that some modules within the
workflow are trivialised. Future work includes refining such a workflow, and of course using more
sophisticated methods for its various parts.

Firstly, regarding the generation of the base ontology, we are planning to use heuristic-driven
theory projection (HDTP) as outlined in [17, 22]. Taking I1∗ and I2∗ as input theories, HDTP
applies anti-unification techniques to generalise the input ontologies to a more general theory. So
far, HDTP has been implemented for a sorted version of FOL. To make it work in our context, we
are going to need to support OWL directly (the preferred approach) or reduce OWL anti-unification
to FOL anti-unification (e.g. via using a logic translation first and then a theory projection).

Secondly, regarding weakening of theories, we particularly plan to use the idea of ‘amalgams’
as proposed in [18].

Thirdly, regarding revision of inconsistent blendoids, a number of tools and approaches are
available to be employed in this context, amongst them: non-monotonic reasoning, in particular
belief revision [2], and ontology debugging techniques, in particular for OWL [11]. Indeed, ontol-
ogy debugging techniques are readily available via the OWL API.5

Concerning the latter, a promising idea is to interactively generate competency questions (cf.
[8, 20]) from justifications for inconsistencies [10]. Here, a user can steer the generation of new
blends by rejecting certain ways to fix an inconsistent blendoid. A similar debugging workflow has
recently been proposed by [23], although only for the debugging of single inconsistent ontologies.
In the case of blending, such approaches need to be adapted to a revision procedure covering
networks of ontologies, where several ontologies (i.e. input and base ontologies) as well as the
mappings between them are subject to revision.

While our system works, it often does not produce very good monsters. Interestingly, the
limitations of the results are not (or only indirectly) caused by the fixing of the base space or the
randomised weakening of the input spaces. For example, consider the result of the blend of a shark
and a horse in Figure 5. The monster in this ontology has fins and a tail, it is a herbivore and lives
in some grasslands.

The ontology in Figure 5 illustrates several typical weaknesses of the blendoids that are gen-
erated by our system. First, the ontology does not provide any information about what kind of a
monster it is and what shape it has. Both input spaces contained this information (e.g,. a horse
is a mammal with the shape of a quadruped). Since our system removes axioms until it finds a

5 See http://owlapi.sourceforge.net

7

http://owlapi.sourceforge.net

Class: Monster
SubClassOf: Herbivore
SubClassOf: has_habitat some Grassland
SubClassOf: has_part some Fin
SubClassOf: has_part exactly 1 Tail

Fig. 5: Poor Blendoid

blendoid that is consistent with the background knowledge, often information is removed that is
not causing any inconsistency, leading to very weak ontologies. In this case, the existence of fins
is the only information that remains from the shark ontology.

This issue would be partially addressed by choosing a weakening strategy that utilises the
results of the evaluation process to selectively remove axioms. However, the more general point
is that humans expect a description of a monster to answer certain information – like “What does
it look like?” And many blendoids that are produced by the system do not contain the expected
information. This can be fixed by encoding additional requirements, which are used during the
evaluation process. E.g., one could add the following proof obligation:
Monster SubClassOf:

has_body_shape some BodyShape

This obligation ensures that any successful blendoid will contain the information about the shape
of the monster, but leaves open which.

Another reason why the blendoid in Figure 5 may be considered to be not a very impressive
specimen is that it is not particularly scary. It is a herbivore living on grasslands; for all we know
it may be a cow with a fin on the back. Again, the issue is that when humans perform conceptual
blending they are guided by implicit assumptions about the nature of the result they are expecting.
If we are expecting monsters to be scary, then this leads to additional requirements. In particular,
a monster is only scary if it is has the disposition to attack people, and it is only able to do that if
it has anatomical features that enable such attacks; e.g., claws or fangs or venomous stings.

Our framework allowed us to encode this information in the background ontology and add
the additional requirement that the monster is supposed to be scary. As a result, the background
ontology became several times as long and significantly more complex than the animal ontologies
themselves.

So our main conclusion is that the blending framework performs relatively well, in spite of the
shortcomings of some of its components. However, to get blendoids that a human would consider
as interesting, one needs to encode a lot of the background knowledge and implicit requirements,
which humans take for granted when they perform blends. Without such additional information
the system cannot evaluate the candidate blendoids properly.

8

Bibliography

[1] J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. Wiley, New
York, 1990.

[2] C Alchourrón, P Gärdenfors, and D Makinson. On the logic of theory change: partial meet
contraction and revision functions. Journal of Symbolic Logic, 50(2):510–530, 1985.

[3] G. Fauconnier and M. Turner. The Way We Think: Conceptual Blending and the Mind’s
Hidden Complexities. Basic Books, 2003.

[4] J. A. Goguen. An Introduction to Algebraic Semiotics, with Applications to User Interface
Design. In Computation for Metaphors, Analogy and Agents, number 1562 in LNCS, pages
242–291. Springer, 1999.

[5] J. A. Goguen. Semiotic Morphisms, Representations and Blending for Interface Design. In
Proc. of the AMAST Workshop on Algebraic Methods in Language Processing, pages 1–15.
AMAST Press, 2003.

[6] J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT Press,
1996.

[7] Joseph Goguen and D. Fox Harrell. Style: A Computational and Conceptual Blending-Based
Approach. In Shlomo Argamon and Shlomo Dubnov, editors, The Structure of Style: Al-
gorithmic Approaches to Understanding Manner and Meaning, pages 147–170. Springer,
Berlin, 2010.

[8] Michael Grüninger and Mark S Fox. The role of competency questions in enterprise engi-
neering. In Benchmarking—Theory and Practice, pages 22–31. Springer, 1995.

[9] J. Hois, O. Kutz, T. Mossakowski, and J. Bateman. Towards Ontological Blending. In Proc.
of the The 14th International Conference on Artificial Intelligence: Methodology, Systems,
Applications (AIMSA-2010), Varna, Bulgaria, September 8th–10th, 2010. Springer.

[10] A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all Justifications of OWL DL
Entailments. In Proc. of ISWC/ASWC2007, 4825, pages 267–280. Springer, 2007.

[11] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging unsatisfiable classes in OWL
ontologies. Journal of Web Semantics, 3(4):268–293, 2005.

[12] B. Konev, C. Lutz, D. Walther, and F. Wolter. Semantic Modularity and Module Extraction
in Description Logics. In 18th European Conf. on Artificial Intelligence (ECAI-08), 2008.

[13] O. Kutz, T. Mossakowski, J. Hois, M. Bhatt, and J. Bateman. Ontological Blending in
DOL. In Tarek Besold, Kai-Uwe Kuehnberger, Marco Schorlemmer, and Alan Smaill, edi-
tors, Computational Creativity, Concept Invention, and General Intelligence, Proc. of the 1st
Int. Workshop C3GI@ECAI, volume 01-2012, Montpellier, France, August 27 2012. Publi-
cations of the Institute of Cognitive Science, Osnabrück.

[14] O. Kutz, T. Mossakowski, and D. Lücke. Carnap, Goguen, and the Hyperontologies: Logical
Pluralism and Heterogeneous Structuring in Ontology Design. Logica Universalis, 4(2):255–
333, 2010. Special Issue on ‘Is Logic Universal?’.

[15] O. Kutz, F. Neuhaus, T. Mossakowski, and M. Codescu. Blending in the Hub—Towards a
collaborative concept invention platform. In Proc. of the 5th International Conference on
Computational Creativity, Ljubljana, Slovenia, June 10–13 2014.

[16] Boyang Li, Alexander Zook, Nicholas Davis, and Mark O. Riedl. Goal-Driven Conceptual
Blending: A Computational Approach for Creativity. In Proc. of the 2012 International
Conference on Computational Creativity, Dublin, Ireland, 2012.

[17] M. Martinez, T. R. Besold, A. Abdel-Fattah, K.-U. Kühnberger, H. Gust, M. Schmidt,
and U. Krumnack. Towards a Domain-Independent Computational Framework for Theory
Blending. In Proc. of the AAAI Fall 2011 Symposium on Advances in Cognitive Systems,
2011.

[18] Santiago Ontañón and Enric Plaza. Amalgams: A formal approach for combining multi-
ple case solutions. In Case-Based Reasoning. Research and Development, pages 257–271.
Springer, 2010.

[19] F. C. Pereira. Creativity and Artificial Intelligence: A Conceptual Blending Approach, vol-
ume 4 of Applications of Cognitive Linguistics (ACL). Mouton de Gruyter, Berlin, December
2007.

[20] Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z Pan, Kees van Deemter, and Robert Stevens.
Towards competency question-driven ontology authoring. In The Semantic Web: Trends and
Challenges, pages 752–767. Springer, 2014.

[21] Marco Schorlemmer, Alan Smaill, Kai-Uwe Kühnberger, Oliver Kutz, Simon Colton, Emil-
ios Cambouropoulos, and Alison Pease. COINVENT: Towards a Computational Concept
Invention Theory. In Proc. of the 5th International Conference on Computational Creativity,
Ljubljana, Slovenia, June 10–13 2014.

[22] A. Schwering, U. Krumnack, K.-U. Kühnberger, and H. Gust. Syntactic Principles of
Heuristic-Driven Theory Projection. Cognitive Systems Research, 10(3):251–269, 2009.

[23] Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler, and Philipp Fleiss. Interactive
Ontology Debugging using Direct Diagnosis. In Proc. of the Third International Workshop
on Debugging Ontologies and Ontology Mappings (WoDOOM-14), May 26, 2014, ESWC,
Anissaras/Hersonissou, Greece, 2014.

[24] Mark Turner. The Origin of Ideas: Blending, Creativity, and the Human Spark. Oxford
University Press, 2014.

[25] Tony Veale. From Conceptual Mash-ups to “Bad-Ass” Blends: A Robust Computational
Model of Conceptual Blending. In Proc. of the 2012 International Conference on Computa-
tional Creativity, Dublin, Ireland, 2012.

[26] Tony Veale, Diarmuid O Donoghue, and Mark T Keane. Computation and blending. Cogni-
tive Linguistics, 11(3/4):253–282, 2000.

10

Choosing the Right Path:
Image Schema Theory as a Foundation for Concept Invention

Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus

1 Introduction

The cognitive processes underlying concept invention are still largely unexplored ground, although
promising theories have been developed within the last few decades. Two of the most influential
directions are the theory of grounded cognition [4] and the embodied mind theory [17, 42]. Both
propose that human cognition is grounded in our bodily experience with the environment. In the
case of grounded cognition, mental representations are thought to be derived from the embodied
experience that is used to structure concepts, including even the most abstract ones. Embodied
cognition takes this one step further by arguing against mental representations, and states that
concepts are (or may be identified with) the neural activation of embodied experiences.

Following the reasoning of how embodied experiences shape our cognition, a more specific
theory of concept formation and language understanding was introduced under the name of image
schemas. It is a theory that focuses on basic spatial cognition. The theory was originally developed
in the late 80s by [41] and [29], and was quickly taken up by other researchers in the area (e.g.
[45]).

According to [29] “an image schema is a recurring dynamic pattern of our perceptual inter-
action and motor programs that gives coherence and structure to our experience.”

The ‘image schema’ is thought to be the abstracted spatial pattern from repeated sensorimo-
tor experience. These mental structures offer a foundation and a way to ground other cognitive
phenomena, such as language capacity, understanding, and reasoning. They offer a connection be-
tween the bodily experienced relationships of physical objects in time and space with the internal
conceptual world of an agent. In language, they can be seen as the conceptual building blocks
for metaphoric and abstract thought. Some of the most commonly mentioned examples of image
schemas are: CONTAINMENT, SUPPORT and MOVEMENT_ALONG_PATH1.

Another important approach towards an understanding of concept invention is the theory of
conceptual blending, introduced by [14], which developed further the idea of bisociation intro-
duced by the psychologist [32]. Conceptual blending proposes that novel concepts arise from a
selective combination of previously known information (see Section 6 for a more thorough intro-
duction). It is our belief that a formal approach to image schemas in connection with the framework
of conceptual blending will greatly support the development of computational systems for concept
invention. A formal representation of these conceptual building blocks might in particular provide
a novel approach to the symbol grounding problem.

However, much of the image schema research is inconsistent regarding terminology and defi-
nitions of image schemas, making formal approaches challenging. The borders between different

1 This image schema is also referred as SOURCE_PATH_GOAL schema. For reasons that will become more obvious
in Section 5, we use MOVEMENT_ALONG_PATH as the most generic term for this image schema.

image schemas are often vague and overlapping. It is also unclear where to draw the line regarding
what spatial relationships should be called image-schematic (cf. image schema concepts such as
ABOVE, with directional concepts such as left and right), and to what degree. While previous re-
search in cognitive linguistics (e.g. [25]) and developmental psychology (e.g. [46]) provides some
first steps towards a more unified terminology, the identification of these abstract patterns has been
established to be difficult.

From a formal perspective, previous research on image schemas (e.g. [36, 69, 78]) has pro-
vided a valuable portfolio of approaches that can be build on further. However, more attention
still needs to be paid to building a more unified terminology integrating the formal and cognitive-
linguistic approaches found in the literature, whilst allowing a more systematic formalisation strat-
egy [24].

Our principle claim in this paper is that the ‘Gestalt’ idea of image schemas should be analysed
as family-resemblance. Within the theory of mind, Gestalt psychology aims to explain the human
ability to ascribe meaning to seemingly chaotic perceptions. The most important aspect here is
that the mind has the capacity to ‘form a whole’ which can differ from the collection of parts in
important aspects, including emergent properties that may result from a new ‘self-organisation’ of
those parts. For image schemas, the notion of Gestalt is related to how the semantic content of a
complex expression may extend, exceed, or simply change the semantic content of its parts [33].
The formal analysis of this ‘family-resemblance’2 should provide a set (i.e. a family) of interlinked
theories (in the weakest case, a set of theories ordered by logical entailment, giving rise to a lattice),
each of which covering a particular conceptual-cognitive scenario within the schema.

To illustrate our approach, we will use the image-schematic structure found in language to
suggest how image schemas can be represented as lattices of theories. This illustrates how simple
image schemas can be made more elaborate within their respective ‘family’. To further outline
our formal approach, we will use the image schema of MOVEMENT_ALONG_PATH, analyse its
connections to natural language, and sketch-out a lattice axiomatised in first-order logic which
makes explicit the different branching points of micro theories involved in the family.

The remainder of the paper is structured as follows: In Section 2, a more detailed account
of image schemas is presented by discussing their internal structure and their role in language.
In Section 3, the PATH-following is discussed in more detail. In Section 4, formal approaches
to image schemas are discussed and we introduce our idea of how to gather image schemas in
families of theories by using PATH-following as a proof of concept. This is done by representing
PATH-following as a DOL-graph and as a FOL-axiomatisation. In Section 5, we investigate the
role image schemas can play in concept invention within the framework of conceptual blending
theory. Finally, in Sections 6 and 7, a discussion and a short conclusion are provided.

2 Image schemas

2.1 Image schemas and embodiment

The theory of image schemas stems from the theory of embodied/grounded cognition. It is a theory
that emphasises the role of bodily experiences as a source for cognitive capacities. It has become

2 Similar ideas can be found in e.g. [8], in relation to prototype theory [64] and of course in the work of [81].

12

increasingly supported by findings in cognitive linguistics and neuroscience (e.g. [15, 17, 44, 70,
80]).

The theory offers an interesting view of cognition for approaches to artificial intelligence as
it provides a more direct route to computational cognition than traditional, more hard-coded ap-
proaches. I.e., artificial agents are encouraged to learn, and artificial cognitive structures are pop-
ulated by their ‘experiences’, similar to the learning process observed in human children (see [9]
for an introduction to embodied artificial intelligence and [76] for an overview of such cognitive
architectures).

Building on grounded cognition, image schemas are thought to be the mental representations
extracted from bodily experiences, and more specifically, experiences that can be described us-
ing basic spatial relationships. Image schemas are therefore mental abstractions of learnt spatial
relationships (e.g. CONTAINMENT or SUPPORT).

In the early stages of cognitive development, these image schemas are formed and ‘fine-tuned’
as the experiences with a particular spatial relationship are increased and extended to different
situations [47, 63]. Due to this fine-tuning, it appears prominent that image schemas consist of
different ‘parts’ [46]. These ‘parts’ can either be removed or added while still capturing the same
basic image schema, generating what can be described as an image schema ‘family’. [48] refer
to these ‘parts’ as spatial primitives; the fundamental spatial building blocks. As this view is
essential to our approach for formalising image schemas we will regularly return to the notion of
spatial primitives in later sections.

The purpose of image schemas lies in their role as abstracted spatial relationships. It is be-
lieved that they contain vital information for the conceptual understanding of concepts and their
surroundings. For example, to properly understand what a ‘cup’ is, an infant needs to understand
that the cup in essence is a CONTAINER. Respectively, the notion of a ‘table’ needs to be con-
nected to a SUPPORT image schema since otherwise the child will not understand that objects
remain on tables after being placed on them. This way, image schemas map affordances of objects
(in the sense of Affordance Theory [20]) and can be used to explain increasingly more complicated
concepts. This is done through information transfer and can be observed in natural language, for
example in conceptual metaphors.

2.2 Information transfer and conceptual metaphor

[27] suggested analogy to be at the core of cognition. This makes image schemas a valuable asset
as the cognitive benefit of image schemas lies in their generalised nature. For example, if the image
schema of SUPPORT has been learnt through perceptual exposure of ‘plates on tables’, an infant
can infer that table-like objects such as ‘desks’ also have the SUPPORT image schema and can
SUPPORT objects such as ‘books’ as well. As the environment becomes increasingly complex for
the infant, this information transfer becomes a fundamental part of cognition.

Information transfer in language is often done through conceptual metaphors. Information is
moved from one known source domain to an unknown target domain. Conceptual metaphors can
be further specialised to image-schematic metaphors. These are the metaphors that do not transfer
general conceptual knowledge from one domain to another but the skeletal structure of the image
schema [34], and are the metaphors that this paper primarily covers. Here the source domain in the

13

analogical transfer is stripped down to the image schema skeleton which is mapped to the target
domain and there fleshed out with local domain information.

As language develops and the individual is exposed to increasingly more abstract concepts
than those found in early infancy, image schemas can be used to ground the novel concepts in
already comprehended concepts. Embodied experiences and image schemas are often used in
natural language to explain abstract concepts. For example, in a social hierarchy people can be
either ‘above’ or ‘below’ us, expressions learned from embodied experiences of the image schema
ABOVE, which itself derives from experiencing the human body’s vertical axis. In natural lan-
guage, metaphors such as ‘falling from grace’ or ‘the rise to power’ use the same image schema
to represent status and success.

One of the most well-known examples of an attempt at grounding abstract concepts in image
schemas is the work of [43]. In Where Mathematics Comes From, they defend the view that image
schemas lay the foundation for abstract concepts in mathematics. They explain how the notions
of addition and subtraction can be traced from back and forward MOVEMENT_ALONG_PATH,
and extend the reasoning to more abstract constructions such as complex numbers. While being
influential work, it has also received heavy criticism, in particular targeted at vague terminology
and methodology (e.g. [22, 65]) and mathematical errors (e.g. [77]).

The image schema CONTAINMENT is commonly described as the sum of the interrelationships
of an inside, an outside and a boundary [41]. An abstract example of the image schema CONTAIN-
MENT is the conceptual metaphor “to be in love”. Obviously, there is no spatial region for the
emotional state of love in the same sense as there is for a physical container such as a cup. Yet, we
use the spatial language to talk about the phenomenon of love: e.g. we ‘fall in love’ or ‘fall out of
love’.

There is a clear connection between CONTAINMENT and prepositions such as ‘in’, ‘into’ and
‘out of’. [5] investigated the CONTAINMENT relationship by searching text corpora for words
similar to containment, e.g. ‘surrounding’ and ‘enclosing’. The authors’ method distinguished
eight different kinds of CONTAINMENT.

Prepositions in combination with verbs often do appear to be the key words that help iden-
tify image schemas in language [28]. Below we will discuss natural language and conceptual
metaphors of the PATH-following image schema family.

2.3 Image schemas and their structure

In this section we, look more closely at how image schemas are thought to be structured. The
first pertinent distinction is that image schemas can be both static and dynamic. For example,
CONTAINMENT can either describe the situation in which the cup already contains coffee, or
alternatively the situation in which the coffee is poured from a source: a kettle, to a goal: a cup,
defined as an IN and OUT schema. The static image schemas can in turn be differentiated under
three different categories: orientational (e.g. ABOVE), topological (e.g. CONTACT), and force-
dynamic (e.g. SUPPORT) [43].

A more dynamic way to understand the IN and OUT schema is to view them as combina-
tions of the two image schemas CONTAINMENT and MOVEMENT_ALONG_PATH, building on
the idea that image schemas can be combined with one another to generate more specific and

14

complex image schemas [36, 48, 57, 78]. Another example is how MOVEMENT_ALONG_PATH

easily can be connected with the image schema LINK resulting in the higher level image schema
LINKED_PATH: The image schema concept that encompasses linked behaviour on two, or more,
joint paths. This “Gestalt” grouping of image schemas means that there must be a distinction
between the most perceptually primitive image schemas and the more complex image schemas.

In language, this corresponds to the observation that combinations of image schemas are suit-
able to describe more complex concepts. To illustrate this, [36] suggested that ‘transportation’ can
be understood as a combination of the image schemas of SUPPORT and MOVEMENT_ALONG_-
PATH, and [46] suggested that ‘marriage’ can be viewed as a LINKED_PATH.

One proposal to hierarchically structure the range from simple to more complex and dynamic
image schemas is the approach presented in [48], which builds on empirical data from studies
on cognitive development. In their work, the umbrella term ‘image schemas’ is divided into three
different levels: spatial primitives3 (the conceptual building blocks build from spatial information),
image schemas4 (simple spatial stories), and conceptual integrations (image schemas combined
with a non-spatial element such as force or emotion).5

The complex and intermixed structure of image schemas just outlined implies that it is not
possible to consider an image schema as a stand-alone individual theory. Instead, we endorse
the notion of grouping image schemas based on their general characteristics. We believe that the
change from one spatial schema to another can be accomplished by providing or detailing more
spatial information, such as that found in the spatial primitives. In Section 5, we will demonstrate
this idea by using PATH-following as a proof of concept. In the next section PATH-following will
be introduced in more detail.

3 The image schema family PATH-following

3.1 Introducing PATH-following

In this section, we will explain how image schemas, like MOVEMENT_ALONG_PATH, are mem-
bers of image schema families. For this purpose we introduce the PATH-following image schema
family and illustrate how the family is organised hierarchically from general to more specific ver-
sions of PATH-following by the addition of spatial information and primitives.

MOVEMENT_ALONG_PATH is one of the first image schemas to be acquired in early infancy
as children are immediately exposed to movement from a range of objects. This, in combination
with the neurological priority to process moving objects over static objects, suggests that the image
schema is either innate or learnt at a very early stage in cognitive development [63]. However,
in order to understand how the PATH-following family is fine-tuned and in ‘more completion’

3 The notion of spatial primitives is not novel. Research on such semantic building blocks can be found in the linguistic
literature. E.g. the work on spatial semantics by [75] and the more general work on semantic primes that covers more
than the spatial and temporal aspects found in spatial primitives [79].

4 When referring to this concept we will use the term spatial schemas to avoid ambiguity between the wider notion of
‘image schema’ and its narrower sense introduced by [48].

5 For the purposes of this paper, only spatial primitives and spatial schemas will be further discussed. In principle,
our approach is general enough to allow for heterogeneity, also on the logical level. Therefore one may also include
conceptual integrations involving non-spatial elements in our image schema families, cf. the discussion in Sections 5
and 4.3.

15

internally structured, experiments with children have provided some insights on distinguishing
how the different spatial schemas may develop.

Firstly, already at an early age children pay more attention to moving objects than resting
objects. Trivial as it may seem, it requires children to detect the spatial primitive OBJECT (or
THING) and the spatial schema MOVEMENT_OF_OBJECT.6 Secondly, children tend to remember
the PATH of the movement of the object. The PATH is a spatial primitive, which is different from
the movement and the moving object.7.

In addition to these two basic spatial primitives and as the child becomes more and more
familiar with the image schema, more spatial information is added to fine-tune PATH-following.
This means that in more advanced stages, the image schema encompasses beyond MOVEMENT-
_OF_OBJECT and the spatial PATH itself, also the spatial primitive END_PATH, and later also
a START_PATH [48]. Already at five months infants can distinguish PATH-following that has an
END_PATH (the image schema PATH_GOAL) from the initial PATH, while the START_PATH is
less interesting until the end of the first year of life. This is further supported by linguistic analyses
in which an END_PATH is initially more interesting than a START_PATH [28].

Table 1 summarises the spatial primitives that may be involved in image schemas of the PATH-
following family.8

Table 1: Spatial primitives of the PATH-following family
Spatial primitive Description

OBJECT an object
PATH the path the object moves along

START_PATH the initial location
END_PATH the final location

A more specified example of the PATH-following family is presented by [43]. In accordance
with other linguistic literature on image schemas they are focussed on the SOURCE_PATH_GOAL

schema, see Figure 1. Here, the object, called trajector, moves from a source to a goal. END_PATH

and START_PATH are not identical to the SOURCE and GOAL found in the SOURCE_PATH_GOAL

schema. In SOURCE_PATH_GOAL, a direction and a purpose are implied in the image schema,
which changes the conceptual nature of the movement. [43] make the distinction of ‘elements’,
or roles, that to some extent correspond to the spatial primitives discussed above, but additional
distinctions are added. The elements9 are listed in Table 2. Most importantly, they make the clear
distinction between end location and goal, as they distinguish between ‘path’, the actual trajectory
of a movement, and ‘route’, the expected movement.

6 OBJECT is understood here in a very wide sense that includes not only solid material objects but entities like waves
on a pond or shadows. [48] also discuss MOVE as a spatial primitive of its own. We consider MOVEMENT_OF-
_OBJECT to be a spatial schema, since movement necessarily involves a temporal dimension and, further, it always
involves at least one spatial primitive, since any movement, necessarily, involves at least one OBJECT that moves.

7 This spatial primitive is not to be confused with the image schema family PATH-following.
8 Table 1 is based on [48], but includes some changes. In particular, as mentioned above, we do not consider MOVE

to be a spatial primitive.
9 We altered the terms to better match the terminology in [48], but no change in content was made.

16

Fig. 1: The SOURCE_PATH_GOAL schema as illustrated by [43].

Table 2: Elements of PATH according to [43]
Element Description
trajector The object

source The initial location
goal The intended end location

route A pre-realised route from source to goal
path The trajectory of motion

position The position of the trajector at a given time
direction The direction of the trajector at a given time

end location End location, may not correspond to the goal location

The distinction, made by [43], between the expected movement and the actual movement
is primarily interesting for a description of how new image schemas relate to actual events and
how new image schemas are learned. Consider, for example, a situation where a child observes
the movement of a billiard ball and is surprised that the ball stops because it is blocked by an-
other billiard ball. In this case, a given instance of the MOVEMENT_ALONG_PATH spatial schema
formed the expectations of the child, which were disappointed by the actual physical movement,
because the expected END_PATH (the goal) does not correspond to the actual END_PATH (end
location). Given a repeated exposure to similar events, the child may develop the new spatial
schema BLOCKAGE. After learning BLOCKAGE, the child will no longer be surprised by blocked
movement since the expected END_PATH (the goal) will correspond to the actual END_PATH (end
location). While the terminological distinction between expected trajectory and actual trajectory
is useful, these do not necessarily need to constitute two different spatial primitives. Indeed, spatial
primitives are parts of image schemas and, thus, always parts of conceptualisations, and not parts
of actual events.

While the notions of path-following of [48] and [43] coincide widely, there are differences in
terminology and definitions. In this paper we follow primarily the former.

17

3.2 Concepts that involve PATH-following

As briefly demonstrated with CONTAINMENT and ABOVE, image schemas can be used as a source
for grounding abstract concepts in already comprehended concrete concepts. In this section we
consider examples for concepts, which involve members of the PATH-following family.

The most straightforward examples of concepts that involve PATH-following are concepts that
are about the spatial relationship of movement between different points. Prepositions such as from,
to, across and through all indicate a kind of PATH-following10. This also includes key verbs that de-
scribe movement, e.g. coming and going. Another example, here for the spatial schema SOURCE-
_PATH_GOAL, is Going from Berlin to Prague. Note that in many cases we do not provide infor-
mation about START_PATH and END_PATH of a movement; e.g. leaving Berlin and travelling to
Berlin are examples for the spatial schemas SOURCE_PATH and PATH_GOAL, respectively. Me-
andering is an example for a concept that realises MOVEMENT_ALONG_PATH, which involves a
PATH but no START_PATH or END_PATH. In contrast, no discernable PATH is involved in roam-
ing the city, which is an example for MOVEMENT_OF_OBJECT, the most general member of the
PATH-following family.

Looking at abstract concepts and conceptual metaphors, PATH-following is found in many ex-
pressions. The concept of “going for a joy ride” realises the spatial schema SOURCE_PATH, since
it has a START_PATH and a PATH but no END_PATH. Similarly, the expression “running for pres-
ident” describes the process of trying to get elected as president metaphorically as a PATH_GOAL.
In this metaphor the PATH consists of the various stages of the process (e.g. announcing a candi-
dacy and being nominated by a party) with the inauguration as END_PATH.

Another metaphor “life is a journey”, studied by [2], makes an analogical mapping between
the passing of time in life, to the passing of spatial regions on a journey. As in the example men-
tioned above, where the concept of “being in love” acquired information from the CONTAIN-
MENT schema, this metaphor gains information from the spatial primitives connected to the image
schema SOURCE_PATH_GOAL. Here, the most important spatial primitives are START_PATH and
END_PATH – in this metaphor they are mapped to the moments of birth and death, as well as the
PATH itself, illustrating how “life goes on” in a successive motion without branching.

A different perspective on life and death is expressed in the metaphorical expression “the circle
of life”. Implied is that life leads to death, but also that death gives rise to life, completing a cyclic
movement – the image schema MOVEMENT_IN_LOOPS. This image schema can be considered
as a version of PATH-following, in which START_PATH and END_PATH coincide at the same
‘location’.

These examples illustrate a general pattern, namely that many conceptual metaphors involving
PATHs are about processes, and different events during such processes are treated metaphorically
as locations on a path. This leads to a conceptualisation of the abstract concept of time, which we
will further investigate in the next section.

10 Some prepositions include other image schemas at the same time. E.g. ‘through’ involves apart from PATH also some
notion of CONTAINMENT.

18

Table 3: Summary of the mentioned expressions and their level in the PATH-following hierarchy
Expression Level in hierarchy

Concrete: Roaming the city MOVEMENT_OF_OBJECT

Meandering MOVEMENT_ALONG_PATH

Leaving Berlin SOURCE_PATH

Travelling to Berlin PATH_GOAL

Going from Prague to Berlin SOURCE_PATH_GOAL

Abstract: Going for a joy ride SOURCE_PATH

Running for president PATH_GOAL

Life is a journey SOURCE_PATH_GOAL

The circle of life MOVEMENT_IN_LOOPS

3.3 Time and processes as PATH

The conceptualisation of time has been investigated by [7]. Here we follow suit by looking at how
members of the PATH-following image schema family are widely used as a conceptual metaphors
for time. We consider several examples and discuss the role of PATH-following image schemas for
the conceptualisation of processes in general.

One popular way to conceptualise time is as MOVEMENT_ALONG_PATH. Often, time is con-
ceptualised as having a beginning, a START_PATH; this may be the Big Bang or the moment of
creation in a religious context. Depending on the cosmological preferences, time may also be
conceptualised to have an end, an END_PATH: the Big Rip or an apocalypse.

Other religious traditions embrace the notion of a ‘Wheel of Time’, that is time as a cyclic
repetition of different aeons. The underlying image schema involves a MOVEMENT_IN_LOOPS.
The same image schema is used in the conceptualisation of time within calendars: the seasons are
a continuous cycle where any winter is followed by a new spring. Similarly, the hours of the day
are represented on analogue clocks as 12 marks on a cycle, and the passing of time is visualised
as MOVEMENT_IN_LOOPS of the handles of the clock.

The conceptualisation of time, in itself, is an interesting example for the usage of image
schemas. However, the real significance is that these image schemas can be seen as providing the
conceptual skeletal structure for our understanding of processes. Assume we want to understand
a complex process, e.g. the demographic development of a country, the acceleration of a falling
object, or the economic situation of a country. In these situations we often use two-dimensional
coordinate systems where the vertical axis represents the property in question (e.g. population,
speed, GDP, respectively) and the horizontal axis represents time. These coordinate systems are so
useful and so widely applicable because we can conceptualise arbitrary processes as MOVEMENT-
_ALONG_PATH, where the paths represent some important dimension or aspect of the process.

The importance of PATH-following image schemas for the conceptualisation of processes can
be illustrated by considering similes. If we pick from Table 1 randomly a target domain X from the
first column and a source domain Y from the second column, the resulting simile X is like Y will
be sensible. (Of course, depending on the choice of X and Y the simile may be more or less witty.)
Note that the target domains have little or nothing in common. Thus, at least on first glance, one
would not expect that one can compare them meaningfully to one and the same source domain.

The similes work because all of the concepts in the second column involve physical MOVEMENT-
_ALONG_PATH, which have some pertinent characteristics. These characteristics may concern the

19

Table 4: PATH similes: <target> is like <source>.
Target Domain Source Domain
Watching the football game the swinging of a pendulum
Their marriage a marathon
The story escaping a maze
This piece of music a sail boat during a hurricane
Bob’s career a roller coaster ride
Her thoughts a Prussian military parade
Democracy in Italy stroll in the park

shape of the path itself (e.g. the path of a roller coaster involves many ups and downs and tight
curves, the path out of a maze involves many turns, the path of a pendulum is regular and between
two points), the way the movement is performed (e.g. the movement of a sail boat during a storm
is erratic and involuntary, a stroll in the park is done leisurely), and the effects the movement may
have (e.g. running a marathon is exhausting, a Prussian military parade may be perceived as threat-
ening). In each of the similes we use some of the pertinent characteristics from the source domain
to describe the process from the target domain. For example, in the simile ‘Bob’s career is like
a Prussian military parade’ we conceptualise the career as a path along time (with career-related
events like promotions as the sites on the path) and transfer characteristics from the movement of a
Prussian military parade on this path. Thus, one way to read the simile is that Bob moves through
the stages of his career in a exceptionally predictable fashion. The example illustrates how the sim-
iles work: first, we conceptualise the process in the target domain as MOVEMENT_ALONG_PATH,
where the events of the process are ordered by time, and then we transfer some pertinent character-
istics of the MOVEMENT_ALONG_PATH of the source domain to the target domain. This pattern
is not just applicable to the concepts in Table 1. As we discussed above, any process can be con-
ceptualised as MOVEMENT_ALONG_PATH, thus, any process could be added as target domain in
Table 1. Further, any concept that involves interesting physical movement along some path could
be added as source domain. Hence, the use of the image schema MOVEMENT_ALONG_PATH

enables the mechanical generation of similes for processes.

Similes are a particular form of concept generation in which two domains are combined. This
phenomenon is strongly connected to conceptual blending that we will discuss further in Section 6.

To summarise, in this section we have introduced the image schema MOVEMENT_ALONG_-
PATH. We have seen that it is widely used in natural language and plays an important role in our
understanding of time and processes. The examples show that the notion of PATH-following, at
its core, is about movement along some trajectory. However, there are important differences both
with respect to the spatial primitives that are involved and with respect to the shape of the PATHs.
In the next section, we consider how images schemas can be represented in formal languages. One
particular concern is to represent image schemas in a way that adequately captures the variety and
flexibility of image schemas.

20

4 Formalising image schemas as graphs of theories

4.1 Previous work on formalising image schemas

Image schema research has had great impact in the cognitive sciences and in particular in cognitive
linguistics. However, within computational cognitive systems, and artificial intelligence in general,
it has not yet been explored to its full potential.

Looking at how image schemas can be computationally acquired, there are studies that attempt
to model early cognitive development and learn from perceptual input. The connectionist model
proposed by [62] learns to linguistically classify visual stimuli in accordance with the spatial terms
of various natural languages. Similarly, the Dev E-R system by [1] is a computer model that simu-
lates the first sensorimotor stages in cognitive development. Their system learns to distinguish and
fine-tune visual clues such as nuances of colour, as well as different sizes of objects and directions
of movement. Both approaches demonstrate how an artificial agent can develop cognitive abilities
and language development from perceptual input.

Another study using perceptual input to simulate the development of image schemas was made
by [56]. They fed video material of OBJECTs moving IN and OUT of boxes into an unsupervised
statistical model in order to capture the dynamic aspects of the CONTAINMENT schema. From this,
the system learned how to categorise different CONTAINMENT contexts and could in combination
with a linguistic corpus generate simple CONTAINMENT-related language constructions.

These are examples of systems that learn image schemas and visual relationships from percep-
tual input. More commonly, work on formalising image schemas is done when the image schemas
are already identified. Prominent work in this field is the work by [35, 36]. He argues that image
schemas capture abstractions in order to model affordances. Working top-down rather than bottom-
up as above, he uses WordNet to define noun words and connects them to spatial categorisations
related to image schemas based on affordance-related aspects of meaning.

[78] build further on Kuhn’s work by visualising and formalising the connections between
different image schemas using bigraphs. By visually representing the topological and ‘physical’
image schemas relevant in built environments, they demonstrate how more complex dynamic im-
age schemas such as BLOCKAGE could be generated using sequences of bigraph reaction rules on
top of simpler static image schemas.

[69] present what they call the Image Schema Language, ISL. In their paper, they provide a set
of diagrams that illustrate how combinations of image schemas can lead to more complex image
schemas, and provide some real life examples.

[8] discuss how image schema transformations form networks that capture the relationships
in polysemous words, in particular the preposition ‘over’ is investigated. This relates to our own
approach of how to formalise and formally represent image schemas. Namely to use the hierarchi-
cal structure of image schemas demonstrated previously to represent image schemas as families
of theories.

4.2 Image Schema Families as Graphs of Theories

In the previous sections, we argued for image schemas to be members of families, which are par-
tially ordered by generality. In the following section, we will describe and visualise an approach

21

to represent the connections between image schemas, belonging to the same family. In order to
discuss the problem of how more complex image schemas can be constructed through a combina-
tion of different image schemas (e.g. LINKED_PATH, MOVEMENT_IN_LOOPS), we will discuss
the possible interconnection these families of theories allow. Formally, we can represent the idea
as a graph11 of theories in DOL, the Distributed Ontology, Modeling and Specification Language
[51].

This choice is motivated primarily by two general features of DOL: (1) the heterogeneous
approach, which allows for a variety of image schematic formalisations without being limited to a
single logic, and (2) the focus on linking and modularity. Therefore, DOL provides a rich toolkit
to further formally develop the idea of image schema families in a variety of directions.

In more detail, DOL aims at providing a unified metalanguage for handling the diversity of
ontology, modelling, and specification languages, for which it uses the umbrella term ‘OMS’. In
particular, DOL includes syntactic constructs for:

1. “as-is” use of OMS formulated (as a logical theory) in a specific ontology, modelling or spec-
ification language,

2. defining new OMS by modifying and combining existing OMS (which are possibly written in
different languages), and

3. mappings between OMS, resulting in networks of OMS.

DOL is equipped with an abstract model-theoretic semantics.12 The theoretical underpinnings of
the DOL language have been described in detail in [39] and [54], whilst a full description of the
language can be found in [51] or (in a more condensed form) in [53].

Building on similar ideas to those underlying the first-order ontology repository COLORE13

[23], we propose to capture image schemas as interrelated families of (heterogeneous) theories.
Similar ideas for structuring common sense notions have also been applied to various notions of
time [3, 73]. This general approach also covers the introduction of non-spatial elements such as
‘force’ as a basic ingredient of image schemas, as for instance argued for by [18] and constitute
the core of [48]’s conceptual integrations mentioned above.

In Figure 11, some of the first basic stages of the image schema family PATH-following are
presented. Ranging from Mandler’s general definition presented above, of object movement in any
trajectory, to more complex constructions.

The particular image schema family sketched is organised primarily via adding new spatial
primitives to the participating image schemas and/or by refining an image schema’s properties (ex-
tending the axiomatisation). In general, different sets of criteria may be used depending, for exam-
ple, on the context of usage, thereby putting particular image schemas (say, REVOLVE_AROUND)
into a variety of families. Apart from a selection of spatial primitives, other dimensions might be
deemed relevant for defining a particular family, such as their role in the developmental process.

One way MOVEMENT_ALONG_PATH can be specialised is as the image schema of MOVE-
MENT_IN_LOOPS. Note that this change does not involve adding a new spatial primitive, but
just an additional characteristic of the path. The resulting image schema can be further refined by
11 These graphs are diagrams in the sense of category theory.
12 The final DOL specification was submitted as a standard to the Object Management Group (OMG) in late 2015
13 See http://stl.mie.utoronto.ca/colore/

22

http://stl.mie.utoronto.ca/colore/

S = G

Closed_Path_Movement

Path: the image schema family of moving along paths and in loops

add End_Path

Closed_Path_Movement,
with additional

distinguished point

Movement_Along_Path

S

S G

add End_Pathadd Start_Path

Movement_In_Loops

Revolving_Movement

o

add Focal_Point

add Start_Path

S = G

x
D

extending an image
schema axiomatically

extending by new spatial
primitives and axioms

Movement_Of_Object

Source-Path-Goal

S G
D

x Source_Path_Via_Goal

add Landmark

Source_Path Path_Goal

add Path

G

Fig. 2: A portion of the family of image schemas related to path following shown as DOL graph.

23

adding the spatial information of a focal point, which the path revolves around – this leads to the
notion of orbiting, or, by continuously moving the orbiting path away from the focal point, to cre-
ate the concept of spirals. Alternatively, we may change MOVEMENT_ALONG_PATH by adding
distinguished points; e.g. the START_PATH, the target END_PATH, or both.

The MOVEMENT_IN_LOOPS image schema may be further specialised by identifying (the
location of) the START_PATH and the END_PATH. In this case, the path is closed in the sense that
any object which follows the path will end up at the location at where it started its movement. The
difference between a closed path and a looping path is that the closed path has a start and an end
(e.g. a race on a circular track), while the looping path has neither (like an orbit). It is possible
to further refine the schema by adding more designated points (i.e. ‘landmarks’) or other related
spatial primitives.

We will now show how the theories of image schemas and the various branching points in the
graph can be characterised formally.

4.3 Axiomatisation of Path-Following

In this section, we present an axiomatisation of the image schemas represented in Figure 11. The
focus of our axiomatisations is to capture the important differences of the branching points of the
PATH-following family, not an exhaustive axiomatisation. For the sake of brevity, we will present
only selected axioms in this section. A more complete axiomatisation is available at an Ontohub
repository.14

Our axiomatisation approach is inspired by semantics in the neo-Davidsonian tradition [12,
59]. We consider image schemas as a type of event (in generality quite similar to the view de-
fended in [10] to view image schemas as a kind of ‘domain’) and consider spatial primitives as
thematic roles of these events. Thus, if a given image schema is enriched by adding a new spatial
primitive, this is typically represented by adding a new entity (e.g. site) and a new relation (e.g.
has_start_path) that determines the thematic role of the new entity in the event. As representa-
tion language we use ISO/IEC 24707 Common Logic. Common Logic is a standardised language
for first-order logic knowledge representation, which supports some limited form of higher-order
quantification and sequence variables [49].

For the axiomatisation of the image schemas in the PATH-following family we assume an im-
age schema MOVEMENT_ALONG_PATH as the root of the family. MOVEMENT_ALONG_PATH

is derived from a more general notion, namely MOVEMENT_OF_OBJECT. This is movement of
some kind that involves only one spatial primitive, namely an OBJECT. This object plays the role
of the trajector within the context of the MOVE. This can be formalised in Common Logic as
follows:

(f o r a l l (m)
(i f f

(MovementOfObject m)
(exists (o)

(and
(Movement m)
(Object o)
(has_trajector m o)))))

14 https://ontohub.org/repositories/imageschemafamily/

24

https://ontohub.org/repositories/imageschemafamily/

No additional information about what kind of object is moving and how it is moving is as-
sumed.15

The schema MOVEMENT_ALONG_PATH is the result of adding a new spatial primitive to
MOVEMENT_OF_OBJECT, which plays the role of a PATH.

(f o r a l l (m)
(i f f
(MovementAlongPath m)
(exists (p)
(and

(MovementOfObject m)
(Path p)
(has_path m p)))))

Under a PATH we understand a collection of two or more sites, which are connected by suc-
cessor relationships. Each of these sites have (relative to the path) at most one successor site. The
transitive closure of the successor relation defines a before relationship (relative to the path); and
for any two different sites x,y of a given path, either x is before y or y is before x (relative to the
path).16 This axiomatisation provides a representation of a quite abstract notion of MOVEMENT-
_ALONG_PATH. It needs to be sufficiently abstract, since it serves as the root node for the PATH-
following family. All other image schemas in the family are derived from this root by adding
additional spatial primitives and/or additional axioms.

Given this notion of PATH, we can axiomatise the relationship between the PATH and the
OBJECT, which characterises a MOVEMENT_ALONG_PATH. During the movement, the moving
object needs to pass through all sites of the path in a temporal order, which matches the before-
relationship between the sites:

(f o r a l l (p o m s1 s2)
(i f

(and
(MovementAlongPath m)
(has_path m p)
(has_trajector m o)
(before s1 s2 p))

(exists (t1 t2)
(and

(Timepoint t1) (Timepoint t2)
(during t1 m) (during t2 m)
(located_at o s1 t1) (located_at o s2 t2)
(earlier t1 t2)))))

The image schema SOURCE_PATH is the result of adding the spatial primitive START_PATH

to MOVEMENT_ALONG_PATH. We represent this with the has_starts_path relationship. The
START_PATH of a PATH is a site on the path that is before any other site of the path:

15 From an ontological perspective, MOVEMENT_OF_OBJECT can be seen as a kind of process (or occurrent). Thus,
any adequate axiomatisation of MOVEMENT_OF_OBJECT needs to represent change over time in some form. To
keep things simple, we here just quantify over time points. We assume that time points are ordered by an earlier
relationship. Further, we use two other relationships to connect time points to processes: (has_start m t)
means The movement m starts at time point t and (during t m) means Time point t lies within the interval
during which movement m happens.

16 The before-relationship is not a total order, since antisymmetry is not postulated.

25

(f o r a l l (m)
(i f f

(SourcePathMovement m)
(exists (s)

(and
(MovementAlongPath m)
(has_start_path m s)))))

(f o r a l l (m s1 s2 p)
(i f

(and
(SourcePathMovement m)
(Site s1)
(Site s2)
(not (= s1 s2))
(has_path m p)
(has_start_path m s1)
(part_of s2 p))

(before s1 s2 p)))

What distinguishes SOURCE_PATH from other movements is the following: at the start of a
SOURCE_PATH movement the object that moves is located at the START_PATH:

(f o r a l l (m s t p o)
(i f

(and
(SourcePathMovement m)
(has_start m t)
(has_trajector m o)
(has_start_path m s))

(located_at o s t))))

Analogously, we can define PATH_GOAL as a MOVEMENT_ALONG_PATH with an END_PATH.
A SOURCE_PATH_GOAL is a movement, which includes both landmarks of START_PATH and
END_PATH. Thus, SOURCE_PATH_GOAL can be defined as the union (of the axioms) of SOURCE_PATH

and PATH_GOAL.17

CLOSED_PATH_MOVEMENT is a special case of SOURCE_PATH_GOAL, where the location
of the START_PATH and the END_PATH of the PATH coincide.

(f o r a l l (m s g)
(i f

(and
(has_start_path m s)
(has_end_path m g))

(i f f
(ClosedPathMovement m)
(and

(SourcePathGoalMovement m)
(= (location_of s) (location_of g))))))

SOURCE_PATH_VIA_GOAL is a different way to refine SOURCE_PATH_GOAL. In this case
an additional designated site is added, which lies between the START_PATH and the END_PATH

of the PATH.

((f o r a l l (m)
(i f f
(SourcePathViaGoalMovement m)
(exists (s p)

(and
(SourcePathGoalMovement m)
(has_path m p)
(Site s)
(part_of s p)
(not (has_start_path m s))
(not (has_end_path m s))))))

17 In DOL, this is done by using the keyword ‘and’, which amounts to taking the model-theoretic intersection of the
model classes of the theories of SOURCE_PATH and PATH_GOAL.

26

Both CLOSED_PATH_MOVEMENT and SOURCE_PATH_VIA_GOAL can be combined in the ob-
vious way.

A completely different branch of the movement image schema family does not involve either
START_PATH or END_PATH, but the PATH consists of a loop of sites. One way to represent this is
by requiring that the before-relationship is reflexive (with respect to the path of the movement):
(f o r a l l (m)

(i f f
(MovementInLoops m)
(and

(MovementAlongPath m)
(f o r a l l (p s)
(i f

(and
(has_path m p)
(Site s)
(part_of s p))

(before s s p))))))

The difference between MOVEMENT_IN_LOOPS and CLOSED_PATH_MOVEMENT is that in the
latter case both START_PATH and END_PATH are present, they just spatially coincide. Hence, the
movement is over when the object meets the target. In contrast, MOVEMENT_IN_LOOPS entails
that the moving object is located at the same location more than once.

REVOLVING_MOVEMENT is a subtype of MOVEMENT_IN_LOOPS. To define it, we need to
consider two additional factors: the shape of the path is elliptical, and there is a focal point, which
the movement revolves around. The focal point itself is a site, but it is typically the location of an
object. A detailed axiomatisation of this image schema is beyond the scope of this paper, we just
provide an initial sketch:
(f o r a l l (m)

(i f f
(RevolvingMovement m)
(and

(MovementInLoops m)
(exists (p s)

(and
(has_path m p)
(Eliptical (shape p))
(Site s)
(has_focal_point p s))))))

5 Image Schemas in Computational Conceptual Blending

In this section, we will illustrate how formalised families of image schemas, as just sketched
above, can help in the computational modelling of concept invention, an area at the heart of AGI.
More precisely, we will here focus on the highly influential framework of conceptual blending
[13, 43, 71], and illustrate the foundational role that a formal theory of image schemas plays in its
computational realisation.

5.1 A crash course on conceptual blending

Introduced by [14], conceptual blending has been employed very successfully to understand the
process of concept invention, studied particularly within cognitive psychology and linguistics.

27

The theory argues that at the heart of novel concept creation lies a combination process involving
already existing knowledge and understood concepts. By merging two, or more, conceptual spaces,
a blended conceptual space results. This blend contains information from both input spaces and
has emergent properties due to its own unique composition. The classic example is the blend of a
‘houseboat’, containing merged information from the input spaces ‘house’ and ‘boat’.18

One of the central aspects of blending is the the way in which ‘common structure’ between
the input concepts is understood to steer the creation of the new concept. The ‘merging’ of the
input spaces is moderated by this common structure, represented as the generic space, or as it is
called in formal approaches, the base ontology (see Figure 3).19 The common structure of the input
spaces is understood to play a vital role in rendering the newly constructed concept meaningful,
as it ensures that the blended space also contains the structure found in the generic space.

Fig. 3: The basic integration network for blending: concepts in the base ontology are first refined
to concepts in the input ontologies and then selectively blended into the blendoid.

base morphisms

O1 O2

B

Base Ontology

Blendoid

Input 1 Input 2blendoid morphisms

However, despite this influential research, within computational creativity and AI in general,
relatively little effort has been devoted to fully formalise these ideas and to make them amenable
to computational techniques, but see [37, 67] for overviews.

Unlike other combination techniques, blending aims at creatively generating (new) concepts
on the basis of input theories whose domains are thematically distinct but whose specifications
share some structural similarity.

[37] describe in detail the basic formalisation of conceptual blending, as sketched by the late
Joseph Goguen and discuss some of its variations [21]. Moreover, it is illustrated how the Dis-
tributed Ontology Language DOL can be used to declaratively specify blending diagrams of var-
ious shapes, and how the workflow and creative act of generating and evaluating a new, blended
concept can be managed and computationally supported within Ontohub, a DOL-enabled theory

18 This and the related blend of ‘boathouse’ were fully formalised in [40].
19 In the limit case, the shared structure might be trivial, and a concept such as ‘red pencil’ might be understood as a

blend too, by simply imposing properties from one input space onto another.

28

repository with support for a large number of logical languages and formal linking constructs, see
[40, 52]. The reasoning engine managing heterogeneous theories and computationally supporting
the Ontohub repository is the Heterogeneous Tool Set Hets [55]. The graph for the structured the-
ory illustrating the PATH-following family and automatically being generated by the Hets system
from its formal specification is shown in Figure 4.

Figure 3 illustrates the basic, classical case of an ontological blending diagram. The lower
part of the diagram shows the generic space (tertium), i.e. the common generalisation of the two
input spaces, which is connected to these via total (theory) morphisms, the base morphisms. The
newly invented concept is at the top of this diagram, and is computed from the base diagram via
a colimit. More precisely, any consistent subset of the colimit of the base diagram may be seen as
a newly invented concept, a blendoid.20 Note that, in general, ontological blending can deal with
more than one base and two input ontologies, and in particular, the sets of input and base nodes
need not exhaust the nodes participating in a base diagram.

is:pathGoalMovement.clif is:sourcePathMovement.clif

is:movementAlongPath.clif

movementAlongPath

is:movementOfObject.clif

movementOfObject

auxiliary

is:auxiliary.clif

sourcePathMovementpathGoalMovement movementInLoops

sourcePathGoalMovement revolvingMovement

sourcePathViaGoalMovement closedPathMovement

Fig. 4: The PATH-following family displayed as a structured DOL theory in Ontohub/Hets.

20 A technically more precise definition of this notion is given in [38]. Note also that our usage of the term ‘blendoid’
does not coincide with the (non-primary) blendoids defined in [21].

29

5.2 Using image schemas in computational blending

One problem for conceptual blending, and related work on analogy engines (e.g. structure mapping
[16, 19] and heuristic-driven theory projection (HDPT) [66]) is the generation of a ‘sensible’ blend.
In a completely automatised system, there is currently no simple way to distinguish the blendoids
that a human would consider meaningful from those that lack cognitive value. This problem grows
exponentially in relation to the size of the input spaces. The larger the input spaces, the more
combinations can be generated resulting in a multitude of possible blendoids, most of which will
make little sense if evaluated by humans. In real life scenarios, the amount of information in the
input spaces can be vast, complicating things for successful concept invention tremendously when
looked at as a formal, combinatorial problem.

A proposal to explain the ease with which humans perform blending is given via the ideas of
packing and unpacking, as well as compression and expanding of conceptual spaces, as outlined
by [72]. These terms aim to capture how we mentally carry around ideas as compressed ‘idea
packages’ that we can ‘unpack’ and utilise in different contexts on the fly. The process of pack-
ing and unpacking ideas is important for the contextualised usage of conceptual blends in various
situations. Generally, the idea of optimality principles in blending theory is meant to account for
an evaluation of the quality and appropriateness of the resulting blends [13]. However, there is
currently no general formal proposal how such optimality principles could be implemented com-
putationally, apart from some work on turning such principles into metrics for rather lightweight
formal languages [60].

[26] suggested that instead of relying on purely syntactic approaches, image schemas in their
role as conceptual building blocks could be used to guide the computational blending process. The
principle idea here is that employing image schemas in the construction of generic spaces will not
only result in a significant reduction of the number of generated blends, but will moreover filter out
many of those blends human evaluators would deem meaningless. A related and complementary
approach is [74], where the problem of constraining the search space was addressed by suggesting
that blending is performed in a task-specific context. Here, selecting a task-specific context in a
blending scenario means to simultaneously work forward from the input spaces and backward
from the desired elements of the blend space.

In this line of thinking, one way to use image schemas in blending is to identify them as the
prime ingredient for the construction of a generic space. When performing the search for common
structure in the different input spaces, the search could be guided by mapping (parts of) the content
of the input spaces to nodes in a library of formally represented image schemas. As image schemas
hold semantic value in the form of spatial relationships, the blendoids would be based on the same
content. In theory, this is similar to classic structure mapping that preserves relationships, but as
image schemas model e.g. affordances [36], a blendoid will inherit such information as well.

Figure 5 shows the two basic ways of using image schemas within the conceptual blending
workflow. In both cases, the image schematic content takes priority over other information the in-
put concepts might contain. On the left, following the core model of blending described above, we
first identify different spatial structure within the same image schema family in the input concepts,
and then generalise to the most specific common version within the image schema family to iden-
tify a generic space, using our pre-determined graph of spatial schemas (i.e. we compute the least
upper bound in the lattice). The second case, shown on the right, illustrates the situation where
we first want to specialise or complete the (description of the) spatial schemas found in the input

30

I1 I2

C

Base Image Schema

Input concept 1 Input concept 2

Weakening: moving upwards in a family

I1* I2*

weakend I2 theory and / or
move up image schema hierarchy

weaken I1 theory and /or
move up image schema hierarchy

I1 I2

C

Base Image Schema

Input concept 1 Input concept 2

Blendoid

I1* I2*

weakend I2+ theoryweaken I1+ theory

I1+
I2+

move down (specialise) I1 image schema move down (specialise) I2 image schema

Strenghening: moving downwards in a family

Figure 5a Figure 5b

Fig. 5: Blending using common image schemas: strenghening vs. weakening.

concepts, before performing a generalisation step and to identify the generic space. This means
moving down in the graph of the image schema family. Of course, also a mix of these two basic
approaches is reasonable, i.e. where one input spatial schema is specialised within a family whilst
the other is generalised in order to identify a generic space based on image-schematic content.
Examples for both cases are described below in Sections 5.3 and 5.4.

5.3 The PATH-following family at work

To study how image schematic content can be used more concretely within conceptual blending,
we will now look at a number of examples. In this section, we will illustrate how moving up and
down within the image schema family of path-following opens up a space of blending possibilities,
infused with the respective semantics of the (versions of) the image schema. In the next section,
we will then discuss in more formal detail how these ideas work on a logic-based level.

As outlined in Section 3.3, processes in general can be easily combined with a variety of more
specific PATH-following schemas. More specifically, we can explore the basic idea how to combine
the input space of ‘thinking process’, which involves only an underspecified kind of ‘movement of
thoughts’, with a second input space that carries a clearly defined path-following image schema.
This leads intuitively to a number of more or less well known phrases that can be analysed as
blends, including: ‘train of thought’, ‘line of reasoning’, ‘derailment’, ‘flow of arguments’, or
‘stream of consciousness’, amongst others. Indeed, a central point we want to make in this section
is that these blends work well and appear natural because of the effectiveness of the following
heuristics:21 (i) given two input spaces I1 and I2, search for the strongest version G of some image
schema that is common to both, according to the organisation of a particular image schema family
F; (ii) use G as generic space; and (iii) use again F to identify the stronger version of G, say G′,

21 By ‘heuristics’ we mean a method that imposes rules on how to select a base (i.e. introduces a preference order
on possible generic spaces) and, moreover, rules to decide which axioms to push into the blend. I.e., without any
heuristics we are left to perform a randomised axiom selection, followed by an evaluation of the resulting blended
concept.

31

inherent in one of the two inputs, and use the semantic content of G′ to steer the overall selection
of axioms for the blended concept.

To illustrate this process informally, let us briefly consider the concepts of ‘stream of con-
sciousness’, ‘train of thought’, and ‘line of reasoning’22.

On first inspection, the spatial schema of movement related to ‘thinking’ might be identified as
MOVEMENT_OF_OBJECT, i.e. without necessarily identifying following a PATH at all. Indeed, in
Figure 11, MOVEMENT_OF_OBJECT is marked as an ‘entry point’ to the path-following family.
The stream of consciousness may be seen as an unguided flow of thoughts, in which topics merge
into each other without any defined steps, but rather in a continuous manner. It lacks a clear
START_PATH and has no guided movement towards a particular END_PATH. It resembles the
more basic forms of PATH-following that, according to [48], is simply movement in any trajectory.

A ‘train of thought’23 can be conceptualised in various ways. It differs from a stream of con-
sciousness by having a more clear direction, often with an intended END_PATH. It is possible to
say that one “lost their train of thought”, or that “it was hijacked” or how “it reversed its course”.
The ‘train’ may be understood as a chain-like spatial object (in which case ‘losing the train’ de-
codes to ‘disconnecting the chain’) or more plainly as a locomotive. In the Pixar film ‘Inside Out’
(2015), the ‘Train of Thought’ is an actual train that travels the mind of the fictional character
Riley Anderson, and delivers daydreams, facts, opinions, and memories.

A ‘line of reasoning’ might be seen as a strengthening of this blend, where the path imposed
is linear. Although a ‘line’, mathematically speaking, has no beginning or end, the way this ex-
pression is normally understood is as a discrete succession of arguments (following logical rules)
leading to an insight (or truth). This blend might therefore be analysed to correspond to SOURCE-
_PATH_GOAL in [43], in which there is a clear direction and trajectory of the ‘thought’ (trajector).

In order to understand how blending can result in these concepts, and how image schemas
are involved, let us have a closer look at the input spaces and their relationship to the PATH-
following image schemas. Relevant input spaces include line (perhaps analysed as ‘discrete inter-
val’), stream/river, train/locomotive, and, as secondary input space, ‘thinking process’.

‘Thinking’ as an input space is difficult to visualise. However, when ‘thinking’ is understood
as a process it can be easily combined with various PATH-following notions (see Section 3.2
above). As thoughts (in the form of OBJECT) are moved around, the simplest form of thinking
is MOVEMENT_OF_OBJECT. There is no START_PATH nor an END_PATH. Intuitively, it does
not appear to have any particular PATH (in the sense of a spatial primitive).

A stream is characterised by a continuous flow along a PATH. Whilst a START_PATH and
END_PATH can be part of a stream-like concept, like in the fleshed out concept of a river with a
source and mouth, they do not constitute an essential part of the concept of stream.

For a train (understood as ‘locomotive’), the concepts of a START_PATH and END_PATH has
a much higher significance. The affordances found in trains are primarily those concerning going

22 The examples presented here are chosen to illustrate the basic ideas how to employ families of image schemas in
blending. It is not intended to capture fully the meaning of these terms as they are used in the psychological or
linguistic literature, or indeed the subtle meaning they might carry in natural language.

23 The expression ‘train of thoughts’ appears to have been first used by Thomas Hobbes in his Leviathan (1651): “By
‘consequence of thoughts’ or ‘TRAIN of thoughts’ I mean the occurrence of thoughts, one at a time, in a sequence;
we call this ‘mental discourse’, to distinguish it from discourse in words.”

32

from one place to another. A train ride can also be seen as a discrete movement in the sense that
for most train rides, there are more stops than the final destination. This results in a discrete form
of the spatial schema SOURCE_PATH_GOAL.

When blending such forms of movement with the thinking process, what happens is that the
unspecified form of movement found in ‘thinking process’ is specialised to the PATH-following
characteristics found in the second input space. The result is the conceptual metaphors for the
different modes of thinking listed above, where the generic space contains just MOVEMENT-
_OF_OBJECT, and the blended concepts inherit the more complex PATH-following from ‘train’,
‘stream’, or ‘line’.

Path: specialisation (and generalisation) of image schemas in the path family

add End_Path

Movement_Along_Path

S

S G

TT

add End_Pathadd Start_Path

add Start_Path

Movement_Of_Object

Source-Path-Goal

S G
D

xSource_Path_Via_Goal

add Landmark

Source_Path

add Path

add End_Path

Movement_Along_Path

S

S G

TT

add End_Pathadd Start_Path

add Start_Path

Movement_Of_Object

Source-Path-Goal

Source_Path

add Path

S G
D

x

add Discreteness

xx

add Continuity

Specialising arbitrary movement inherent to
'thinking' to discrete Source-Path-Goal
respectively to continous path-following

Fig. 6: How ‘thinking’ transforms into ‘train of thought’ respectively ‘stream of consciousness’.

In more detail, Figure 6 shows two specialisations of the basic spatial schema of MOVEMENT-
_OF_OBJECT. The first, shown on the left, specialises to a discrete version of the schema SOURCE-
_PATH_GOAL with a designated element and discrete movement, supporting the ‘train of thought’
blend. The second, shown on the right, specialises to a continuous version of MOVEMENT_ALONG_-
PATH, where an axiom for gapless movement is added to the MOVEMENT_ALONG_PATH spatial
schema to support the ‘flow of consciousness’ blend. As a third possibility, in ‘line of reasoning’,
we would impose additionally a linear (and perhaps discrete) path onto ‘thinking’.

33

Fig. 7: Ontology story in DOL and Common Logic.

ontology story =
%% A story is defined as a telling of a plot.
(f o r a l l (x)

(i f f
(Story x)
(exists (y) (and (Plot y) (tells x y)))))

%% A plot consists of some events
(f o r a l l (x)

(i f (Plot x)
(exists (y) (and (Event y)(part_of y x)))))

%% Every event in a plot is causally connected to at least some other event in the plot.
(f o r a l l (x y)

(i f (and (Plot x) (Event y)(part_of y x))
(exists (z) (and (Event z) (part_of z x) (or (causes y z x) (causes z y x))))))

%% Some stories have a protagonist
(exists (x y) (and (Story x) (has_protagonist x y) (Character)))
end

5.4 Blending in depth

In Section 3.3, we discussed how PATH spatial schemas support similes, where some process
(e.g. a story) is compared to some other concept (e.g. a roller coaster ride). In the same way as
the elements in the PATH schema family may be used for creating similes, they can be used for
conceptual blending. In this case, the PATH spatial schemas play the role of the generic space
and may also be used to strengthen the input spaces. In this subsection, we discuss the process in
detail and show some of the relevant axioms. The example illustrates the blending pattern from
Figure 5b.

The input spaces for our blending process are Story and Roller Coaster Ride. They are formally
represented in Figures 7 and 8 as axiomatisations in Common Logic with a DOL wrapper.24 Both
axiomatisations are quite weak. Stories are defined as a telling of a plot, and they may involve
a protagonist. A plot consists of some causally connected events. A roller coaster ride is a scary
amusement ride that follows either some steel or wooden track. The track is fast-paced and consists
at least of a start, a thrill element, and an end. Note that the track is an instantiation of a PATH image
schema, more specifically a SOURCE_PATH_GOAL.25

Because SOURCE_PATH_GOAL is embedded in the roller coaster concept, it is natural to use it
as the base space in our blend. (We reuse its axiomatisation from Section 4.3.) However, SOURCE-
_PATH_GOAL is not present in the space Story, thus we need to strengthen the concept by adding
the image schematic content from SOURCE_PATH_GOAL to Story. This can be defined in DOL
with the help of a signature map:
ontology linearStory = { sourcePathGoalMovement with

SourcePathGoalMovement |-> LinearStory ,
Path |-> Plot ,
Site |-> Event ,
has_trajector |-> has_protagonist ,

24 The first and the last line of each axiomatisation are DOL expressions. Their only purpose is to label these ontologies.
25 To save space we omitted many of the axioms that realise the SOURCE_PATH_GOAL schema.

34

Fig. 8: Ontology rollerCoasterRide in DOL and Common Logic.

ontology rollerCoasterRide =
% A roller coaster ride is a kind of scary amusement ride.
(f o r a l l (x)

(i f f (RollerCoasterRide x)
(and (AmusementRide x) (Scary x))))

% A roller coaster ride follows some track & involves some Person as participant.
(f o r a l l (x)

(i f f (RollerCoasterRide x)
(exists (y z)

(and (RollerCoasterTrack y)(follows x y)(Person z)(has_participant x z)))))

% A roller coaster track is fast-paced. It starts with the start, has at
% least one thrill element as part & ends with the end.
(f o r a l l (x)

(i f (RollerCoasterTrack x)
(exists (y1 y2 y3)
(and (fast_paced x) (starts_with x y1) (Start y1) (part_of y2 x)

(ThrillElement y2) (ends_with x y3) (End y3)))))

% Roller coaster tracks are either made from wood or steel.
(f o r a l l (x)

(i f (RollerCoasterTrack x)
(or (material_of x steel) (material_of x wood))))

[...]
end

Object |-> Character ,
has_path |-> has_plot ,
has_start_path |-> starts_with ,
has_end_path |-> ends_with ,
successor_of |-> causes } and story

The resulting concept is a Linear Story, that is a story, where the protagonist participates in a linear
succession of events with a clear start and ending.

While strengthening adds new information to an input space, weakening removes some infor-
mation. This may be necessary, because the blend may otherwise be logically inconsistent. But
even if logical consistency is not an issue, one of the input spaces may contain information that
is not desirable or irrelevant for a specific blend. For example, the axiomatisation in Figure 8 pro-
vides information about the material of roller coasters, which may be removed completely. Further,
the first axiom defines that roller coasters are scary amusement rides. This could be replaced by an
axiom that keeps the information that roller coasters are scary, but omits the connection to amuse-
ment rides. All of these changes can be expressed in DOL with the help of filtering operations and
extensions.

In this example it is not necessary to weaken the Story input space. On the other hand, since
the SOURCE_PATH_GOAL image schema is already realised in the input space Roller Coaster,
there is no strengthening necessary. Thus, in the case of this example I1+ and I1∗ in Figure 5b are
identical; so are I2+ and I2∗.

The blended concept is the result of merging both of the weakened Linear Story I1∗ and weak-
ened Roller Coaster I2∗. To achieve this is DOL we need to define the interpretations from the base

35

image schema SOURCE_PATH_GOAL to I1∗ and I2∗. The following is the definition for weakened
Roller Coaster.
interpretation base2rollerCoaster: base to rollerCoasterRideWeakened =

Path |-> RollerCoasterTrack ,
Site |-> RollerCoasterElement ,
SourcePathGoalMovement |-> RollerCoasterRide ,
has_trajector |-> has_participant ,
Object |-> Person ,
has_path |-> follows ,
has_start_path |-> starts_with ,
has_end_path |-> ends_with

Analogously we define another interpretation base2story.26

By combining the two interpretations base2story and base2rollerCoaster we get a
new concept: a Thriller. In DOL the blended concept can be defined as follows:27

ontology blend = combine base2rollerCoaster, base2plot with Story |-> Thriller

Figure 9 provides an overview over the whole blending diagram.

Roller Coaster
strengthened Roller Coaster

weakened Roller Coasterweakened Linear Story

Linear Story

Fig. 9: Blending Thriller with the input spaces Story and Roller Coaster.

The newly defined concept, Thriller, inherits aspects from the input spaces Story and Roller
Coaster as well as from the SOURCE_PATH_GOAL spatial schema. In particular, thrillers are
scary, they have a fast-paced linear plot, which involves thrill elements, and a protagonist which
participates in the events of the plot. (Figure 10 shows some of the axioms of the blended theory.)
26 The interpretation from the base space to I1∗ reuses exactly the same signature map as in the strengthening process.
27 The with Story |-> Thriller part of the definition just renames “Story” into “Thriller” to make the ax-

iomatisation easier to read. The content of the concept is not affected.

36

Fig. 10: Some axioms of the blended concept Thriller

%% A thriller is scary.
(f o r a l l (x) (i f (Thriller x) (Scary x)))

%% A thriller has a plot and a character, who is its protagonist
(f o r a l l (x)

(i f f
(Thriller x)
(exists (y z)
(and (Plot y) (has_plot x y)(Character z)(has_protagonist x z)))))

%% The plot (of a thriller) is fast-paced and involves a start, at least one thrill
%% element and an end.
(f o r a l l (x)

(i f (Plot x)
(exists (y1 y2 y3)

(and (fast_paced x) (starts_with x y1) (Start y1) (part_of y2 x)
(ThrillElement y2) (ends_with x y3) (End y3)))))

%% If x and y are two different events in a plot p,
%% then either x is before y (in p) or the other way round.
(f o r a l l (p x y)

(i f
(and (Plot p) (Event y) (Event x) (part_of y p)(part_of x p) (not (= y x)))
(or (before x y p) (before y x p))))

6 Discussion

One of the hardest problems yet to be solved in artificial general intelligence is the generation
of concepts and their grounding in the environment, commonly known as the symbol grounding
problem. The difficulty lies not only in establishing a relationship between objects in the real world
and symbolic as well as mental representations, but also in the problem of defining ‘meaning’
itself.

This paper rests on the basic ideas of grounded and embodied cognition, in which physical
experiences are thought of as the primary source that gives meaning to concepts. Indeed, some
studies in linguistic neuroscience (e.g. [17, 70]) indicate that the cortical regions of the sensori-
motor cortex are activated also in word comprehension tasks. If bodily experiences are a primary
source in constituting the meaning of concepts, the symbol grounding problem can be meaning-
fully approached within this general framework.

We proposed in this paper an approach to computational concept invention in which image
schemas, understood as embodied conceptual building blocks, were utilised in conceptual blend-
ing, the suggested cognitive machinery behind concept invention. To successfully investigate and
evaluate the fruitfulness of this idea, a more comprehensive formalisation of image schemas
is needed. Formalising image schemas has been a rather recent undertaking in artificial intelli-
gence research as a means to aid computational concept invention and common-sense reasoning
[21, 35, 37, 50, 78].

So far, the research on image schemas has illuminated the inherent complexity of the formal-
isation problem due to their abstract cognitive nature. At the same time, the incoherent scholarly
terminology and corresponding key definitions make it challenging to find stable ground for fur-

37

ther research. In an attempt to bridge research from several research strands, the main part of this
article was devoted to introducing the idea of how to formally structure image schemas as families
of theories.

Our work differs from the approaches discussed in Section 4.1 by focusing on making explicit
the structure of entire image schema families, using PATH as a proof of concept. While other ap-
proaches tend to look at the interconnections between particular image schemas, we have followed
the psychological research of [48] to analyse formally the PATH-following image schema family
concentrating on the involved spatial primitives. It is our belief that this will allow for a more
fine-tuned and specialised use of image schemas in computational systems.

The most basic image schemas develop early and become more specialised with experience
[63]. Currently there is no comprehensive and agreed upon list of these most basic image schemas,
although the general consensus is that complex image schemas result from combining elements
taken from various, more simple, image schemas [57].

It is therefore likely that there are a limited number of core image schemas that, from their
most basic form, can be formally fleshed out into a structure similar to the illustrated PATH im-
age schema graph. Finding the intersections and combinations of these basic families, thus, would
mean identifying the source of the cognitive machinery behind the development of complex im-
age schemas. These would be the spatial schemas that contain similar and overlapping spatial
information and share certain spatial primitives. In our graph, MOVEMENT_IN_LOOPS could be
considered to be in the intersection of the image schema families PATH-following and CYCLE.
MOVEMENT_OF_OBJECT marks the entry point to the PATH-family, yet lacking itself the spatial
primitive of ‘path’. Here, the DOL language provides some of the tools to make such an intercon-
nection of families formally feasible, and to gives a handle on a formal rendering of the notion of
construal (image schema transformation) discussed by [10].

A second problem is the temporal nature of image schemas. Since image schemas are not only
static but also capture change over time, any axiomatisation thereof needs to address the non-trivial
problem of formally representing time. One motivation for the use of non-classical logics is the
claim that these are cognitively and linguistically more adequate than classical logics involving
variables and direct quantification over objects [6, 30].

Moreover, the cognitive adequateness of particular formalisms has been studied in detail (e.g.
[31]). In this spirit, a large variety of temporal logics has been proposed to model various temporal
aspects of natural language [61, 73]. Similarly, qualitative spatial logics have been designed to
capture more adequately the way humans conceptualise and reason about space [11].

7 Conclusion

We have here presented an approach in which image schemas are treated as interconnected theories
in a lattice (ordered by theory interpretation). This was motivated by image schematic structure
found in language and the cognitive development of spatial primitives and image schemas. The
main insights, we claim, support the hypotheses that the spatial primitives and their assumed prop-
erties distinguish not only the different usages in natural language and various cognitive stages,
but can be systematically seen as and mapped to branching points in the lattice of image schema
theories.

38

The benefits of this approach lie not only in the provided structuring of image schemas, but
also in how formal systems may use them. By using image schemas in conceptual blending, it
is our belief that computational concept invention has taken a step in the right direction. Image
schemas provide a cognitively very plausible foundation for the idea of a generic space found in the
theory of conceptual blending. In analogy engines, or (formal) approaches to conceptual blending
[37, 72], the presented graph of image schemas can provide a method for theory weakening and
strengthening based on the involved image schemas, employing basic ideas of amalgams [58].
This approach is therefore substantially different from the more syntactic-driven methods used
by the Structure Mapping Engine (SME) [16, 19] or Heuristic-Driven Theory Projection (HDTP)
[66, 68].

Future work will focus on extending the presented formalisation approach to other basic im-
age schema families. This will include studying their interconnections, formal methods for their
combination to construct complex schemas, as well as algorithmic approaches for detecting image
schemas within given input concepts. Conversely, we hope that the systematic study of the formal
interconnections between image schema families will have unifying value also for image schema
research within the cognitive sciences, and provide some of the still missing systematicity to the
field. Finally, we belief that the semantic and cognitive grounding of the idea of a generic space
in the notion of image schema has great potential for computational realisations of conceptual
blending.

Acknowledgments.

For this section of the deliverable, we thank the reviewers of the Journal of Artificial General Intel-
ligence (JAGI) for constructive and valuable feedback. We would also like to thank John Bateman,
Tarek R. Besold, Emilios Cambouropoulos, Tony Veale, and Mihailo Antović for valuable input
and interesting discussions on topics related to this paper.

39

Bibliography

[1] Wendy Aguilar and Rafael Pérez y Pérez. Dev E-R: A computational model of early cognitive
development as a creative process. Cognitive Systems Research, 33:17–41, 2015.

[2] Kathleen Ahrens and Alicia L.T. Say. Mapping image schemas and traslating metaphors. In
Proceedings of Pacific Asia Conference on Language, Information and Computation, pages
1–8, February 1999.

[3] J. Allen and P. Hayes. A common-sense theory of time. In Proceedings of the 9th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-85), pages 528–531, Los Angeles,
CA, USA, 1985.

[4] Lawrence W. Barsalou. Grounded cognition. Annual review of psychology, 59:617–645,
2008.

[5] Brandon Bennett and Claudia Cialone. Corpus Guided Sense Cluster Analysis: a methodol-
ogy for ontology development (with examples from the spatial domain). In Pawel Garbacz
and Oliver Kutz, editors, 8th International Conference on Formal Ontology in Information
Systems (FOIS), volume 267 of Frontiers in Artificial Intelligence and Applications, pages
213–226. IOS Press, 2014.

[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2001.

[7] Lera Boroditsky. Metaphoric structuring: Understanding time through spatial metaphors.
Cognition, 75(1):1–28, 2000.

[8] C Brugman and George Lakoff. Cognitive Topology and Lexical Networks. In Michael Tan-
nenhaus Stephen Small, Gary Cottrell, editor, Lexical ambiguity resolution, pages 477–508.
1988.

[9] Ron Chrisley. Embodied artificial intelligence. Artificial Intelligence, 149:131–â150, 2003.
[10] Timothy C. Clausner and William Croft. Domains and image schemas. Cognitive Linguistics,

10(1):1–31, 1999.
[11] A G Cohn and J Renz. Qualitative spatial representation and reasoning. In F. van Harmelen et

al., editor, Handbook of Knowledge Representation, pages 551–596. Elsevier, Oxford, 2007.
[12] D. Davidson. The logical form of action sentences. In N. Rescher, editor, The logic of

decision and action, pages 81–94. Pittsburgh, 1967.
[13] G. Fauconnier and M. Turner. The Way We Think: Conceptual Blending and the Mind’s

Hidden Complexities. Basic Books, 2003.
[14] Gilles Fauconnier and Mark Turner. Conceptual integration networks. Cognitive Science,

22(2):133–187, 1998.
[15] Jerome Feldman and Srinivas Narayanan. Embodied meaning in a neural theory of language.

Brain and Language, 89(2):385–392, 2004.
[16] K. Forbus, B. Falkenhainer, and D. Gentner. The structure-mapping engine. Artificial Intel-

ligence, 41:1–63, 1989.
[17] Vittorio Gallese and George Lakoff. The Brain’s concepts: the role of the Sensory-motor

system in conceptual knowledge. Cognitive neuropsychology, 22(3):455–79, May 2005.
[18] Peter Gärdenfors. Embodiment in Cognition and Culture, volume 71 of Advances in Con-

sciousness Research, chapter Cognitive semantics and image schemas with embodied forces,
pages 57–76. John Benjamins Publishing Company, 2007.

[19] Dedre Gentner. Structure mapping: A theoretical framework for analogy. Cognitive Science,
7(2):155–170, 1983.

[20] James J. Gibson. The theory of affordances, in perceiving, acting, and knowing. towards an
ecological psychology. In Robert Shaw and John Bransford, editors, Perceiving, Acting, and
Knowing: Toward an Ecological Psychology, pages 67–82. NJ: Lawrence Erlbaum, Hills-
dale, 1977.

[21] Joseph A. Goguen and D. Fox Harrell. Style: A Computational and Conceptual Blending-
Based Approach. In Shlomo Argamon and Shlomo Dubnov, editors, The Structure of Style:
Algorithmic Approaches to Understanding Manner and Meaning, pages 147–170. Springer,
Berlin, 2010.

[22] Gerald A. Goldin. Counting on the metaphorical. Nature, 413(6851):18–19, 09 2001.
[23] Michael Grüninger, Torsten Hahmann, Ali Hashemi, Darren Ong, and Atalay Ozgovde.

Modular First-Order Ontologies Via Repositories. Applied Ontology, 7(2):169–209, 2012.
[24] Beate Hampe. Image schemas in cognitive linguistics: Introduction. In Beate Hampe and

Joseph E Grady, editors, From perception to meaning: Image schemas in cognitive linguis-
tics, pages 1–14. Walter de Gruyter, 2005.

[25] Beate Hampe and Joseph E. Grady. From perception to meaning: Image schemas in cognitive
linguistics, volume 29 of Cognitive Linguistics Research. Walter de Gruyter, Berlin, 2005.

[26] Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus. On the cognitive and logical role of
image schemas in computational conceptual blending. In Proceedings of the 2nd Interna-
tional Workshop on Artificial Intelligence and Cognition (AIC-2014), Torino, Italy, Novem-
ber 26th–27th, volume Volume 1315 of CEUR-WS, 2014.

[27] D. Hofstadter and E. Sander. Surfaces and Essences. Basic Books, 2013.
[28] Megan Johanson and Anna Papafragou. What does children’s spatial language reveal about

spatial concepts? evidence from the use of containment expressions. Cognitive science,
38(5):881–910, 6 2014.

[29] M. Johnson. The Body in the Mind. The Bodily Basis of Meaning, Imagination, and Reason-
ing. The University of Chicago Press, 1987.

[30] Hans Kamp. Instants, events and temporal discourse. In R. Bäuerle, C. Schwarze, and A. von
Stechow, editors, Semantics from Different Points of View, pages 376–417. Springer, Berlin,
1979.

[31] Markus Knauff, Reinhold Rauh, and Jochen Renz. A cognitive assessment of topological
spatial relations: Results from an empirical investigation. In Stephen C. Hirtle and Andrew U.
Frank, editors, Spatial Information Theory: A Theoretical Basis for GIS, volume 1329 of
Lecture Notes in Computer Science, pages 193–206. Springer, 1997.

[32] Arthur Koestler. The Act of Creation. Macmillan, 1964.
[33] K. Koffka. Principles of gestalt psychology. International library of psychology, philosophy,

and scientific method. Harcourt, Brace and Company, 1935.
[34] Zoltán Kövecses. Metaphor:A Practical Introduction. Oxford University Press, USA, 2010.
[35] Werner Kuhn. Modeling the Semantics of Geographic Categories through Conceptual Inte-

gration. In Proceedings of GIScience 2002, pages 108–118. Springer, 2002.
[36] Werner Kuhn. An Image-Schematic Account of Spatial Categories. In Stephan Winter, Matt

Duckham, Lars Kulik, and Ben Kuipers, editors, Spatial Information Theory, volume 4736
of Lecture Notes in Computer Science, pages 152–168. Springer, 2007.

[37] Oliver Kutz, John Bateman, Fabian Neuhaus, Till Mossakowski, and Mehul Bhatt. E pluribus
unum: Formalisation, Use-Cases, and Computational Support for Conceptual Blending. In

41

Tarek R. Besold, Marco Schorlemmer, and Allain Smaill, editors, Computational Creativity
Research: Towards Creative Machines, Thinking Machines. Atlantis/Springer, 2014.

[38] Oliver Kutz, Till Mossakowski, Joana Hois, Mehul Bhatt, and John Bateman. Ontologi-
cal Blending in DOL. In Tarek Besold, Kai-Uwe Kühnberger, Marco Schorlemmer, and
Alan Smaill, editors, Computational Creativity, Concept Invention, and General Intelligence,
Proceedings of the 1st International Workshop C3GI@ECAI, volume 01-2012, Montpellier,
France, August 27 2012. Publications of the Institute of Cognitive Science, Osnabrück.

[39] Oliver Kutz, Till Mossakowski, and Dominik Lücke. Carnap, Goguen, and the Hyperontolo-
gies: Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica Univer-
salis, 4(2):255–333, 2010. Special Issue on ‘Is Logic Universal?’.

[40] Oliver Kutz, Fabian Neuhaus, Till Mossakowski, and Mihai Codescu. Blending in the Hub—
Towards a collaborative concept invention platform. In Proceedings of the 5th International
Conference on Computational Creativity, Ljubljana, Slovenia, June 10–13 2014.

[41] G. Lakoff. Women, Fire, and Dangerous Things. What Categories Reveal about the Mind.
The University of Chicago Press, 1987.

[42] George Lakoff and Mark Johnson. Philosophy in the Flesh. Basic Books, 1999.
[43] George Lakoff and Rafael Núñez. Where Mathematics Comes from: How the Embodied

Mind Brings Mathematics Into Being. Basic Books, New York, 2000.
[44] Max M. Louwerse and Patrick Jeuniaux. The linguistic and embodied nature of conceptual

processing. Cognition, 114(1):96–104, 2010.
[45] J M Mandler. How to build a baby: Ii. conceptual primitives. Psychological review,

99(4):587–604, 10 1992.
[46] Jean M. Mandler. The Foundations of Mind : Origins of Conceptual Thought: Origins of

Conceptual Though. Oxford University Press, New York, 2004.
[47] Jean M. Mandler. On the birth and growth of concepts. Philosophical Psychology,

21(2):207–230, 4 2008.
[48] Jean M. Mandler and Cristóbal Pagán Cánovas. On defining image schemas. Language and

Cognition, 0:1–23, 5 2014.
[49] Christopher Menzel. Knowledge representation, the World Wide Web, and the evolution of

logic. Synthese, 182:269–295, 2011.
[50] Leora Morgenstern. Mid-Sized Axiomatizations of Commonsense Problems: A Case Study

in Egg Cracking. Studia Logica, 67:333–384, 2001.
[51] Till Mossakowski, Mihai Codescu, Fabian Neuhaus, and Oliver Kutz. The Road to Uni-

versal Logic–Festschrift for 50th birthday of Jean-Yves Beziau, Volume II, chapter The dis-
tributed ontology, modelling and specification language - DOL. Studies in Universal Logic.
Birkhäuser, 2015.

[52] Till Mossakowski, Oliver Kutz, and Mihai Codescu. Ontohub: A semantic repository for
heterogeneous ontologies. In Proc. of the Theory Day in Computer Science (DACS-2014),
University of Bucharest, September 15–16, 2014. Satellite workshop of ICTAC-2014.

[53] Till Mossakowski, Oliver Kutz, Mihai Codescu, and Christoph Lange. The Distributed On-
tology, Modeling and Specification Language. In Chiara Del Vescovo, Torsten Hahmann,
David Pearce, and Dirk Walther, editors, Proceedings of the 7th International Workshop on
Modular Ontologies (WoMO-13), volume 1081. CEUR-WS, 2013.

[54] Till Mossakowski, Christoph Lange, and Oliver Kutz. Three Semantics for the Core of the
Distributed Ontology Language. In Michael Grüninger, editor, 7th International Conference
on Formal Ontology in Information Systems (FOIS), Frontiers in Artificial Intelligence and
Applications. IOS Press, 2012.

42

[55] Till Mossakowski, C. Maeder, and Klaus Lüttich. The Heterogeneous Tool Set. In Orna
Grumberg and Michael Huth, editors, Tools and Algorithms for the Construction and Analy-
sis of Systems. 13th International Conference, TACAS 2007, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March
24 - April 1, 2007. Proceedings, volume 4424 of Lecture Notes in Computer Science, pages
519–522. Springer, 2007.

[56] Sushobhan Nayak and Amitabha Mukerjee. Concretizing the image schema: How semantics
guides the bootstrapping of syntax. In 2012 IEEE International Conference on Development
and Learning and Epigenetic Robotics, ICDL 2012, 2012.

[57] Todd Oakley. Image schema. In Dirk Geeraerts and Hubert Cuyckens, editors, The Oxford
Handbook of Cognitive Linguistics, pages 214–235. Oxford University Press, Oxford, 2010.

[58] Santiago Ontañón and Enric Plaza. Amalgams: A formal approach for combining multi-
ple case solutions. In Case-Based Reasoning. Research and Development, pages 257–271.
Springer, 2010.

[59] T. Parson. Events in the Semantics of English: A Study in Subatomic Semantics. MIT Press,
1990.

[60] Francisco C. Pereira and Amilcar Cardoso. Optimality Principles for Conceptual Blending:
A First Computational Approach. AISB Journal, 1(4), 2003.

[61] Arthur N. Prior. Past, Present and Future. Oxford University Press, Oxford, 1967.
[62] Terry Regier. The Human Semantic Potential: Spatial Language and Constrained Connec-

tionism. The MIT Press, 1996.
[63] Tim Rohrer. Image schemata in the brain. In Beate Hampe and Joseph E Grady, editors,

From perception to meaning: Image schemas in cognitive linguistics, volume 29 of Cognitive
Linguistics Research, pages 165–196. Walter de Gruyter, 2005.

[64] Eleanor H. Rosch. Natural categories. Cognitive Psychology, 4(3):328–350, 1973.
[65] M. Schiralli and N. Sinclair. A Constructive Response to ‘Where Mathematics Comes From’.

Educational Studies in Mathematics, 52:79–91, 2003.
[66] Martin Schmidt, Ulf Krumnack, Helmar Gust, and Kai-Uwe KÃ¼hnberger. Heuristic-

Driven Theory Projection: An Overview. In H. Prade and G. Richard, editors, Compu-
tational Approaches to Analogical Reasoning: Current Trends, Computational Intelligence
548. Springer-Verlag, 2014.

[67] Marco Schorlemmer, Alan Smaill, Kai-Uwe Kühnberger, Oliver Kutz, Simon Colton, Emil-
ios Cambouropoulos, and Alison Pease. COINVENT: Towards a Computational Concept
Invention Theory. In Proceedings of the 5th International Conference on Computational
Creativity, Ljubljana, Slovenia, June 10–13 2014.

[68] A. Schwering, U. Krumnack, K.-U. Kühnberger, and H. Gust. Syntactic Principles of
Heuristic-Driven Theory Projection. Cognitive Systems Research, 10(3):251–269, 2009.

[69] Robert St. Amant, Clayton T. Morrison, Yu-Han Chang, Paul R. Cohen, and Carole Beal. An
image schema language. In International Conference on Cognitive Modeling (ICCM), pages
292–297, 2006.

[70] Marco Tettamanti, Giovanni Buccino, Maria Cristina Saccuman, Vittorio Gallese, Massimo
Danna, Paola Scifo, Ferruccio Fazio, Giacomo Rizzolatti, and Daniela Perani. Listening to
action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuro-
science, pages 273–281, 2005.

[71] M. Turner. The Way We Imagine. In Ilona Roth, editor, Imaginative Minds - Proceedings of
the British Academy, pages 213–236. OUP, Oxford, 2007.

43

[72] Mark Turner. The Origin of Ideas: Blending, Creativity, and the Human Spark. Oxford
University Press, 2014.

[73] J F A K Van Benthem. The Logic of Time. D. Reidel Publishing Company, Dordrecht,
Holland, 1983.

[74] Tony Veale, Kurt Feyaerts, and Charles Forceville. E unis pluribum: Using mental agility to
achieve creative duality in word, image and sound. In Creativity and the Agile Mind: A Multi-
Disciplinary Study of a Multi-Faceted Phenomenon (Applications of Cognitive Linguistics),
pages 37–57. 2013.

[75] Tony Veale and Mark T. Keane. Conceptual Scaffolding: a Spatially Founded Meaning Rep-
resentation for Metaphor Comprehension. Computational Intelligence, 8(3):494–519, 1992.

[76] David Vernon. Artificial Cognitive Systems: A Primer. MIT Press, 2014.
[77] Burton Voorhees. Embodied Mathematics: Comments on Lakoff and Núñez. Journal of

Consciousness Studies, 11(9):83–88, 2004.
[78] L. Walton and M. Worboys. An algebraic approach to image schemas for geographic space.

In Proceedings of the 9th International Conference on Spatial Information Theory (COSIT),
pages 357–370, France, 2009.

[79] Anna Wierzbicka. Semantics : Primes and Universals: Primes and Universals. Oxford
University Press, UK, 1996.

[80] Nicole L Wilson and Raymond W Gibbs. Real and imagined body movement primes
metaphor comprehension. Cognitive science, 31(4):721–731, 2007.

[81] Ludwig Wittgenstein. Philosophical investigations. Macmillan, New York, 1953. trans.
G.E.M. Anscombe.

44

Image schemas in computational conceptual blending

Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus

1 Introduction

Computational creativity has seen significant progress in the last decade. Using a variety of artifi-
cial intelligence techniques there are now a multitude of systems that paint, write poems and solve
problem (see the recent overview [6]). In this field the notion of ‘creativity’ is typically understood
as a cognitive process defined and evaluated based on degree of novelty and usefulness of the re-
sulting artefact [8, 58]. While humans are creative on a daily basis, computer systems still struggle
to consistently produce output that human evaluators would deem creative.

The cognitive mechanisms behind human concept generation and understanding, are still
largely unknown. Cognitive psychology and developmental linguistics have yet to provide a holis-
tic explanation of the human capacity to learn concepts and from these generate new ones. Nat-
urally, this therefore becomes difficult to model computationally. However, there are promising
approaches that describe aspects of it. This paper investigates two of these theories: conceptual
blending and image schemas. Built on the cognitive mechanisms behind analogical thinking, the
theories provide some of the fundamental parts to the puzzle of human concept formation.

Conceptual Blending is presented as the cognitive process behind creative thinking and gen-
eration of novelty in [62]. The idea is that novel concepts are created when already known (and
potentially conflicting) conceptual spaces1 are merged into a new conceptual space, which, due to
the unique combination of information, exhibits emergent properties.

One critical step in blending is the identification of shared structure across the different input
domains. While humans do this more or less automatically, this is one of the more complicated
aspects of modelling conceptual blending formally. The main hypothesis of this paper is that image
schema may play a vital role in identifying such shared structure.

While conceptual blending deals with already established concepts and knowledge, the theory
of image schemas aims to explain some of the fundamental properties of concepts. Stemming from
the embodied mind theory, image schemas are hypothesised to capture abstractions that model
affordances related to spatio-temporal processes and relationships [35]. In the cognitive sciences,
image schemas are identified as the fundamental patterns for the cognition of objects, which are
perceived, conceptualised and manipulated in space and time [46]. Examples of image schemas,
proposed in the literature, are CONTAINER, SUPPORT and SOURCE_PATH_GOAL.

In this paper, we argue that combining conceptual blending with image schemas may not only
shed light on the phenomenon of concept generation and creative thinking in humans, but also
provide a useful tool for computational concept invention in computational creativity [36, 60].

The paper is structured as follows: in Section 2, the theory of image schemas is introduced.
This section also includes an illustration of the ubiquity of image schemas in existing applied

1 These are also called mental spaces in [12] and are not to be confused with the ‘conceptual spaces’ in the sense of
Gärdenfors [14].

ontologies, and a discussion of related (formal) work on image schemas. This is followed, in Sec-
tion 6, by a brief introduction of conceptual blending and a discussion on how conceptual blending
can be computationally modelled and implemented. Section 4 discusses how image schemas can
provide heuristics in the computational blending process. As these heuristics are based on organ-
ising image schemas into families of closely related theories rather than seeing them as individual
theories, this idea is discussed in more details in Section 5, including a discussion of formal and
algorithmic aspects of the proposal. We conclude the paper with a short summary and outlook to
future work.2

2 Image Schemas

This section presents the basic theory of image schemas. We begin, in Section 2.1, by introducing
the central ideas with the help of a number of examples. We continue in Section 2.2 with an anal-
ysis of definitions of the notion of image schema found in the literature. We then, in Section 2.3,
illustrate the prevalence of concepts closely related to image schemas in existing applied ontolo-
gies, before we conclude this introduction to image schemas with a discussion of related (formal)
work in Section 2.4.

2.1 The basic idea illustrated by examples

Embodied theories of cognition [2] emphasise bodily experiences as the prime source for concept
formation. Based on this cognitively supported view [13], the theory of image schemas suggests
that our conceptual world is grounded in the perceptive spatial relationships between objects.

Founded on psychological research [44], the theory states that image schemas are formed as
infants have repeated perceptual experiences, e.g. a plate being placed on a table. From this a
generalisation emerges, an image schema, capturing the spatial relationships between the objects
involved in an event. In the mentioned example, the image schema of SUPPORT is learnt. The
understanding that plates can be placed on tables can be generalised and analogically transferred to
other situations and objects. This means that infants who have learnt the SUPPORT schema through
exposure to a plate on a table also grasp the notion of a book lying on a desk, as this represent
the same spatial relationship. The more experience an infant has with a particular image schema,
the more it becomes fine-tuned to accommodate different situations. Mandler [45] describes how
children can be observed to mentally expand image schemas such as the SUPPORT schema by
adding information, for example when understanding that a large part of an object needs to be on
the supporting surface.

Another image schema example is the notion of CONTAINER, the notion that an object can be
within a border (two-dimensional), or inside a container (three-dimensional). The image schema
also includes the events of entering and exiting 3.

The CONTAINER schema is one of the most investigated image schemas [30] as it is one of the
first to be developed [43], and since the relationships of enclosure and containment are essential

2 This paper is a revised and extended version of [25].
3 It can be argued that IN and OUT are by themselves image schemas, or spatial primitives. For now we include them

under the umbrella schema of CONTAINER

46

for understanding our physical surroundings. It forms early as infants are immediately exposed to
many situations in which objects are contained within one another, e.g. an embrace, lying in a crib,
going into a house, eating food, etc.

One important aspect of image schemas is that they can be combined with one another. The
image schema PATH can easily merge with the image schema LINK, leading to the more com-
plex image-schematic concept LINKED_PATH. As PATH illustrates a movement through space,
and LINK illustrates the causal relationship between two (or more) objects, a LINKED_PATH rep-
resents joint movement on two paths; e.g., a truck and trailer moving along a highway, or the joint
movement of two separate magnets.

The ‘cognitive benefit’ of image schemas is to provide a means for information transfer. The
conceptual abstraction that constitutes the image schema can be utilised to explain unknown rela-
tionships and affordances of objects. The core idea is that after an image schema has been formed,
it can be generalised and the structure can be transferred through analogical reasoning to other
domains with similar characteristics [43]. That is, an image schema structure may be used as
a conceptual skeleton in an analogical transfer from the concrete spatial domain of the image
schema to another domain. This target domain may involve quite abstract concepts. Traces of this
can often be seen in how language is used to explain more abstract concepts. It can be argued that
much of metaphorical language is based on sensory-motor experiences and, thus, involves image
schemas.

For example, processes and time are often conceptualised as objects and spatial regions. Ex-
pressions such as ‘we meet on Thursday’, map information from a concrete situation such as ‘a
book on a table’ to the abstract process and time period. Another example is our conceptualisa-
tion of relationships like love or marriage, which also are often based on spatial metaphors. For
example, one way to view a marriage is as LINKED_PATH, where the PATH represents how two
spouses move together trough time and the LINK between them is the bond they share. A sentence
like Their marriage chains them together works only if one conceptualises the relationship as a
LINKED_PATH, because it reinterprets the LINK as an element that constraints the movements
of both lovers. Alternatively, marriage may also be conceptualised as CONTAINER. This is re-
flected by metaphors like ‘marriage is a prison’, ‘marriage is a safe harbour’, and ’open marriage’.
Depending on whether one chooses CONTAINER or LINKED_PATH as a base for the conceptuali-
sation of marriage, a different vocabulary and different metaphors are supported.

The examples illustrate how image schemas may be used to conceptualise an abstract domain.
As mentioned above, the first image schemas are developed by infants at an early stage where
abstract thought is not yet present. This illustrates how concrete reasoning involving physical
objects can provide the basis for the conceptualisation of the world and the formation of more
abstract concepts.

2.2 Defining “image schema”

The term “Image schema” is hard to define properly. Image schemas are studied in several dis-
ciplines and from various perspectives, including neuroscience [57], developmental psychology
[43], cognitive linguistics [24] and formal approaches [1]. This broad range of research has lead to
incoherence in the use of terminology. Also, the disputed relationship between socio-cultural as-

47

pects and the neurobiology of embodied cognition [23] complicates the literature on image schema
research.

Oakley defines an image schema as “... a condensed re-description of perceptual experience
for the purpose of mapping spatial structure onto conceptual structure” [53, p. 215]. Mark John-
son describes them as “...a recurring, dynamic pattern of our perceptual interactions and motor
programs that gives coherence and structure to our experience” [31, p. xiv]. Kuhn [35] considers
image schemas as the pre-linguistic structures of object relations in time and space.

One issue of these explanations of image schemas is that they do not provide individuation cri-
teria. Hence, it is hard to evaluate whether a proposed image schema qualifies as such or not. The
situation is complicated by the fact that image schema may change and become more specialised
during the development of a child [46]. It is sometimes not obvious whether two conceptual struc-
tures are just variants of the same image schema or whether they are different image schemas.

One important attempt to structure the technical terminology of image schemas is made by
Mandler and Pagán Cánovas [46]. In their paper they suggest to refine the umbrella term ‘image
schema’ by distinguishing three different levels (p.17):

1. Spatial primitives. The first building blocks that allow us to understand what we per-
ceive: PATH, CONTAINER, THING, CONTACT, etc.

2. Image schemas. Representations of simple spatial events using the primitives: PATH

OF THING, THING INTO CONTAINER, etc.

3. Schematic integrations. The first conceptual representations to include non-spatial ele-
ments, by projecting feelings or non-spatial perceptions to blends structured by image
schemas.

From our perspective, this terminology provides the benefit of clearly distinguishing between
image schemas and their building blocks (the spatial primitives). An image schema always repre-
sents an event and, thus, has some temporal dimension. The spatial primitives are the components
that are participating in the event. E.g., according to this terminology PATH is not an image schema
but a spatial primitive. In contrast, MOVEMENT ON PATH is an image schema. Another benefit is
that it provides a clear criterion for distinguishing two image schemas (or schematic integrations):
if x and y involve different spatial primitives, then x and y are different.4

Mandler and Pagán Cánovas approach provides a useful way to explain how conceptualisations
are refined: an image schema is a representation of some kind of spatial event involving a number
of spatial primitives. Hence, an image schema may be enriched by adding spatial primitives, yield-
ing a more complex image schema. E.g., by adding the spatial primitives CONTAINER and INTO

to the image schema MOVEMENT ON PATH, we obtain the schema MOVEMENT ON PATH INTO

CONTAINER. This new image schema is more specific and less universally applicable. However,
it provides more specific information when it is utilised conceptualising analogous situations. It
follows that image schemas can be ordered into a hierarchy ranging from general image schemas,
which contain only few spatial primitives, to more specific image schemas, which contain more

4 Note that this is a sufficient condition, but not a necessary one, since two different representations may involve the
same spatial primitives arranged in different ways.

48

spatial primitives.5 Hence, image schemas do not exists in isolation but can be organised (at least)
with respect to their (shared) spatial primitives. This observation is discussed further in Section 5.

In the following we continue to use “image schema” as the umbrella term for the three levels
of conceptualisations. To avoid any ambiguity, we will refer to image schemas in the sense of
Mandler and Pagán Cánovas as spatial schemas.

2.3 The ubiquity of image schemas

Image schematic notions play a central role in many efforts aiming to capture common sense
knowledge. In this section, we illustrate the ubiquity of notions closely related to image schemas
in existing applied ontologies. We will focus on the notion of CONTAINER and discuss some
prominent ontologies that incorporate them in various ways. Similar overviews could be generated
for other prominent image-schematic notions such as ‘PATH’, ‘LINK’ and ‘SUPPORT’.

Image schematic notions can be found early on in efforts such as building the Cyc knowledge-
base, [42], or in the collections6 of common sense modelling problems. Morgenstern’s ‘A Case
Study in Egg Cracking’ [47] contains extensive axiomatisations of variants of containment, and
Cyc includes a variety of notions of containment and path-following at its most general levels of
knowledge modelling and categorisation.

‘Containment’ is a crucial notion in areas such as geography and transportation [11], anatomy
and bio-medicine in general [61], linguistics and cognition [3, 55], or indeed cooking [33].

The relevant notions of containment range from down-to-earth notions of containment such
as ‘holding milk in a cup’ to semiotic and information-theoretic notions such as ‘signs holding
information’ or ‘.tex files holding UTF8 characters’ to fully abstract versions such as the ‘class
containing all twin primes’. In addition to the variety of concrete versions of containment, also
the levels of formalisation differ dramatically, namely from extensive (at least) first-order based
axiomatisations such as in Morgenstern [47], to more light-weight axiomatisations as found e.g.
in GUM-Space7 [3], to mere annotation of concepts or relations, as it is common practice in bio-
medical terminologies and ontologies (see below).

We will now present a number of concrete containment notions as they can be found in prominent
ontologies. Namely, we will give examples of containment notions from the areas or architecture,
natural language, biomedicine, and cultural heritage. We will list them roughly in the order of
concrete to abstract.

The Industry Foundation classes IFC8 is an object-oriented data model to support data ex-
change in (among others) the areas of architecture and built environments, and can be seen as an
application ontology. Notions of contact, containment, and composition are central to such engi-
neering contexts (see e.g. [7, 28]). As described in [4]:

5 In their list of spatial primitives, Mandler and Pagán Cánovas include MOVE, ANIMATED MOVE, and BLOCKED

MOVE. This seems to suggests that the spatial primitives are ordered into a subtype hierarchy, since both animated
movement and blocked movement are a kind of movement.

6 See http://www-formal.stanford.edu/leora/commonsense/
7 See http://ontologydesignpatterns.org/wiki/Ontology:GUM-Space
8 IFC is registered by ISO and is an official International Standard ISO 16739:2013.

49

http://www-formal.stanford.edu/leora/commonsense/
http://ontologydesignpatterns.org/wiki/Ontology:GUM-Space

The compositional aspect of the connectivity model supports three possible relationships:
aggregation, containment and nesting. [. . .] Containment implies a stronger form of com-
position, where the components cannot be considered independently: where the definition
of the whole element depends on the definition of its parts and the parts depend on the
existence of the whole element. [. . .]

When investigating formal reasoning approaches for such notions of containment, often qualitative
spatial calculi such as the Region Connection Calculus (RCC8) are employed [54], as discussed
in [7].

Moving on from engineering to natural language, according to WordNet, a ‘container’ is described
as a noun:

container (any object that can be used to hold things)

In addition to this rather general version of containment (which however seems to exclude abstract
containers), WordNet lists the most typical instantiation as:

(especially a large metal boxlike object of standardised dimensions that can be loaded from
one form of transport to another)

Moreover, the Synset for ‘container’ reports about 100 direct hyponyms, reflecting the prevalence
of container-like terms in natural language, and includes terms such as ‘basket’, ‘spoon’, and ‘time
capsule’.

The linguistic ontology GUM (the ‘Generalised Upper Model’) [3] specifies detailed semantics
for linguistic spatial expressions. GUM-Space (the space-related module of GUM) specifies ‘con-
tainment’ as a specific kind of ‘FunctionalSpatialModality’ exhibiting ‘Control’, namely:

The reified functional relation holding between two spatial objects x and y, such that x
functionally contains y; x need not spatially contain y. An example of an expression falling
into this category is: “The apple is *in* the bowl”. Here, the apple does not necessarily
need to be spatially contained in the bowl (no topological containment).

The GUM ontology was axiomatised both in first-order logic and description logic variants.9

Quite in contrast to this, though containment is an important notion in biomedicine and can be
found in a large number of ontologies hosted on Bioportal10, here the meaning of ‘containment’ is
typically specified via annotations. E.g., according to the Ontology of Biomedical Investigations:11

A device that can be used to restrict the location of material entities over time.

Notice that unlike the variants of containment notions mentioned above, we here find an explicit
conceptualisation of the temporal aspects of containment. A more detailed formal treatment of
various relations relevant in biomedical ontologies can be found in [61]. There, ‘containment’ is
characterised in first-order logic with the help of mereological notions. The informal characterisa-
tion is:

9 See http://www.ontospace.uni-bremen.de/ontology/gum.html
10 See http://bioportal.bioontology.org
11 See http://bioportal.bioontology.org/ontologies/OBI

50

http://www.ontospace.uni-bremen.de/ontology/gum.html
http://bioportal.bioontology.org
http://bioportal.bioontology.org/ontologies/OBI

Containment is location not involving parthood, and arises only where some immaterial
continuant is involved. [. . .] Containment obtains in each case between material and imma-
terial continuants, for instance: lung contained_in thoracic cavity; bladder contained_in
pelvic cavity. Hence containment is not a transitive relation. [61]

We close this section with an example of an abstract, non-physical notion of containment, namely
the idea of a document as a container of ‘information’. The CIDOC [10] Conceptual Reference
Model (CRM) provides an ontology for concepts and information in the domain of cultural her-
itage and museum documentation.12

We here find the abstract notion of a document as a container of ‘information’, e.g. the CIDOC
notion of an ‘Information carrier’:

This class comprises all instances of E22 Man-Made Object that are explicitly designed to
act as persistent physical carriers for instances of E73 Information Object.

Similarly, motivated by the need to cover concepts related to UML to model aspects of infor-
mation systems, the Cyc knowledge base was enriched by adding notions of ‘abstract containment’
[56].

2.4 Related work on formalising image schemas

Image schemas are a well studied field in research on cognitive linguistics and developmental
psychology. Recently, more computationally-oriented research has shown an increased interest in
image schemas as a route to approach new (partial) solutions to the symbol grounding problem
and to aid computational concept invention [18, 34, 36, 47].

Lakoff and Núñez [41] used image schemas extensively in their reconstruction of abstract
mathematical concepts using blending and image schemas. Working from the perspective that all
of mathematics can be deduced from the body’s interactions with its environment, they give a
detailed account on how image schemas provide some of the conceptual principles that provide a
grounding of abstract concepts.

While Lakoff and Núñez’s effort is not a formalisation of image schemas, their attempt to
ground mathematics in embodied cognition has been further developed and formalised. Guhe et
al. [22] account for the ideas in [41] by formalising in first-order logic some basic mathematical
constructs such as the measuring stick, motion along a path, and object construction. Using the
analogy engine Heuristic Driven Theory Projection, HDTP, they illustrate how generalisations
such as image schemas could be used to transfer information in a computational system. Their
system uses anti-unification to find the common structure in both source and target domain. This
common structure is used to transfer information to the target domain from the source.

St. Amant et al. [1] introduced the Image Schema Language, ISL, in which they discuss how
image schemas can be represented and simulated computationally. They argue that their repre-
sentation provides a structured image schema description of a situation. They use three different
scenarios to discuss simulations of image schemas: a Chess game, military tactics, and a robot sim-
ulation. The Chess game example is particularly interesting as it accounts for the two-dimensional,
12 It is registered as international standard (ISO 21127:2014) for the controlled exchange of cultural heritage informa-

tion.

51

spatial relationships between the pieces on the Chess board, constrained by the rules of the game.
Using a combination of the image schemas CONTAINER, LINK and PATH, they illustrate how the
board configurations can be viewed from higher conceptual perspectives (rather than simply as
spatial configurations).

Kuhn [34] presented another approach where he used Wordnet to extract meaning from words,
and employed the programming language Haskell to generate testable models. In [35], he extended
his previous image schema research by presenting a method to account for spatial categorisation
and developing an algebraic theory formalising image schemas. Here he argues that the image
schemas capture the abstractions essential to model affordances. For example, a cup is a cup be-
cause it can contain liquid, or an object is a vehicle when it affords transportation. With Kuhn’s
reasoning a vehicle can be described with a combination of the image schemas SUPPORT (alter-
natively CONTAINER) and PATH.

Fig. 1: The eight variations of CONTAINER as discussed in Bennett and Cialone [5].

Acquired from natural language, Bennett and Cialone [5] formally represented several differ-
ent kinds of CONTAINER schemas. They distinguish eight different spatial CONTAINER relation-
ships and their mappings to natural language constructs, illustrated in Figure 1. Their work also
demonstrates the non-trivial nature of formalising image schemas, and that there are many closely
related variants of any given image schema.

3 Conceptual Blending

3.1 A short introduction to conceptual blending

The theory of Conceptual Blending was introduced during the 1990’s as the cognitive machinery
for novel concept generation [12]. The theory aims to explain the process behind creative thinking.
It has strong support from research in cognitive psychology and linguistics [20, 32, 65] as well as
in more computational areas [18, 64].

According to conceptual blending theory, generation of novel concepts occurs via the com-
bination of already existing ideas and knowledge. It is suggested that such novel concepts are
selective and ‘compressed’ combinations, or blends, of previously formed concepts, building on

52

the notion that all novel generation builds from already existing knowledge. This cognitive process
is thought to happen as two, or more, input domains, or information sources, are combined into
a new domain, the blended domain, see Figure 2. The blend inherits some of the attributes and
relationships from the source domains and at the same time the unique mix allows the blends to
have emergent properties that are unique to each particular blend.

Fig. 2: The blending process as described by Fauconnier and Turner [12].

Conceptual blending can be compared to the cognitive mechanisms behind analogical reason-
ing. In analogical reasoning information flows from a source domain to a target domain by using
cognitive structure-mapping mechanisms. Conceptual blending is comparable insofar it employs
a search for ‘similar structure’ in the two input domains, information then gathered in the generic
space, the base space13. The abstracted structure found in the base ontology is later used to struc-
ture the blend as well.

Many monsters are examples for conceptual blends. For example, a griffin is a fictive creature
with the body and the tail of a lion and with the head and the wings of an eagle. The blend of the
two creatures does not just involve the physical attributes of the animals, but also the characteris-
tics associated with them. The lion provides attributes such as strength and power, and the eagle
precision and capacity for flight. Hence, the blended creature has the skills to master both land and
sky.

The griffin exemplifies one particular blend of the two input spaces lion and eagle. There
are other possibilities to blend a monster based on these two concepts. For example, one could
consider an ‘inverted griffin’, which has the head of the lion and the body of the eagle but no
wings. A third possible monster is a creature which has the shape and strength of a lion but cannot
use its strength because of its fragile bird-like bone structure. The last example shows that not all
blends are equally successful. In order for the blend to be considered creative, the blend needs to
be “useful" [8]. Given the task of blending a monster, a successful blend is required to produce a
dangerous creature – a lion with brittle bones does not meet this requirement as well as a griffin.
13 Introduced by Fauconnier and Turner as generic space, the notion carries the name base space or base ontology in

formal approaches.

53

The blended space preserves the information from the generic space. However, usually only
some selected features of the input spaces are retained. In the griffin example, the generic space
contains the head, the body, and two limbs of a vertebrate. In the blend, the head in the generic
space is mapped to the head of the lion and the head of the eagle, respectively. The same holds
for the body. In contrast, the two limbs are mapped to the forelimbs of the lion and the hindlimbs
(legs) of the eagle. For this reason, the griffin has six limbs, namely two wings of the eagle, two
hindlegs from the lion and two forelegs, which are inherited from both input spaces. Since the
shape and features of lion legs and eagle legs are mutually exclusive (e.g., one has hair and the
other has feathers), the forelegs of the griffin cannot inherit all properties from both input spaces.
Thus, griffins forelegs are usually conceptualised as exemplifying either only the features of one
animal or as inheriting a consistent subset of features from both input spaces.

For humans conceptual blending is effortless. We are able to create new blends spontaneously
and have no difficulty to understand new conceptual blends when we encounter them. This include
the selection of suitable input spaces, the identification of a relevant generic space, the identifica-
tion of irrelevant features of the input spaces, the performance of the blend, and the evaluation of
the usefulness of the blend. In contrast, for an automated system each of these steps provides a
significant challenge. In the next section we discuss a formal, logic-based model for conceptual
blending.

3.2 Formalising conceptual blending

We formalise conceptual blending following an approach based on Goguen’s [16] work on alge-
braic semiotics in which certain structural aspects of semiotic systems are logically formalised
in terms of algebraic theories, sign systems, and their mappings. In [18] algebraic semiotics has
been applied to user interface design and conceptual blending. Algebraic semiotics does not claim
to provide a comprehensive formal theory of blending – indeed, Goguen and Harrell admit that
many aspects of blending, in particular concerning the meaning of the involved notions, as well
as the optimality principles for blending, cannot be captured formally. However, the structural as-
pects can be formalised and provide insights into the space of possible blends. The formalisation
of these blends can be formulated using languages from the area of algebraic specification, e.g.
OBJ3 [19].

In [29, 37, 39], an approach to computational conceptual blending was presented, which is in
the tradition of Goguen’s proposal. In these earlier papers, it was suggested to represent the input
spaces as ontologies (e.g., in the OWL Web Ontology Language14). The structure that is shared
across the input spaces, i.e. the generic space, is also represented as an ontology, which is linked
by mappings to the input spaces. As proposed by Goguen, the blending process is modelled by
a colimit computation, a construction that abstracts the operation of disjoint unions modulo the
identification of certain parts specified by the base and the interpretations, as discussed in detail in
[17, 37, 38].

The inputs for a blending process (input concepts, generic space, mappings) can be formally
specified in a blending diagram in the Distributed Ontology, Model, and Specification Language
(DOL).15

14 With ‘OWL’ we refer to OWL 2 DL, see http://www.w3.org/TR/owl2-overview/
15 Regarding blending diagrams as displayed in Figure 3, notice the following discrepancy in terminology and in the

way the basic blending process is visualised. In the cognitive science literature following [12], conceptual blending is

54

http://www.w3.org/TR/owl2-overview/

base%morphisms

O1 O2

C

Base%Ontology

Blended%Concept

Input%1 Input%2colimit%morphisms

Fig. 3: The blending process as described by Goguen [18].

DOL is a metalanguage that allows the specification of (1) new ontologies based on existing
ontologies, (2) relations between ontologies, and (3) networks of ontologies, including networks
that specify blending diagrams. These diagrams encode the relationships between the base on-
tology and the (two or more) input spaces. The blending diagrams can be executed by the Het-
erogeneous Tool Set HETS, a proof management system. HETS is integrated into Ontohub,16 an
ontology repository which allows users to manage and collaboratively work on ontologies. DOL,
HETS, and Ontohub provide a powerful set of tools, which make it easy to specify and computa-
tionally execute conceptual blends, as seen in Neuhaus et al. [50]. An extensive introduction to the
features and the formal semantics of DOL can be found in [48].

As illustrated with the example in the previous section, a critical step in the blending process
is the identification of the common structure of the generic space and its mapping to the input
spaces. The structural similarity between conceptual blending and analogical thinking suggests to
investigate and apply approaches to analogical reasoning as tools for computational conceptual
blending.

One important theory in analogical research is the Structure Mapping Theory [15]. It claims
that analogical reasoning is characterised by the relationships between objects rather than their
attributes. Following this idea is the analogy engine Heuristic Driven Theory Projection, HDTP
[59]. HDTP computes a ‘least general generalisation’ B of two input spaces O1 and O2. This
is done by anti-unification to find common structure in both input spaces O1 and O2. HDTP’s
algorithm for anti-unification is, analogously to unification, a purely syntactical approach that is
based on finding matching substitutions.17

visualised as shown in Figure 2, with a generic space at the top identifying commonalities. In the technically oriented
literature following [18], the formalisation of this process is represented as a diagram as shown in Fig 3. This kind
of diagram is on the one hand an upside-down version of the first illustration, following traditions of category theory
to put the ‘simpler’ objects at the bottom of a diagram. On the other hand, it replaces the term ‘generic space’ with
‘base space’, partly because of a clash with mathematical terminology. In our work on formalisation of blending, we
will make no technical difference between ‘generic space’ and ‘base space’ and treat them as synonymous.

16 www.ontohub.org
17 There are several other methods for finding generalisations. One example is the Analogical Thesaurus [63] which

uses WordNet to identify common categories for the source and target spaces.

55

www.ontohub.org

While this is an interesting approach, it has a major disadvantage. Typically, for any two input
spaces there exists a large number of potential generalisations. Thus, the search space for potential
base spaces and potential conceptual blends is vast. HDTP implements heuristics to identify in-
teresting anti-unifiers; e.g., it prefers anti-unifiers that contain rich theories over anti-unifiers that
contain weak theories. However, since anti-unification is a purely syntactical approach, there is no
way to distinguish cognitively relevant from irrelevant information. As a result, an increase of the
size of the two input ontologies leads to an explosion of possibilities for anti-unifications.

4 Blending with Image Schemas

Instead of relying on a purely syntactical approach to blending, the semantic content found in im-
age schemas can be employed to help guiding the blending process. The basic idea here is that in
order to identify common structure sufficient for defining a useful generic space for two (or more)
given input spaces, we search for shared image-schematic information rather than arbitrary struc-
ture. As discussed above, a vast space of blends opens up if we work with more unconstrained resp.
syntax-based shared structure in the generic space. Given the powerful role that image schemas
generally seem to play in human conceptual (pre-linguistic) development, the working hypothesis
is that the semantic content and cognitive relevance given by identifying shared image schemas
will provide valuable information for constructing and selecting the more substantial or interesting
possible blends.

This section therefore serves a twofold purpose. First, we will demonstrate in Section 4.1 that
image schemas may enable similes based on a shared containment structure, and show how this
extends to supporting the conceptual blending process. Second, in Sections 4.2 and 4.3, we will
give formalised versions of blends where image schemas play a crucial role, showing that the gulf
between the cognitive relevance of image schemas and formal, logic-based concept blending can
be bridged.

4.1 Blending with Image Schemas in Natural Language

In this section we show that image schemas can provide the base structure for the blending of a
wide variety of concepts.

Consider the concepts Space Ship, North Korea, Spacetime, Marriage and Bank account. Note
that these concepts differ significantly. However, all of them can be construed as various kinds of
containers. This is obvious in the case of space ships, which may contain passengers and cargo.
Geopolitical entities like North Korea instantiate the CONTAINER schema, since they have bound-
aries and people may be inside and outside of countries. Spacetime conceived as a container is a
particularly interesting case since it implies the notion of inertial frames of reference, which is ar-
guably inconsistent with the Theory of Relativity [9]. This does not prevent science fiction writers
to construe spacetime as a container for planets, suns and other things; in many fictive stories it is
possible to leave and return to the universe (e.g., by visiting a ‘parallel universe’). While the first
three examples are physical entities, Marriage is a social entity. Thus, in the literal physical sense
marriage cannot be a container. Nevertheless, we use vocabulary that is associated with containers
to describe marriage. E.g., one can enter and leave a marriage, some marriages are open, others are
closed, and people may find happiness in their marriage. Similarly, a bank account may contain

56

Table 1: CONTAINER similes: < target> is like a <source>.
Target Domain Source Domain
This space ship leaky pot
North Korea prison
The universe treasure chest
Their marriage bottomless pit
My bank account balloon

funds, and if it is empty we can put some additional funds into the account and take them out again
later. These linguistic examples provide some evidence that we conceptualise Marriage and Bank
account as kinds of containers.

The claim that these five concepts are indeed instantiating CONTAINER is supported by the
behaviour of these concepts in similes. The first column (‘target domain’) of Table 1 contains our
examples. The second column (‘source domain’) contains various concepts of physical containers
which highlight some possible features of containers: e.g., a container may leak, be hard to get
out of, or have a flexible boundary. Let us consider the similes X is like a Y that are the result
of randomly choosing an element X from the first row and combining it with a random element
Y from the second column. For example, ‘The universe is like a treasure chest’, ‘Their marriage
is like a prison’, ‘My bank account is like a leaky pot’. Note that all of the resulting similes
are meaningful. Some of them will intuitively have more appeal than others, which may only be
meaningful within a particular context.18

The fact that Table 1 can be used to randomly produce similes is linguistically interesting,
because the target concepts vary significantly. The concepts space ship, marriage and North Korea
seem to have nothing in common. Therefore, the fact that they can all be compared meaningfully
to the same concepts needs an explanation. The puzzle is solved if we assume all concepts in the
first column share the underlying image schema CONTAINER. For this reason they can be blended
with the container concepts from the second column. In each simile we project some feature of the
container in the source domain (second column) via analogical transfer onto the container aspect
of the target domain (first column). Thus, Table 1 provides evidence that image schemas can help
us to identify or (construe) shared structure between concepts.

The shared structure between concepts can be utilised in conceptual blending. For example, we
can conceptually blend the concepts universe and balloon to a balloon-universe, that is a universe
that continuously increases its size and expands. This concept is already lexicalised as expanding
universe in English. Blending space ship with prison could lead to various interesting concepts:
e.g., to a space ship that is used as a prison – a kind of space age version of the British prison hulks
of the 19th century.

It is also possible to attempt to blend two different concepts from the first column from Table 1.
However, since these concepts contain more prominent aspects than CONTAINER, these blends
may not involve the CONTAINER as shared structure. E.g., a in a blend of Space Ship and North
Korea probably other aspects of the concept of North Korea would be more dominant. E. g., a
North Korean Space Ship may be, trivially, a space ship built in North Korea or a space ship with
a dictatorial captain and a malnourished crew. Only by providing some additional context one

18 For example, ‘This space ship is like a bottomless pit’ may sound odd in isolation, but in the context of ‘I have
already 20.000 containers in storage, and there is still empty cargo space’ the simile works.

57

can prime the CONTAINER aspect of North Korea; e.g., in ‘People inside North Korea do not learn
anything about the rest of the world, from their perspective they live in the space ship North Korea,
which is surrounded by an empty void.’

Let us consider two different examples from our list. A blend of marriage and bank account
may yield the concept of a marriage account. This new concept could be used in sentences like
the following: ‘Marcus and Susie have just spent a long and happy holiday together, this was a big
investment into their marriage account, it is now full of love’ or ‘Jim needs to watch the way he
treats Jill, their marriage account is draining quickly and is nearly empty. She is probably going to
leave him’. In this blend the marriage account is a container which contains feelings between the
spouses instead of money. The blend inherits the domain from marriage (with the major difference
that the spouses themselves are no longer inside the container). The main contribution of bank
account to the blend is the ability to ‘invest’ and ‘check the balance’ of the content in the marriage
account.

How something is conceptualised depends on the context. For example, surgeons may con-
ceptualise people as containers of organs, blood, and various other anatomical entities, but in most
contexts we do not conceptualise humans in this way. By choosing the appropriate context an
image schema may be pushed from the background into the conceptual forefront. For example,
in most contexts a mother is probably not conceptualised as a kind of container. However, in the
appropriate contexts it is possible to generate similes for mother reusing the source domains from
Table 1; e.g., ‘The mother is pregnant with twins, she looks like a balloon’ or ‘The mother is like
a prison for the unborn child’.

The examples that we have discussed in this section show how the CONTAINER image schema
can be utilised as generic space in conceptual blending. In the next sections we present the formal-
isation of the blending of two of our examples, namely space ship and mother.

4.2 The mother ship example

Our thesis is that image schemas provide a useful heuristics for conceptual blending, because
shared image schemas are good candidates for the generic space in the blending process.

The concepts space ship and mother share the CONTAINER schema. As a first step towards the
formalisation of the blending process, we need to represent CONTAINER in some formal language.

For the sake of illustrating the basic ideas, we choose here a simplified representation in OWL
(see Figure 4). Containers are defined as material objects that have a cavity as a proper part. A
container contains an object if and only if the object is located in the cavity that is part of the
container.19

As mentioned in Section 4.1, many concepts contain a rich structure. We do not attempt here
to provide a full axiomatisation of mother or space ship, but just focus on some salient points for
the sake of illustrating the blending process.

As discussed in 4.1, mother realises the CONTAINER schema, since mothers have a uterine
cavity, which at some point in time contained some child. Further, space ship realises the CON-
TAINER schema since space ships may be used to transport goods and passengers. Of course, in
19 This is a simplified view on CONTAINER. E.g., a more accurate formalisation of the CONTAINER schema would

need to cover notions like moving into or out of the container.

58

Class: Container
EquivalentTo: MaterialObject and has_proper_part some Cavity

ObjectProperty: contains
SubPropertyChain: has_proper_part o is_location_of
DisjointWith: has_proper_part
Domain: Container
Range: MaterialObject

Fig. 4: A (partial) representation of CONTAINER in OWL

almost any other aspect mothers and space ships are completely different; in Fig. 5 we only rep-
resent that mothers are female humans with children and that space ships are capable of space
travel.

Class: Mother
EquivalentTo: Female and Human and parent_of some (Small and Human)
SubClassOf: has_proper_part some UterineCavity

Class: SpaceShip
EquivalentTo: Vehicle and has_capability some Spacefaring
SubClassOf: has_proper_part some CargoSpace

Fig. 5: Mothers and space ships

During the blending of mother and space ship into mother ship the CONTAINER schema struc-
ture of both input spaces is preserved (see Fig. 7). The uterine cavity and the cargo space are both
mapped to the docking space. The mother ship inherits some features from both input spaces,
while others are dropped. Obviously, a mother ship is a space travelling vessel. But like a mother,
it is a ‘parent’ to some smaller entities of the same type. These smaller vessels can be contained
within the mother ship, they may leave its hull (a process analogous to a birth) and are supported
and under the authority of the larger vessel.20

To summarise, in our example we try to blend the input spaces of “Mother” and “Space ship”.
Instead of trying to utilise a syntactic approach like anti-unification to search for a base space,
we recognise that both input spaces have cavities and, thus, are containers. Using the base space
CONTAINER in the blending process yields a blended concept of “Mother ship”. Here, the precise
mappings from the base space axiomatisation of CONTAINER to the two input spaces regulate the
various properties of the blended concept. Figure 6 illustrates this blend by populating the generic
blending schema shown in Figure 3.

20 To represent dynamic aspects like birth and vessels leaving a docking bay adequately, one needs a more expressive
language than OWL.

59

Fig. 6: The blending of mother ship

Class: MotherShip
SubClassOf: Vehicle and has_capability some Spacefaring
SubClassOf: has_proper_part DockingStation
SubClassOf: parent_of some (Small and Vehicle)

Fig. 7: Mother ship

4.3 The satellite example

To further illustrate the role of image schemas in the construction of a newly blended concept,
let us consider a second example. Assume we want to create a new concept by blending our
mother ship with a moon. While this may not be astronomically completely correct, for the sake
of this paper we consider a moon to be a celestial object that is part of some solar system, has
a spheroidal shape, consists of rock, and orbits around a planet (see Figure 8). Of course, many
people would associate additional information with the concept moon, but even if we consider
only these aspects, there are different possibilities how we could blend the two concepts. E.g., a
structure mapping approach would probably first try to identify the parthood relationship between
the docking station and the mother ship on one hand with the parthood relationship between the
moon and the solar system. This may lead to the concept of a Moon/DockingStation that is part of
a SolarSystem/MotherShip – While not being wrong, it might not be a useful concept.

In contrast, if one utilises shared image schemas as heuristics for conceptual blending, it is
quite natural to look at a very different place for blending opportunities. Since the mother ship
is a kind of vehicle it has the capability to move stuff or people, which involves movement from
some place to another along a path. A moon also moves along a path, namely it’s orbit. This
commonality we can utilise in the blending process. However, in this case the situation is not as
straightforward as in Section 4.2, because the movements of the mother ship and the moon are
quite different and do not instantiate the same image schema.

60

Class: Moon
EquivalentTo: CelestialObject and participates_in some

(OrbitalMovement and revolves_around some (Planet or DwarfPlanet))
SubClassOf: consists_of Rock
SubClassOf: part_of some SolarSystem
SubClassOf: has_shape some Spheroid

Fig. 8: Moon

Class: Vehicle
SubClassOf: has_capability some SourceToGoalMovementCapability
SubClassOf: has_capability some TransportationCapability

Class: SourceToGoalMovement
EquvialentTo: MovementProcess and

(has_participant some MovingEntity) and
(follows exactly 1 (Path and (has_source exactly 1 Location)

and (has_destination exactly 1 Location)))
EquivalentTo: executes some SourceToGoalMovementCapability

Class: OrbitalMovement
EquvialentTo: MovementProcess and

(follows exactly 1 (LoopingPath and
(revolves_around some owl:Thing)))

Class: LoopingPath
EquvialentTo: Path and Looping
SubClassOf: has_source only owl:Nothing
SubClassOf: has_destination only owl:Nothing

Fig. 9: Movement

61

When the mother ship (or any vessel) executes its capability in some movement process, the
vehicle starts at some location of origin and moves along a path until it reaches its goal, where it
stops. Thus, the image schema is THING MOVES ON PATH FROM SOURCE TO GOAL. The orbital
movement of the moon also follows some path. However, the orbital movement does not have a
source or a goal; it is characterised by a focal point, which the orbiting object revolves around.
Hence, the formal representation of both kinds of movement looks quite differently (see Figure 9
for a representation in OWL).

As discussed in Section 2.2, spatial schemas, can be enriched by adding additional spatial
primitives; the spatial schemas instantiated by the movement of a vessel and of a moon, respec-
tively, are different (and mutually exclusive) refinements of THING MOVES ON PATH. For the
purpose of blending the important lesson is that image schemas do not exist in isolation, but they
are members of families of image schemas. The members of these image schema families are vari-
ants of some root conceptualisation (e.g., movement) and can be partially ordered by their strength
(see Section 5).

We can utilise this observation as a heuristic for conceptual blending: if two concepts involve
two different image schemas, which are within the same image schema family, then a good candi-
date for the base space for blending both concepts is the least general member of the image schema
family, which generalises the image schemas in the input spaces. In the case of our example, this is
MOVEMENT ON A PATH. Further, the blended concept probably should include only one member
of the image schema family. In our example, we can create a new concept that inherits the salient
features of the mother ship, but replaces its ability to travel from one place to another by some
orbital movement. The resulting theory describes a space station, which orbits around a planet or
dwarf planet. Alternatively, we can think of a moon-like concept that is turned into a spacefar-
ing vehicle. This is a kind of ‘moon ship’, that is a moon that has the capability to move from a
location of origin along a path to a destination (see Figure 10).

This example illustrates how the use of image schemas can provide heuristics for (i) identifying
suitable base spaces and (ii) selecting features during running interesting blends – even if the input
domains do not share exact structure. However, it raises the question how we should represent
image schema families formally. This is a question we will discuss in the next section.

Class: SpaceStation
SubClassOf: has_capability some Spacefaring
SubClassOf: has_proper_part DockingStation
SubClassOf: parent_of some (Small and Vessel)
SubClassOf: participates_in some

(OrbitalMovement and revolves_around some (Planet or DwarfPlanet))

Class: MoonShip
SubClassOf: Vehicle
SubClassOf: consists_of Rock
SubClassOf: has_shape some Spheroid

Fig. 10: Space station and moon ship

62

5 Image Schema Families as Graphs of Theories

In the previous section, we suggested that image schemas are members of families, which are
partially ordered by generality. Formally, we can represent such a family as a graph of theories
in DOL.21 In this section, we discuss this approach in some more detail. On a technical level, our
proposal for capturing image schemas as interrelated families of (heterogeneous) theories is quite
similar to the ideas underlying the first-order ontology repository COLORE22 [21].

S = G

Closed_Path_Movement

Path: the image schema family of moving along paths and in loops

add End_Path

Closed_Path_Movement,
with additional

distinguished point

Movement_Along_Path

S

S G

add End_Pathadd Start_Path

Movement_In_Loops

Revolving_Movement

o

add Focal_Point

add Start_Path

S = G

x
D

extending an image
schema axiomatically

extending by new spatial
primitives and axioms

Movement_Of_Object

Source-Path-Goal

S G
D

x Source_Path_Via_Goal

add Landmark

Source_Path Path_Goal

add Path

G

Fig. 11: A portion of the family of image schemas related to path following shown as DOL graph.

21 These graphs are diagrams in the sense of category theory.
22 See http://stl.mie.utoronto.ca/colore/

63

http://stl.mie.utoronto.ca/colore/

In our blend of mother ship with moon we considered two variants of MOVEMENT ON A PATH.
Figure 11 shows a selection of some other members of the same image schema family.23 One way
MOVEMENT ON A PATH can be specialised is as MOVEMENT ON A LOOPING PATH. Note that
this change does not involve adding a new spatial primitive, but just an additional characteristic of
the path. The resulting image schema can be further refined by adding the notion of a focal point,
which the path revolves around – this leads to the notion of orbiting. Alternatively, we may change
MOVEMENT ON A PATH by adding distinguished points; e.g., the source, the target, or both.

The latter image schema may be further specialised by identifying the source and the target.
In this case the path is closed in the sense that any object which follows the path will end up at the
location at where it started its movement (the source). The difference between a closed path and a
looping path is that the closed path has a start and an end (e.g., a race on a circular track), while
the looping path has neither (like an orbit). It is possible to further refine the schema by adding
more designated points or other related spatial primitives.

The particular image schema family sketched in Figure 11 is organised primarily via adding
new spatial primitives to the participating image schemas and/or by refining an image schema’s
properties (extending the axiomatisation).24 In general, different sets of criteria may be used de-
pending, for example, on the context of usage, thereby putting particular image schemas (say,
REVOLVE_AROUND) into a variety of families. Apart from a selection of spatial primitives, other
dimensions might be deemed relevant for defining a particular family, such as their role in the
developmental process.

In [5], eight closely related kinds of CONTAINERs were identified as being distinguishable
within natural language corpora, illustrated in Figure 1 and discussed above. Hence, the selection
criteria for grouping together these particular forms of containment are not simply driven by a se-
lection of spatial primitives. Although [5] does not explicitly formalise the structural relationships
between the different notions of containment, they are clearly present. Thus, their work provides
an empirically well-motivated example of an image schema family.

To implement computationally the idea of using image schemas as generic spaces, two indepen-
dent algorithmic problems have to be solved. Namely (1) the Recognition Problem: to identify
an image-schematic theory within an input theory, and (2) the Generalisation Problem: to find
the most specific image schema common to both inputs.

To address the recognition problem, suppose a lattice F encoding an image schema family is
fixed. We here assume for simplicity that elements of F will be logical theories in a fixed formal
logic, say first-order logic.25 Given an input theory O1 and F, solving the recognition problem
means finding a member f ∈ F that can be interpreted in O1, i.e. such that we find a renaming σ

of the symbols in f (called a signature morphism) and such that O1 |= σ(f) (also written O1 |=σ

23 A disclaimer: in the following we will describe an approach to represent the connections between image schemas,
belonging to the same family according to certain criteria. To illustrate some technical points, we will just postulate
the existence of several image schemas and their connections. However, we here do not intend to make any claims
regarding their empirical existence and/or their cognitive role in development.

24 In [26, 27] we present a more complete description of the image schema family of ‘path following’ and the corre-
sponding formal methodology.

25 Note that none of the ideas presented here depend on a particular, fixed logic. Indeed, heterogeneous logical specifi-
cation is central to formal blending approaches, see [36].

64

f).26 Note that this is a more general statement than claiming the inclusion of the axioms of f
(modulo renaming) in O1 (the trivial inclusion interpretation) since establishing the entailment of
the sentences in σ(f) from O1 might indeed be involved.

Computational support for automatic theory-interpretation search in first-order logic is inves-
tigated in [51], and a prototypical system was developed and tested as an add-on to the Heteroge-
neous Tool Set, HETS [49]. Experiments carried out in [40, 52] showed that this works particularly
well with more complex axiomatisations in first-order logic, rather than with simple taxonomies
expressed in OWL, because in the latter case too little syntactic structure is available to control the
combinatorial explosion of the search task. From the point of view of interpreting image schemas
into non-trivial axiomatised concepts, we may see this as an encouraging fact, as image schemas
are, despite their foundational nature, complex objects to axiomatise.

Once the recognition problem has been solved in principle, the given lattice structure of the
image schema family F gives us a very simple handle on the generalisation problem. Namely,
given two input spaces O1, O2, and two image schemas f1, f2 from the same family F (say, ‘con-
tainment’) such that O1 |=σ1 f1 and O2 |=σ2 f2, compute the most specific generalisation G ∈ F of
f1 and f2, i.e. their least upper bound in F. Since the signature of G will be included in both sig-
natures of f1 and f2, we obtain that O1 |=σ1 G and O2 |=σ2 G. G ∈ F is therefore an image schema
common to both input spaces and can be used as generic space.

In order to implement this idea, a sufficiently comprehensive library of formalised image
schema theories has to be made available for access by a blending engine. The first such library
for the case of ‘path following’ is developed in [26].

6 Conclusion

In this paper we suggest that image schemas can provide useful heuristics for computational blend-
ing of concepts. They can serve as a driving force to identify or define the generic space and its
mappings to the input spaces: because image schemas are building blocks of the concepts in the
input spaces, we can generate generic spaces by identifying image schemas that are shared across
both input spaces. Here, in particular, the idea of organising image schemas into lattice-like struc-
tures allows us to identify these shared structures even when the image schemas found in the input
concepts do not precisely coincide, but are closely related within a common family.

Our hypothesis is that, compared to syntax-driven approaches (e.g., structure mapping), this
approach allows us to identify more cognitively relevant generic spaces and, thus, for cognitively
more interesting conceptual blends. Further, we conjecture that many interesting conceptual blends
rely on generalisations of image schemas found in the input concepts and organised into well-
motivated families.

To test this hypothesis, we intend to continue to develop and expand our image schema library,
which formalises image schemas, their families, and interconnections between families, as DOL
networks. This also includes more heterogeneous image schema families, where formal languages
other than description logics are involved (CONTAINER of [5] is an example). While some formal-

26 In more detail: a theory interpretation σ is a signature morphism renaming the symbols of the image schema theory
f and induces a corresponding sentence translation map, also written σ , such that the translated sentences of f ,
written σ(f), are logically entailed by O1.

65

isation of image schemas can be found in the literature on conceptual blending and common sense
reasoning [18, 34, 47], the area of systematically formalising and ontologically structuring image
schemas is a largely unexplored ground.

The image schema library will allow us to use the tools for computational concept invention
that are developed in the COINVENT Project27, improve the tool’s heuristics, and at the same time
test our hypotheses.

We are planning to compare the quality of the blended concepts that are generated based on
our proposed heuristics with other blended concepts by using human judges. This way we will
evaluate whether our hypotheses are correct and image schemas indeed provide a useful tool for
computational concept invention.

27 http://coinvent-project.eu/

66

Bibliography

[1] Robert St. Amant, Clayton T. Morrison, Yu-Han Chang, Wei Mu, Paul R. Cohen, and Carole
Beal. An image schema language. In Proc. of the 7th International Conference on Cognitive
Modeling (ICCM), pages 292–297, Trieste, Italy, April 2006.

[2] Lawrence W. Barsalou. Grounded cognition. Annual review of psychology, 59:617–645,
2008.

[3] John Bateman, Joana Hois, Robert Ross, and Thora Tenbrink. A Linguistic Ontology of
Space for Natural Language Processing. Artificial Intelligence, 174(14):1027–1071, 2010.

[4] Vladimir Bazjanac, James Forester, Philip Haves, Darko Sucic, and Peng Xu. HVAC com-
ponent data modeling using industry foundation classes. Proc. of the 5th International Con-
ference on System Simulation in Buildings, Liege, Belgium, 2002.

[5] Brandon Bennett and Claudia Cialone. Corpus Guided Sense Cluster Analysis: a methodol-
ogy for ontology development (with examples from the spatial domain). In Pawel Garbacz
and Oliver Kutz, editors, Proc. of the 8th International Conference on Formal Ontology in
Information Systems (FOIS), volume 267 of Frontiers in Artificial Intelligence and Applica-
tions, pages 213–226, Rio de Janeiro, Brazil, September 2014. IOS Press.

[6] Tarek R. Besold, Marco Schorlemmer, and Alan Smaill, editors. Computational Creativity
Research: Towards Creative Machines, volume 7 of Atlantis Thinking Machines. Atlantis
Press, 2015.

[7] Mehul Bhatt, Joana Hois, and Oliver Kutz. Ontological modelling of form and function in
architectural design. Applied Ontology, 7(3):233–267, 2012.

[8] Margaret A. Boden. Computer models of creativity. AI Magazine, 30(3):23–34, 2009.
[9] Robert DiSalle. Space and time: Inertial frames. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Winter 2009 edition, 2009.
[10] Martin Doerr. The cidoc conceptual reference module: an ontological approach to semantic

interoperability of metadata. AI magazine, 24(3):75–92, 2003.
[11] Max J. Egenhofer and David M. Mark. Naive geography. In Andrew U. Frank and Werner

Kuhn, editors, Spatial Information Theory: a theoretical basis for GIS, volume 988 of Lec-
ture Notes in Computer Science, pages 1–16. Springer-Verlag, Berlin, 1995.

[12] Gilles Fauconnier and Mark Turner. Conceptual integration networks. Cognitive Science,
22(2):133–187, 1998.

[13] Vittorio Gallese and George Lakoff. The Brain’s concepts: the role of the Sensory-motor
system in conceptual knowledge. Cognitive neuropsychology, 22(3):455–79, 2005.

[14] Peter Gärdenfors. Conceptual Spaces - The Geometry of Thought. Bradford Books. MIT
Press, 2000.

[15] Dedre Gentner. Structure mapping: A theoretical framework for analogy. Cognitive Science,
7(2):155–170, 1983.

[16] Joseph A. Goguen. An Introduction to Algebraic Semiotics, with Applications to User Inter-
face Design. In Chrystopher L. Nehaniv, editor, Computation for Metaphors, Analogy and
Agents, number 1562 in Lecture Notes in Computer Science, pages 242–291. Springer, 1999.

[17] Joseph. A. Goguen. Semiotic Morphisms, Representations and Blending for Interface De-
sign. In Proc. of the AMAST Workshop on Algebraic Methods in Language Processing, pages
1–15, Verona, Italy, August 2003. AMAST Press.

[18] Joseph A. Goguen and D. Fox Harrell. Style: A Computational and Conceptual Blending-
Based Approach. In Shlomo Argamon and Shlomo Dubnov, editors, The Structure of Style:
Algorithmic Approaches to Understanding Manner and Meaning, pages 147–170. Springer,
Berlin, 2010.

[19] Joseph A. Goguen and Grant Malcolm. Algebraic Semantics of Imperative Programs. MIT,
1996.

[20] Joseph E. Grady. Cognitive mechanisms of conceptual integration. Cognitive Linguistics,
11(3-4):335–345, 2001.

[21] Michael Grüninger, Torsten Hahmann, Ali Hashemi, Darren Ong, and Atalay Ozgovde.
Modular First-Order Ontologies Via Repositories. Applied Ontology, 7(2):169–209, 2012.

[22] Markus Guhe, Alison Pease, Alan Smaill, Maricarmen Martínez, Martin Schmidt, Helmar
Gust, Kai-Uwe Kühnberger, and Ulf Krumnack. A computational account of conceptual
blending in basic mathematics. Cognitive Systems Research, 12(3–4):249–265, 2011.

[23] Beate Hampe. Image schemas in cognitive linguistics: Introduction. In Beate Hampe and
Joseph E Grady, editors, From perception to meaning: Image schemas in cognitive linguis-
tics, volume 29, pages 1–14. Walter de Gruyter, 2005.

[24] Beate Hampe and Joseph E. Grady, editors. From perception to meaning: Image schemas in
cognitive linguistics, volume 29 of Cognitive Linguistics Research. Walter de Gruyter, 2005.

[25] Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus. On the cognitive and logical role
of image schemas in computational conceptual blending. In Antonio Lieto and Daniele
Radicioni, editors, Proc. of the 2nd International Workshop on Artificial Intelligence and
Cognition (AIC-2014), volume Volume 1315 of CEUR-WS, Torino, Italy, November 2014.

[26] Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus. Choosing the Right Path: Image
Schema Theory as a Foundation for Concept Invention. Journal of Artificial General Intelli-
gence, 6(1):21–54, 2015.

[27] Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus. Image Schemas as Families of The-
ories. In Tarek R. Besold, Kai-Uwe Kühnberger, Marco Schorlemmer, and Alan Smaill,
editors, Proc. of the Workshop “Computational Creativity, Concept Invention, and General
Intelligence" (C3GI-15), volume 02-2015 of Publications of the Institute of Cognitive Sci-
ence, Osnabrück, 2015. Series Editor: Kühnberger, K.-U. and König, P. and Walter, S.

[28] Joana Hois, Mehul Bhatt, and Oliver Kutz. Modular Ontologies for Architectural Design.
In Proc. of FOMI-09, volume 198 of Frontiers in Artificial Intelligence and Applications,
Vicenza, Italy, 2009. IOS Press.

[29] Joana Hois, Oliver Kutz, Till Mossakowski, and John Bateman. Towards Ontological Blend-
ing. In Proc. of the The 14th International Conference on Artificial Intelligence: Methodol-
ogy, Systems, Applications (AIMSA-2010), Varna, Bulgaria, September 2010.

[30] Megan Johanson and Anna Papafragou. What does children’s spatial language reveal about
spatial concepts? Evidence from the use of containment expressions. Cognitive science,
38(5):881–910, 2014.

[31] Mark Johnson. The Body in the Mind: The Bodily Basis of Meaning, Imagination, and
Reason. The University of Chicago Press, Chicago and London, 1987.

[32] Raymond W. Gibbs Jr. Making good psychology out of blending theory. Cognitive Linguis-
tics, 11(3-4):347–358, 2001.

[33] Bernd Krieg-Brückner, Serge Autexier, Martin Rink, and Sidoine Ghomsi Nokam. Formal
Modelling for Cooking Assistance. In Rocco De Nicola and Rolf Hennicker, editors, Soft-
ware, Services, and Systems, volume 8950 of Lecture Notes in Computer Science, pages
355–376. Springer International Publishing, 2015.

68

[34] Werner Kuhn. Modeling the Semantics of Geographic Categories through Conceptual Inte-
gration. In Proc. of GIScience 2002, pages 108–118, Boulder, US, Sep 2002. Springer.

[35] Werner Kuhn. An Image-Schematic Account of Spatial Categories. In Stephan Winter, Matt
Duckham, Lars Kulik, and Ben Kuipers, editors, Spatial Information Theory, volume 4736
of Lecture Notes in Computer Science, pages 152–168. Springer, 2007.

[36] Oliver Kutz, John Bateman, Fabian Neuhaus, Till Mossakowski, and Mehul Bhatt. E pluribus
unum: Formalisation, Use-Cases, and Computational Support for Conceptual Blending. In
Tarek R. Besold, Marco Schorlemmer, and Alan Smaill, editors, Computational Creativity
Research: Towards Creative Machines, Thinking Machines. Atlantis/Springer, 2014.

[37] Oliver Kutz, Till Mossakowski, Joana Hois, Mehul Bhatt, and John Bateman. Ontologi-
cal Blending in DOL. In Tarek R. Besold, Kai-Uwe Kühnberger, Marco Schorlemmer, and
Alan Smaill, editors, Computational Creativity, Concept Invention, and General Intelligence,
Proc. of the 1st International Workshop C3GI@ECAI, volume 01, Montpellier, France, Au-
gust 2012. Publications of the Institute of Cognitive Science, Osnabrück.

[38] Oliver Kutz, Till Mossakowski, and Dominik Lücke. Carnap, Goguen, and the Hyperontolo-
gies: Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica Univer-
salis, 4(2):255–333, 2010. Special Issue on ‘Is Logic Universal?’.

[39] Oliver Kutz, Fabian Neuhaus, Till Mossakowski, and Mihai Codescu. Blending in the Hub—
Towards a collaborative concept invention platform. In Proc. of the 5th International Con-
ference on Computational Creativity, Ljubljana, Slovenia, June 2014.

[40] Oliver Kutz and Immanuel Normann. Context Discovery via Theory Interpretation. In Proc.
of the IJCAI Workshop on Automated Reasoning about Context and Ontology Evolution,
ARCOE-09, Pasadena, California, June 2009.

[41] George Lakoff and Rafael E. Núñez. Where Mathematics Comes From. Basic Books, 2000.
[42] Douglas B. Lenat, Mayank Prakash, and Mary Shepherd. CYC: Using common sense knowl-

edge to overcome brittleness and knowledge acquisition bottlenecks. AI magazine, 6(4):65–
85, 1985.

[43] Jean M. Mandler. How to build a baby: II. Conceptual primitives. Psychological review,
99(4):587–604, 1992.

[44] Jean M. Mandler. The Foundations of Mind: Origins of Conceptual Thought: Origins of
Conceptual Though. Oxford University Press, New York, 2004.

[45] Jean M. Mandler. On the Birth and Growth of Concepts. Philosophical Psychology,
21(2):207–230, 2008.

[46] Jean M. Mandler and Cristóbal Pagán Cánovas. On defining image schemas. Language and
Cognition, 6(4):510–532, December 2014.

[47] Leora Morgenstern. Mid-Sized Axiomatizations of Commonsense Problems: A Case Study
in Egg Cracking. Studia Logica, 67:333–384, 2001.

[48] Till Mossakowski, Mihai Codescu, Fabian Neuhaus, and Oliver Kutz. The Road to Uni-
versal Logic–Festschrift for 50th birthday of Jean-Yves Beziau, Volume II, chapter The dis-
tributed ontology, modelling and specification language - DOL. Studies in Universal Logic.
Birkhäuser, 2015.

[49] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool Set. In
Orna Grumberg and Michael Huth, editors, TACAS 2007, volume 4424 of Lecture Notes in
Computer Science, pages 519–522. Springer-Verlag Heidelberg, 2007.

[50] Fabian Neuhaus, Oliver Kutz, Mihai Codescu, and Till Mossakowski. Fabricating Monsters
is Hard - Towards the Automation of Conceptual Blending. In Proc. of Computational Cre-

69

ativity, Concept Invention, and General Intelligence (C3GI-14), volume 1-2014, pages 2–5,
Prague, 2014. Publications of the Institute of Cognitive Science, Osnabrück.

[51] Immanuel Normann. Automated Theory Interpretation. PhD thesis, Department of Computer
Science, Jacobs University, Bremen, 2008.

[52] Immanuel Normann and Oliver Kutz. Ontology Correspondence via Theory Interpretation.
In Workshop on Matching and Meaning (AISB-09), Edinburgh, UK, 2009.

[53] Todd Oakley. Image schema. In Dirk Geeraerts and Hubert Cuyckens, editors, The Oxford
Handbook of Cognitive Linguistics, pages 214–235. Oxford University Press, 2007.

[54] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on regions and con-
nection. In Proc. of the 3rd International Conference on the Principles of Knowledge Repre-
sentation and Reasoning (KR’92), pages 165–176. Morgan Kaufmann, Los Altos, 1992.

[55] Stephen K. Reed and Adam Pease. A framework for constructing cognition ontologies using
WordNet, FrameNet, and SUMO. Cognitive Systems Research, 33:122–144, 2015.

[56] Stephen L. Reed, Douglas B. Lenat, et al. Mapping ontologies into cyc. In AAAI 2002
Conference Workshop on Ontologies For The Semantic Web, pages 1–6, 2002.

[57] Tim Rohrer. Image schemata in the brain. In Beate Hampe and Joseph E Grady, editors,
From perception to meaning: Image schemas in cognitive linguistics, volume 29 of Cognitive
Linguistics Research, pages 165–196. Walter de Gruyter, 2005.

[58] Mark A. Runco and Garrett J. Jaeger. The standard definition of creativity. Creativity Re-
search Journal, 24(1):92–96, 2012.

[59] Martin Schmidt, Ulf Krumnack, Helmar Gust, and Kai-Uwe Kühnberger. Computational Ap-
proaches to Analogical Reasoning: Current Trends, volume 548 of Studies in Computational
Intelligence. Springer, Berlin Heidelberg, 2014.

[60] Marco Schorlemmer, Alan Smaill, Kai-Uwe Kühnberger, Oliver Kutz, Simon Colton, Emil-
ios Cambouropoulos, and Alison Pease. COINVENT: Towards a Computational Concept
Invention Theory. In Proc. of the 5th International Conference on Computational Creativity,
Ljubljana, Slovenia, June 2014.

[61] Barry Smith, Werner Ceusters, Bert Klagges, Jacob Köhler, Anand Kumar, Jane Lomax,
Chris Mungall, Fabian Neuhaus, Alan L Rector, and Cornelius Rosse. Relations in biomedi-
cal ontologies. Genome biology, 6(5):R46, 2005.

[62] Mark Turner. The Origin of Ideas: Blending, Creativity, and the Human Spark. Oxford
University Press, 2014.

[63] Tony Veale. The analogical thesaurus. In John Riedl and Randy Hill, editors, Proc. of the
15th Innovative Applications of Artificial Intelligence Conference, pages 137–142, Acapulco,
Mexico, August 2003. AAAI Press.

[64] Tony Veale. From conceptual âmash-upsâ to âbad-assâ blends: A robust computational
model of conceptual blending. In Mary Lou Maher, Kristian Hammond, Alison Pease,
Rafael PÃ©rez y PÃ©rez, Dan Ventura, and Geraint Wiggins, editors, Proc. of the 3rd Inter-
national Conference on Computational Creativity, pages 1–8, Dublin, Ireland, May 2012.

[65] Fan-Pei Gloria Yang, Kailyn Bradley, Madiha Huq, Dai-Lin Wu, and Daniel C. Krawczyk.
Contextual effects on conceptual blending in metaphors: An event-related potential study.
Journal of Neurolinguistics, 26:312–326, 2012.

70

Upward Refinement Operators for Conceptual Blending in the
Description Logic EL++

Roberto Confalonieri, Manfred Eppe, Marco Schorlemmer, Oliver Kutz, Rafael Peñaloza, and
Enric Plaza

1 Introduction

The upward refinement—or generalisation—of concepts plays a crucial role in creative cognitive
processes for analogical reasoning and concept invention. In this work we focus on its role in
conceptual blending [21], where one combines two input concepts to invent a new one. A problem
in blending is that the combination of two concepts may generate an unsatisfiable one due to
contradiction, or may not satisfy certain properties. However, by generalising input concepts, we
can remove inconsistencies to find a novel and useful combination of the input concepts. For
instance, a ‘red French sedan’ and a ‘blue German minivan’ can be blended to a ‘red German
sedan’ by generalising the first concept to a ‘red European sedan’ and the second one to a ‘coloured
German car’. The least general generalisation of our input concepts—a ‘coloured European car’—
serves as an upper bound of the generalisation space to be explored, and, in a certain sense, plays
the role of the so called generic space in conceptual blending, which encodes the shared structure
of both concepts.

This paper addresses the formalisation and implementation of such a generalisation process in
the context of the description logic EL++ [5, 7]. The choice of EL++ as the knowledge represen-
tation language for a computational interpretation of the cognitive theory of conceptual blending
is motivated by several reasons. First, EL++ is the underpinning logic of the OWL 2 EL Profile1,
a recommendation of the W3C, and, therefore, a well-understood and commonly used knowl-
edge representation formalism. Second, EL++ offers a good tradeoff between expressiveness and
efficiency of reasoning and is considered to be sufficiently expressive to model large real-world on-
tologies, specially in the bio-medical domains [15, 41]. Finally, subsumption of concepts w.r.t. an
EL++ TBox is computable in polynomial time [5], and therefore of special interest for a tractable
real-world implementation of conceptual blending. Indeed, a nontrivial problem of conceptual
blending is that there usually exists a considerable number of possible combinations for the blend
creation that are inconsistent or otherwise not interesting (see e.g., [20]). These combinations need
to be evaluated. Our EL++-based formalisation of conceptual blending suggests that these combi-
nations, leading to the blends, can be evaluated against the entailment of some properties, modelled
as ontology consequence requirements. The nice computational properties of EL++ facilitate this
kind of evaluation since entailment in EL++ is not computationally hard.

The generalisation of EL++ concepts has been studied both in the Description Logic (DL) and
in the Inductive Logic Programming (ILP) literature, although from different perspectives. Whilst
approaches in DL focus on formalising the computation of a least general generalisation (LGG)
(also known as least common subsumer) among different concepts as a non-standard reasoning
task [2, 6, 44], approaches in ILP are concerned on learning DL descriptions from examples [33].

1 http://www.w3.org/TR/owl2-profiles/, accessed 26/11/2015

http://www.w3.org/TR/owl2-profiles/

In both cases, however, finding a LGG is a challenging task. Its computability depends on the
type of DL adopted and on the assumptions made over the structure of concept definitions.

Our work relates to these approaches, but our main motivation for generalising DL concepts
is intrinsically different. Although we do need to be aware of what properties are shared by the
concepts in order to blend them, it is not necessary (though desirable) to find a generic space that is
also a LGG. A minimally specific common subsumer w.r.t. the subconcepts that can be built using
the axioms in a Tbox will suffice. With this objective in mind, we propose an upward refinement
operator for generalising EL++ concepts which is inductively defined over the structure of concept
descriptions. We discuss some of the properties typically used to characterise refinement operators;
namely, local finiteness, properness and completeness [30].2 Particularly, our operator is locally
finite and proper, but it is not complete. As a consequence, it cannot generate all the possible
generalisations of an EL++ concept. As we shall discuss, we sacrifice completeness for finiteness
(since we do not need to compute a LGG, strictly speaking), but we need the applications of the
operator to always terminate at each refinement step.

As far as the implementation of the operator is concerned, we state the problem of finding a
generic space of EL++ concepts as a planning problem. This involves finding a sequence of gen-
eralisations with conditional effects to reach the generic space. This is natural, because modifying
EL++ concepts underlies certain conditional rules. These rules are ultimately defined through the
upward cover set which is generated within the generalisation operator definitions (see Defini-
tions 6 and 7). It is well-known that planning problems are inherently non-monotonic because of
the inertia assumption. That is, one assumes that world properties, in this case parts of EL++ con-
cept descriptions, persist unless there is evidence that they changed. The ‘unless there is evidence’
condition implies the use of Negation as Failure (NaF). To this end, we adopt the nonmonotonic
logic programming paradigm of Answer Set Programming (ASP) [24].3

To implement the the upward refinement operator and generic space search, we employ the
incremental solving capabilities of clingo [22], an advanced ASP solver, to find a generic space
among two EL++ input concepts. The ASP search is embedded in an amalgam-based process that
models conceptual blending. We present a conceptual blending algorithm that uses the generalisa-
tions found by the ASP-based search process to create new blended concepts. New concepts are
evaluated by means of ontology consequence requirements and a heuristics function. Throughout
the paper, we use an example in the domain of computer icon design.

This paper is an extended and revised version of [14]. It now contains a formal definition and
analysis of the refinement operator properties (Propositions 1-3 and Theorem 1), an extension of
the operator definition to deal with infinite chain of generalisations, the complete implementation
of the operator in ASP, and a blending algorithm.

The remainder of this paper is organised as follows: Section 2 provides the background knowl-
edge to make this paper self-contained. Section 3 describes how conceptual blending can be used

2 Briefly, a refinement operator is said to be locally finite when it generates a finite set of refinements at each step;
proper, when its refinements are not equivalent to the original concept, and complete, when it produces all possible
refinements of a given concept. These property are formally presented in Section 2.2.

3 The planning problem could also have been encoded in SAT. There are many approaches to realize NaF and non-
monotonicity for SAT, with circumscription [35] probably being the most prominent method. In this sense, the
computational complexity is equivalent with the one of ASP. However, since NaF is already an inherent part of ASP,
we found the use of ASP more straightforward. This is also in-line with recent trends in Commonsense Reasoning
about Action and Change, where ASP is commonly used to solve planning problems (see e.g., [17, 18, 31, 34]).

72

to design new computer icons modeled in EL++. Section 4 proposes the formalisation of a refine-
ment operator for generalising EL++ concepts. In Section 5, the implementation of the operator
and the ASP incremental encoding, which models the generic space search, are presented. Section
6 describes an algorithm for conceptual blending. Section 7 outlines several works that relate to
ours from different perspectives. Finally, Section 8 concludes the paper and envisions some future
work.

2 Background

In this section we introduce the basic notions that will be used throughout the paper. After present-
ing the EL++ description logic, we introduce refinement operators. Then, we provide the definition
of amalgams that provides a computational chacterisation of conceptual blending. We conclude
the background with an overview of Answer Set Programming (ASP) and the incremental solving
capabilities of clingo.

2.1 The Description Logic EL++

In DLs, concept and role descriptions are defined inductively by means of concept and role con-
structors over a finite set NC of concept names, a finite set NR of role names, and (possibly) a finite
set NI of individual names. As is common practice, we shall write A, B for concept names, C, D
for concept descriptions, r, s for role names, and a, b, for individual names.

The semantics of concept and role descriptions is defined in terms of an interpretation I =
(∆I , ·I), where ∆I is a non-empty domain and ·I is an interpretation function assigning a set
AI ⊆ ∆I to each concept name A ∈ NC, a set rI ⊆ ∆I ×∆I to each role name r ∈ Nr, and an
element aI ∈ ∆I for each individual name a ∈ NI , which is extended to general concept and
role descriptions. The upper part of Table 1 shows the constructors of the description logic EL++

that are relevant for this paper, together with their interpretation. For a complete presentation of
EL++ we refer to [5, 7]. A knowledge base usually consists of a finite set T of terminological
axioms, called TBox, which contains intensional knowledge defining the main notions relevant to
the domain of discourse; and a finite set A of assertional axioms, called ABox, which contains
extensional knowledge about individual objects of the domain. In this paper, we focus only on
terminological axioms of the form CvD, i.e. general concept inclusions (GCIs), and r1 ◦· · ·◦rn v
r, i.e. role inclusions (RIs), as well as axioms specifying domain and range restrictions for roles.
The lower part of Table 1 shows the form of these axioms, together with the condition for these to
be satisfied by an interpretation I. By L(T) we refer to the set of all EL++ concept descriptions
we can form with the concept and role names occurring in T .

RIs allow one to specify role hierarchies (r v s) and role transitivity (r ◦ r v r). The bottom
concept ⊥, in combination with GCIs, allows one to express disjointness of concept descriptions,
e.g., CuD v ⊥ tells that C and D are disjoint. An interpretation I is a model of a TBox T iff
it satisfies all axioms in T . The basic reasoning task in EL++ is subsumption. Given a TBox T
and two concept descriptions C and D, we say that C is (strictly) subsumed by D w.r.t. T , denoted
as C vT D (C @T D), iff CI ⊆ DI (CI ⊆ DI and CI 6= DI) for every model I of T . We write
C ≡T D as an abbreviation for C vT D and D vT C. Analogously, given two roles r,s ∈ Nr, we
say that r is (strictly) subsumed by s w.r.t. T , denoted as r vT s (r @T s), iff rI ⊆ sI (rI ⊆ sI and
rI 6= sI) for every model I of T .

73

concept description interpretation

A AI ⊆ ∆I

> ∆I

⊥ /0

CuD CI ∩DI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I .(x,y) ∈ rI ∧ y ∈CI}
axiom satisfaction

C v D CI ⊆ DI

C ≡ D CI = DI

r1 ◦ · · · ◦ rn v r rI1 ; · · · ; rIn ⊆ rI

domain(r)vC rI ⊆CI ×∆I

range(r)vC rI ⊆ ∆I ×CI

Table 1: Syntax and semantics of some EL++ contructors and axioms. (Note: ‘;’ is the usual
composition operator in relation algebra.)

2.2 Refinement Operators

Refinement operators are a well known notion in Inductive Logic Programming where they are
used to structure a search process for learning concepts from examples. In this setting, two types of
refinement operators exist: specialisation (or downward) refinement operators and generalisation
(or upward) refinement operators. While the former constructs specialisations of hypotheses, the
latter contructs generalisations.

Generally speaking, refinement operators are defined over quasi-ordered sets. A quasi-ordered
set is a pair 〈S,�〉 where S is a set and� is a binary relation among elements of S that is reflexive
(a� a) and transitive (if a� b and b� c then a� c). If a� b, we say that b is more general than
a, and if also b � a we say that a and b are equivalent. A generalisation refinement operator is
defined as follows.4

Definition 1. A generalisation refinement operator γ over a quasi-ordered set 〈S,�〉 is a set-
valued function such that ∀a ∈ S : γ(a)⊆ {b ∈ S | a� b}.

A refinement operator γ can be classified according to some desirable properties [30]. We say
that γ is:

– locally finite, if the number of generalisations generated for any given element by the operator
is finite, that is, ∀a ∈ S : γ(a) is finite;

– proper, if an element is not equivalent to any of its generalisations, i.e., ∀a,b ∈ S, if b ∈ γ(a),
then a and b are not equivalent;

– complete, if there are no generalisations that are not generated by the operator, i.e., ∀a,b ∈ S
it holds that if a� b, then b ∈ γ∗(a) (where γ∗(a) denotes the set of all elements which can be
reached from a by means of γ in zero or a finite number of steps).

4 A deeper analysis of refinement operators can be found in [30].

74

When a refinement operator is locally finite, proper, and complete it is said to be ideal. An ideal
specialisation refinement operator for EL has been explored in [32]. In this paper, we define a
generalisation refinement operator for EL++ and study its properties.

2.3 Computational Concept Blending by Amalgams

The process of conceptual blending can be characterised in terms of amalgams [37], a notion that
has its root in case-based reasoning and focuses on the problem of combining solutions coming
from multiple cases in search-based approaches to reuse and that has also been used to model
analogy [9]. According to this approach, input concepts are generalised until a generic space is
found, and pairs of generalised versions of the input concepts are ‘combined’ to create blends.

Formally, the notion of amalgams can be defined in any representation language L for which
a subsumption relation between formulas (or descriptions) of L can be defined, and therefore also
in L(T) with the subsumption relation vT for a given EL++ TBox T .

Definition 2. Given two descriptions C1,C2 ∈ L(T):

– A most general specialisation (MGS) is a description Cmgs such that Cmgs vT C1 and Cmgs vT
C2 and for any other description D such that DvT C1 and DvT C2, then DvT Cmgs.

– A least general generalisation (LGG) is a description Clgg such that C1 vT Clgg and C2 vT Clgg
and for any other description D such that C1 vT D and C2 vT D, then Clgg vT D.

Intuitively, a MGS is a description that has all the information from both the original descriptions
C1 and C2, while a LGG contains that which is common to them. Depending on the structure of
T , it is not always possible to find a least general generalisation. Thus, the definition of Clgg is
relaxed as follows.

Definition 3. Given two descriptions C1,C2 ∈L(T), a common generalisation is a description Cg

such that C1 vT Cg and C2 vT Cg.

An amalgam of two descriptions is a new description that contains parts from these original
descriptions. For instance, an amalgam of ‘a red French sedan’ and ‘a blue German minivan’ could
be ‘a red German sedan;’ clearly, there are always multiple possibilities for amalgams, like ‘a blue
French minivan’. For the purposes of this paper we can define an amalgam of two descriptions as
follows.

Definition 4 (Amalgam). Let T be an EL++ TBox. A description Cam ∈ L(T) is an amalgam of
two descriptions C1 and C2 (with common generalisation Cg) if there exist two descriptions C′1 and
C′2 such that:

1. C1 vT C′1 vT Cg,
2. C2 vT C′2 vT Cg, and
3. Cam is a MGS of C′1 and C′2

This definition is illustrated in Figure 1, where the common generalisation of the inputs is indicated
as Cg, and the amalgam Cam is the MGS of two concrete generalisations C′1 and C′2 of the inputs.

75

Notice that Cg used to define the amalgam does not need to be a least general generalisation.
Although having a least general generalisation is desirable, a common generalisation of the inputs
will suffice.

C1 C2

C 0
1

Cam

C 0
2

Clgg

Cg

(a) An amalgam with a common generalisa-
tion Cg that is not a least general generalisa-
tion of C1 and C2.

C1 C2

C 0
1

Cam

C 0
2

Cg ⌘T Clgg

(b) An amalgam with a common generalisa-
tion Cg that is also a least general generalisa-
tion of C1 and C2.

Fig. 1: Two diagrams of an amalgam Cam from descriptions C1 and C2 with generalisations C′1 and
C′2. Arrows indicate the subsumption of the target by the source of the arrow.

In Section 4, we define an upward refinement operator that allows us to find generalisations
of EL++ concept descriptions needed for computing the amalgams as described above. We may
generalise concepts C1 and C2 beyond the LGG but we need to do this to guarantee termination,
as we shall explain. We implement the operator and the search for generalisation in Answer Set
Programming (ASP) [24]. To this end, we provide some basic notions about ASP in the next
section.

2.4 Answer Set Programming

Answer Set Programming (ASP) is a declarative approach to solve NP-hard search problems (see
e.g. [8, 24]). An ASP program is similar to a PROLOG program in that it is non-monotonic, takes
logic programming style Horn clauses as input, and uses negation-as-failure (NaF). However, in-
stead of using Kowalski [28]’s SLDNF resolution semantics as in PROLOG, it employs Gelfond
and Lifschitz [25]’s Stable Model Semantics, which makes it truly declarative, i.e., the order in
which ASP rules appear in a logic program does not matter. Furthermore, the Stable Model Se-
mantics has the advantage that Answer Set Programs always terminate, while PROLOG programs
do not. For example, given a program p← not q. and q← not p., asking whether p holds results
in an infinite loop for PROLOG, while ASP returns two stable models as solution, namely the sets
{p} and {q}.

An ASP program consists of a set of rules, facts and constraints. Its solutions are called Stable
Models (SM). In this paper we only consider so-called normal rules [8], which are written as:

a0← a1, . . . ,a j,not a j+1, . . . ,not an (2.1)

in which a1, ...,an are atoms and not is negation-as-failure. When n = 0 the rule a0 ← is known
as a fact and the← is omitted. A constraint is a rule of the form← a1, . . . ,a j,not a j+1, . . . ,not an.
Constraints are rules that are used to discard some models of a logic program.

76

The models of an ASP program are defined according to the stable model semantics. The stable
semantics is defined in terms of the so-called Gelfond-Lifschitz reduction [25]. Let LP be the set of
atoms in the language of a normal logic program P, then for any set M⊆LP, the Gelfond-Lifschitz
reduction PM is the definite logic program obtained from P by deleting:

(i) each rule that has a formula not a in its body with a ∈M, and
(ii) all formulæ of the form not a in the bodies of the remaining rules.

PM does not contain not and M is called a stable model of P if and only if M is the minimal model
of PM. A stable model M of an ASP program P contains those atoms that satisfy all the rules in
the program and, consequently, represent a solution of the problem that represents.

ASP is interesting not only because can capture complex knowledge representation problems,
but also because efficient ASP implementations exists. In particular, the clingo solver [22] offers a
step-oriented, incremental approach that allows us to control and modify an ASP program at run-
time, without the need of restarting the grounding the solving process from scratch. To this end,
a program is partitioned into a base part, describing the static knowledge independent of a step
parameter t, a cumulative part, capturing knowledge accumulating with increasing t, and a volatile
part specific for each value of t. The grounding and integration of these subprograms into the
solving process is completely modular and controllable from a scripting language such as Python.

The ASP implementation in this paper follows this methodology of specifying and solving a
problem incrementally. For further details about incremental solving, we refer to [23] in which
several examples can be found.

3 Conceptual Blending of Computer Icons

To exemplify our approach, we take the domain of computer icons into account. We consider
computer icons as combinations of signs, such as Document, MagnifyingGlass, HardDisk and Pen
that are described in terms of meanings [13]. Meanings convey actions-in-the-world or object-
types.

Figure 2 shows the concept names defined in the ComputerIcon ontology and their relations. In
what follows, concept names are capitalised (e.g., Sign) and role names are not (e.g., hasMeaning).
We assume that a TBox T consists of two parts: one part that contains the background knowledge
about the icon domain Tbk, and another part that contains the domain knowledge about icon defi-
nitions Tdk. Tbk contains the following axioms:

αbk1 : ActionvMeaning
αbk2 : ObjectTypevMeaning
αbk3 : Searchv Action
αbk4 : Editv Action
αbk5 : HardDrivev ObjectType
αbk6 : Docv ObjectType

77

Fig. 2: The ComputerIcon ontology, showing the concept names and their relation.

αbk7 : ActionuObjectTypev⊥
αbk8 : SearchuEditv⊥
.
αbk14 : HardDriveuDocv⊥

Axioms αbk1-αbk6 capture the different meanings associated with signs; axioms αbk7-αbk14 model
the disjointness among all Action and ObjectType concepts defined in the ontology. Signs are as-
sociated with a meaning. This is modeled by the hasMeaning role in the following axioms:

αbk15 : MagnifyingGlass≡ Signu∃hasMeaning.Search
αbk16 : HardDisk≡ Signu∃hasMeaning.HardDrive
αbk17 : Pen≡ Signu∃hasMeaning.Edit
αbk18 : Document≡ Signu∃hasMeaning.Doc

αbk19 : MagnifyingGlassuHardDiskv⊥
.
αbk25 : PenuDocumentv⊥

A sign is associated with a meaning. For instance, MagnifyingGlass is associated with Search
to describe that it conveys the action of looking for something. Sign concepts are disjoint (αbk19-
αbk25). Signs are related by spatial relationships such as isAboveIn, isAboveInLeft, isAboveInRight,
isUpIn, isUpLeft, isUpRight, isDownIn, isDownLeft, and isDownRight. Spatial relationships are
modelled as roles.

αbk26 : isAboveInv isInSpatialRelation
αbk27 : isAboveLeftv isInSpatialRelation
αbk28 : isAboveRightv isInSpatialRelation
.
αbk37 : isDownRightv isInSpatialRelation

For the sake of simplicity, we assume that icons are modelled according to a canonical form. Ax-
ioms describing icon concepts are of the form IconName≡ Cu∃r.D, where r is a spatial relation

78

GenInput 1
MGS

Blend

Input 1 Input 2

GenInput 2

LGG / Generic Space

MagnifyingGlass u 9isAboveIn.Sign

Sign u 9isInSpatialRelation.Sign

Sign u 9isInSpatialRelation.Document

MagnifyingGlass u 9isAboveIn.HardDisk

MagnifyingGlass u 9isAboveIn.Document

Pen u 9isAboveRight.Document

Fig. 3: Blending the SearchHardDisk and EditDocument icon concepts into a new concept repre-
senting a search-in-document icon. Sign’s meanings are not represented.

and C, D are concepts that describe signs. Based on this canonical form and on the axioms above,
we modeled some icons as domain knowledge of a TBox.

Example 1. SearchHardDisk is an icon that consists of two signs MagnifyingGlass and HardDisk,
where the MagnifyingGlass sign is above in the middle of the HardDisk sign. Another icon is
EditDocument, where the Pen sign is above on the right of the Document sign. Both icons are
shown in Figure 3.

αdk1 : SearchHardDisk≡MagnifyingGlassu∃isAboveIn.HardDisk
αdk2 : EditDocument≡ Penu∃isAboveRight.Document

We consider the above knowledge as a library of icons. We assume that the library is managed
and used by a computer icon design tool. The tool accepts a query as input and retrieves those
icons that satisfy certain properties. For instance, a query asking for an icon with the meaning of
searching in a hard-disk will retrieve the SearchHardDisk concept. In contrast, a query asking for
an icon with the meaning of searching in a document does not return any result. In such a case, the
tool tries to answer the query by running a conceptual blending algorithm.

Intuitively, the conceptual blending algorithm works as follows. Given two input concepts, the
algorithm tries to create new concepts that can satisfy the query. New concepts are created by
taking the commonalities and some of their specifics into account (Figure 3). For instance, both
SearchHardDisk and EditDocument are icons that consist of two signs related by a spatial relation
(the generic space). Then, if we keep the MagnifyingGlass concept from SearchHardDisk and
the Document concept from EditDocument, and we generalise the HardDisk and Pen concepts
and the role isAboveRight, we can blend the generalised input concepts of SearchHardDisk and
EditDocument into a new concept representing an icon whose meaning is to search in a document.

79

MagnifyingGlassu∃isAboveIn.Document

In this paper, we show how the above concept generation description can be computationally
realised by two processes. An ASP-based implementation that generalises EL++ concept descrip-
tions and finds a generic space; and a procedural implementation that generates and evaluates the
blended concepts. First, we introduce a refinement operator for generalising an EL++ concept.

4 A Generalisation Refinement Operator for EL++

In any description logic the set of concept descriptions are ordered under the subsumption relation
forming a quasi-ordered set. For EL++ in particular they form a bounded meet-semilattice with
conjunction as meet operation, > as greatest element, and ⊥ as least element.5 In order to define
a generalisation refinement operator for EL++, we need some auxiliary definitions.

Definition 5. Let T be an EL++ TBox. The set of subconcepts of T is given as

sub(T) = {>,⊥}∪
⋃

CvD∈T
sub(C)∪ sub(D) (4.1)

where sub is inductively defined over the structure of concept descriptions as follows:

sub(A) = {A}
sub(⊥) = {⊥}
sub(>) = {>}

sub(CuD) = {CuD}∪ sub(C)∪ sub(D)

sub(∃r.C) = {∃r.C}∪ sub(C)

Based on sub(T), we define the upward cover set of atomic concepts and roles. sub(T) guarantees
the following upward cover set to be finite.6

Definition 6. Let T be an EL++ TBox with concept names from NC. The upward cover set of an
atomic concept A ∈ NC ∪{>,⊥} and of a role r ∈ NR with respect to T is given as:

UpCov(A) := {C ∈ sub(T) | AvT C (4.2)

and there is no C′ ∈ sub(T)
such that A @T C′ @T C}

UpCov(r) := {s ∈ NR | r vT s (4.3)

and there is no s′ ∈ Nr

such that r @T s′ @T s}
5 A bounded meet-semilattice is a partially ordered set which has a meet (or greatest lower bound) for any nonempty

finite subset.
6 We assume that T is finite.

80

We can now define our generalisation refinement operator for EL++ as follows.

Definition 7. Let T be an EL++ TBox. We define the generalisation refinement operator γ induc-
tively over the structure of concept descriptions as follows:

γ(A) = UpCov(A)
γ(>) = UpCov(>) = /0

γ(⊥) = UpCov(⊥)
γ(CuD) = {C′uD |C′ ∈ γ(C)}∪{CuD′ | D′ ∈ γ(D)}∪{C,D}

γ(∃r.C) =

{
γr(∃r.C)∪ γC(∃r.C) whenever UpCov(r) 6= /0 or γ(C) 6= /0
{>} otherwise.

where γr and γC are defined as:

γr(∃r.C) = {∃s.C | s ∈ UpCov(r)}
γC(∃r.C) = {∃r.C′ |C′ ∈ γ(C)}

Given a generalisation refinement operator γ , EL++ concepts are related by refinement paths as
described next.

Definition 8. A finite sequence C1, . . . ,Cn of EL++ concepts is a concept refinement path C1
γ−→Cn

from C1 to Cn of the generalisation refinement operator γ iff Ci+1 ∈ γ(Ci) for all i : 1≤ i < n. γ∗(C)
denotes the set of all concepts that can be reached from C by means of γ in zero or a finite number
of steps.

Proposition 1. The operator γ is a generalisation refinement operator over the set of all EL++

concepts with the order vT .

Proof. We need to prove that for every EL++ concept C and every D ∈ γ(C), the subsumtion
C vT D holds. We do this by induction on the structure of C. If C is a concept name, >, or ⊥, the
subsumption holds directly by definition. If C is of the form C1uC2, we can assume w.l.o.g. that
D is C′uC2 for some C′ ∈ γ(C1). By induction hypothesis, C1 vT C′ and hence C1uDvT C′uD.
Finally, if C is of the form ∃r.C1 we have three possible cases. If UpCov(r) 6= /0, and D is ∃s.C1
for s ∈ UpCov(r) then by definition ∃r.C1 vT ∃s.C1. If UpCov(C) 6= /0, C 6=> and D must be of
the form ∃r.C′ with C1 vT C′, and hence the subsumption holds. In the last case, D is equivalent
to >, and hence the subsumption follows trivially. ut

We now analyse the properties of the generalisation refinement operator γ . Observe first that our
definition of UpCov for basic concepts and roles only considers the set of subconcepts present
in a TBox T . This guarantees that γ is locally finite, since at each generalisation step, the set of
possible generalisations is finite.

Proposition 2. The generalisation refinement operator γ is locally finite.

81

Proof. We prove that for every EL++ concept C, γ(C) is finite by induction on the structure of C.

For A ∈ NC ∪{>,⊥}, we have that γ(A) ⊆ sub(T). Since sub(T) is finite, the result imme-
diately holds. For CuD, we have that |γ(CuD)| ≤ |γ(C)|+ |γ(D)|. By induction hypothesis, the
two sets on the right-hand side of this inequality are finite, and hence γ(CuD) must be finite too.
Finally, it holds that |γ(∃r.C)| ≤ |UpCov(r)|+ |γ(C)|. By the fact that UpCov(r) ⊆ NR, which is
finite, and the induction hypothesis, the result follows. ut

When generalising concept names and role names, we always ensure that the resulting concepts are
more general (w.r.t. the TBox T) than the original elements. Unfortunately, this does not guarantee
that γ is proper.

Example 2. Let T := {AvB}. Then, following Definition 7, we have that generalising the concept
AuB can yield Au>. However, both these concepts are equivalent to A w.r.t. T . Therefore, γ is
not proper.

One possible way to avoid this situation, and, therefore, to guarantee the properness of γ , is to
redefine it with an additional semantic test. More precisely, let γ ′ be defined as:

γ
′(C) := γ(C)\{D ∈ γ(C) such that D≡T C} (4.4)

Essentially, γ ′ discards those generalisations that are equivalent to the concept being generalised.
It is easy to see that γ ′ is still a finite generalisation refinement operator and it is proper.

Proposition 3. The generalisation refinement operator γ ′ is proper.

Proof. This proposition trivially follows from Eq. 4.4.

The repetitive application of the generalisation refinement operator allows one to find a description
that represents the properties that two or more EL++ concepts have in common. This description is
a common generalisation of EL++ concepts, the so-called generic space that is used in conceptual
blending.

Definition 9. An EL++ concept description G is a generic space of the EL++ concept descriptions
C1, . . . ,Cn if and only if G ∈ γ ′∗(Ci) for all i = 1, . . . ,n.

Example 3. Let us consider the EL++ concepts EditDocument and SearchHardDisk defined in
Example 1. It can be checked that:

{(Signu∃hasMeaning.Action)u∃isInSpatialRelation.(Signu∃hasMeaning.ObjectType)} ∈ γ ′∗(EditDocument)
{(Signu∃hasMeaning.Action)u∃isInSpatialRelation.(Signu∃hasMeaning.ObjectType)} ∈ γ ′∗(SearchHardDisk)

(Signu∃hasMeaning.Action)u∃isInSpatialRelation.(Signu∃hasMeaning.ObjectType) is a generic
space (Definition 9) of EditDocument and SearchHardDisk.

Unfortunately, due to the fact that upward cover set we defined only takes subconcepts al-
ready present in the TBox into account, neither γ nor its refinement γ ′ are complete; that is, these
operators may fail to compute some of the generalisations of a given EL++ concept.

82

Example 4. Let T := {A v B, A v C}. Then, generalising the concept A yields γ(A) = {B,C}.
However, BuC is also a possible generalisation of A w.r.t. vT .

More generally, as the following theorem shows, no generalisation refinement operator over EL++

concepts w.r.t. vT can be locally finite, proper, and complete.

Theorem 1. There is no ideal generalisation refinement operator for EL++ concepts.

Proof. Consider the TBox T = {A v ∃r.A,∃r.A v A}, and define the concepts G0 := >,Gi+1 :=
∃r.Gi for all i≥ 0. Notice first that these concepts form an infinite chain of generalisations G0 AT
G1 AT G2 AT · · · AT A. Moreover, every EL++ concept C with A @T C is equivalent (w.r.t. T)
to one such Gi. Let now γ be a locally finite and proper generalisation refinement operator. Then
γ(A) is a finite set of concepts which, w.l.o.g. we can assume to be of the form {Gi | i ∈ I}, where
I is a finite set of indices. In particular, I contains a maximum index n. Then Gn+1 is strictly more
specific than all elements of γ(A) and cannot be derived by further applications of γ . Thus, γ is not
complete. ut

Since the generalisation refinement operator is not complete, it cannot guarantee to find a generic
space that is a least general generalisation. Although having a least general generalisation is desir-
able, finding a common description, which allows us creating new EL++ concepts from existing
ones by conceptual blending, will suffice.

At this point, we should note, however, that the generalisation refinement operator may even
fail to find a generic space of a set of EL++ concepts. Indeed, as the following example shows, γ ′

can produce an infinite chain of generalisations.

Example 5. Let T := {A v ∃r.A,B v >}. Then, the generalisation of the concept description
B can yield >. The generalisation of the concept description A yields the concept defined as
{∃r.∃r. · · ·∃r.A}. A common (trivial) generalisation for A and B is > but it is not computed by
γ ′.

Not finding a common generalisation of a set of EL++ concepts is a not a new problem in the
DL literature. Different solutions have been proposed [1, 2, 6, 44, 45]. Typically, some assumptions
are made over the structure of the TBox or a fixed role depth of concepts is considered. In the
following, we adopt the latter view, and we restrict the number of nested quantifiers in a concept
description to a fixed constant k. To this end, we introduce the definition of role depth of a concept
as follows.

Definition 10. The role depth of an EL++ concept description C is defined as the maximum num-
ber of nested (existential) quantifiers in C:

roleDepth(>) = roleDepth(A) = 0,

roleDepth(CuD) = max{roleDepth(C), roleDepth(D)},
roleDepth(∃r.C) = roleDepth(C)+1

Based on the role depth of a concept we modify the definition of the generalisation refinement
operator γ ′ to take a fixed constant k ∈ N>0 of nested quantifiers into account. More precisely, let

83

γ ′k be defined as γ ′, except that for the case of generalising a concept ∃r.C we set:

γ
′
k(∃r.C) :=

γr(∃r.C)∪ γC(∃r.C) if (UpCov(r) 6= /0 or γ(C) 6= /0) and

roleDepth(C)≤ k,
{>} otherwise.

The role depth prevents the generalisation refinement operator from generating infinite chains
of generalisations. Consequently, it can ensure that a generic space between EL++ concepts can
always be found.

Definition 11. An EL++ concept description Gk is a k-approximation of a generic space of the
EL++ concept descriptions C1, . . . ,Cn if and only if Gk ∈ γ ′∗k (Ci) for all i = 1, . . . ,n.

Proposition 4. There always exists a k-approximation Gk for any EL++ concept descriptions
C1, . . . ,Cn.

Proof. The proof of this proposition can be done by noticing that every concept can always be
generalised to > in a finite number of applications of γ ′k. Therefore, > is always a generic space
of any concept descriptions C1, . . . ,Cn. ut

The role depth not only avoids infinite chains of generalisations, but also provides a way to
maintain the structure of the input concepts in conceptual blending. For instance, by choosing the
value of k as the maximum role depth of the input concepts to be blended, the operator yields
generalisations with a similar role structure.

5 Implementing Upward Refinement in ASP

We consider an EL++ TBox T that consists of a background knowledge Tbk and a domain knowl-
edge Tdk. A generic space between EL++ concepts in the domain knowledge is found by means
of an ASP program that generalises Tdk in a step-wise transition process. Since finding a generic
space of n concepts can be reduced to the problem of finding a generic space between pairs of
concepts [3], the ASP program we devise takes two EL++ concepts into account.

In what follows, we describe how an EL++ TBox T is translated into an ASP representation
needed for implementing the generic space search. Table 2 shows the main predicates used in the
ASP implementation.7

5.1 Modeling EL++ concepts in ASP

For each concept name A ∈ NC in Tbk, we state the fact:

concept(A) (5.1)

7 Disjointness axioms are not translated to ASP because they are not used in the generalisation process.

84

Predicates modeling EL++ concepts Description
dConcept(C) A reference to a domain knowledge concept C
concept(A) A concept A
subConcept(A,B) A concept B subsumes A
role(r) A role r
subRole(r,s) A role r subsumes s

hasConjunct(C,ex,A, t)
A concept A is an expression ex in
C at step t

hasRoleEx(C,roleEx,r,depth,A, t)
A concept A fills the role r in a role expression
roleEx with depth depth in C at step t

Predicates modeling the refinement Description

notEqual(C1,C2, t)
The domain concepts C1, C2 are not equivalent
at step t

conjunctNotEq(C1,C2,A, t)
The concept A is not equivalent in C1 and C2
at step t

hasRoleExNotEq(C1,C2,C, t)
A conjunct C is not equivalent in the C1, C2
at step t

roleInExpressionNotEq(C1,C2,C,r, t)
A role r in a conjunct C is not equivalent
in C1, C2 at step t

app(a,C, t) A refinement step a is applicable in C at step t
poss(a,C, t) A refinement step a is possible in C at step t
exec(a,C, t) A refinement step a is executed in C at step t

Table 2: Overview of the main predicates used to formalise the upward refinement process in ASP.
The predicates in the top table are used to model EL++ concepts, whereas predicates in the table
below are used to model the refinement operators.

For each role r ∈ NR in Tbk with domain(r)vC and range(r)v D, we state the facts:

role(r) (5.2a)

domain(r,C) (5.2b)

range(r,D) (5.2c)

For each inclusion axiom Av B ∈ Tbk and A, B are atomic concepts, we state the fact:

subConcept(A,B) (5.3)

Similarly, for each role inclusion axiom r v s ∈ Tbk, we state the fact:

subRole(r,s) (5.4)

For each inclusion axiom AvC ∈ Tbk in which A is an atomic concept and C is a complex concept,
we call C the concept definition of A and denote it as C within the following facts:

concept(C) (5.5a)

subConcept(A,C) (5.5b)

85

Then, C is translated to ASP facts by means of the following function:

toASP(C,ex(k),CuD,depth) = {hasConjunct(C,ex(k),subEx(k+1)), (5.6a)

hasConjunct(C,ex(k),subEx(k+2))}
∪ {toASP(C,subEx(k+1),C,depth)}
∪ {toASP(C,subEx(k+2),D,depth)}

toASP(C,ex(k),>,depth) = {hasConjunct(C,ex(k),T hing)} (5.6b)

toASP(C,ex(k),B,depth) = {hasConjunct(C,ex(k),B)} (5.6c)

toASP(C,ex(k),∃r.B,depth) = {hasConjunct(C,ex(k),roleEx(k)), (5.6d)

hasRoleEx(C,roleEx(k),depth,r,B)}
toASP(C,ex(k),∃r.C,depth) = {hasConjunct(C,ex(k),roleEx(k)), (5.6e)

hasRoleEx(C,roleEx(k),depth,r,subEx(k+1))}
∪ {toASP(C,subEx(k+1),C,depth+1)}

toASP models a complex concept description as a set of hasConjunct/3 and
hasRoleEx/5 predicates that are generated by recursively traversing its structure. ex(k) and roleEx(k)
are atoms that are dynamically generated during the translation; k is a counter that let the predi-
cates be identifiable in a unique way, and depth is used to count the depth of a role r. A conjunc-
tion in a concept description is modeled by means of hasConjunct/3 predicates. For instance, if
C =CuD, then the predicates hasConjunct(C,ex(1),subEx(2)) and hasConjunct(C,ex(1),subEx(3))
model the conjunction. (Eq. 5.6a). The translation of C and D is done through the recursive calls
toASP(C,subEx(2),C,1) and toASP(C,subEx(3),D,1) respectively. Role expressions are mod-
eled by means of hasConjunct/3 and hasRoleEx/5 predicates. For instance, if D = ∃r.B, then
the role expression ∃r.B is modeled by the predicates hasConjunct(C,subEx(3), roleEx(3s)) and
hasRoleEx(C,roleEx(3),1,r,B). The former predicate states that the expression subEx(3)—referring
to D—has a role expression roleEx(3). The latter predicate models that, in the the complex concept
C, the expression roleEx(3) has a concept B filling the role r, and that the depth of r is 1 (Eq. 5.6d).
Cases 5.6b-5.6c-5.6e can be explained in a similar way.

While the background knowledge is static, the domain knowledge changes. To this end, we
need to keep track of the generalisations applied to each domain concept. This is done by modeling
a concept in the domain knowledge by means of the predicates hasConjunct and hasRoleEx with an
extra atom, t, that is a step-counter representing the number of modifications made to the concept.

For each axiom A ≡ C ∈ Tdk, in which A is a concept in the domain knowledge and C is its
definition, we denote it by C and we add the following fact:

dConcept(C) (5.7)

Then, C is translated to ASP in the following way:

1. C is rewritten to C′ by using all the axiom definitions in the background knowledge;
2. C′ is translated to ASP by means of the function toASP with the only difference that the

predicates hasConjunct and hasRoleEx have an extra atom t, equal to 0.

To exemplify the translation process, we provide the following example.

86

Example 6. Let us consider the TBox and the domain concept EditDocument in Section 3. The
background knowledge is translated to the following ASP facts:

Signv Thing concept(Sign). By Eq. 5.1
concept(T hing).
subConcept(Document,T hing). By Eq. 5.3

Documentv Sign concept(Document). By Eq. 5.1
subConcept(Document,Sign). By Eq. 5.3

.

domain(isAboveIn)v Sign role(isAboveIn). By Eq. 5.2a
range(isAboveIn)v Sign domain(isAboveIn,Sign). By Eq. 5.2b

range(isAboveIn,Sign). By Eq. 5.2c
.

isAboveInv isInSpatialRelation subRole(isAboveIn, isInSpatialRelation). By Eq. 5.4
.

The concept EditDocument is translated to the following ASP facts:

Penu∃isRightIn.Document
(Signu∃hasMeaning.Edit)u∃isRightIn.(Signu∃hasMeaning.Doc)
dConcept(EditDocument). By Eq. 5.7
hasCon junct(EditDocument,ex(1),subEx(2),0). By Eq. 5.6a
hasCon junct(EditDocument,ex(1),subEx(3),0). By Eq. 5.6a
hasCon junct(EditDocument,subEx(2),subEx(3),0). By Eq. 5.6a
hasCon junct(EditDocument,subEx(2),subEx(4),0). By Eq. 5.6a
hasCon junct(EditDocument,subEx(3),Sign,0). By Eq. 5.6c
hasCon junct(EditDocument,subEx(4),roleEx(4),0). By Eq. 5.6d
hasRoleEx(EditDocument,roleEx(4),1,hasMeaning,Edit,0). By Eq. 5.6d
hasCon junct(EditDocument,subEx(3),roleEx(3),0). By Eq. 5.6e
hasRoleEx(EditDocument,roleEx(3),1, isRightOn,subEx(6),0). By Eq. 5.6e
hasCon junct(EditDocument,subEx(4),subEx(5),0). By Eq. 5.6a
hasCon junct(EditDocument,subEx(4),subEx(6),0). By Eq. 5.6a
hasCon junct(EditDocument,subEx(5),Sign,0). By Eq. 5.6c
hasCon junct(EditDocument,subEx(6),roleEx(6),0). By Eq. 5.6d
hasRoleEx(EditDocument,roleEx(6),1,hasMeaning,Doc,0). By Eq. 5.6d

Besides, we model the concept > as the fact concept(Thing), and for each concept name A ∈ NC,
which is not already subsumed by other concept names, we add a fact subConcept(A,Thing).
We check for (in)equality of domain concepts C1 and C2 by a predicate notEqual(C1,C2, t). The
predicate is true whenever conjuncts, role expressions and roles are not equal in C1 and C2.

5.2 Formalising upward refinement in ASP

We consider each step of the refinement operator in Definition 7 as an operator type by itself. We
consider five types of generalisation that can be applied to a concept in the domain knowledge at
each step:

1. The generalisation of an atomic concept, and we denote it as γA;
2. The generalisation of a concept filling the range of a role up to a role depth k (γC);
3. The generalisation of a role (γr);
4. The removal of a role, and we denote it as γr− ;

87

5. The removal of a concept, and we denote it as γC− .

We treat each upward refinement operator type as an action. To this end, we model each operator
type via a precondition rule, an inertia rule, and an effect rule. Preconditions are modelled with a
predicate app/3 that states when an operator type is applicable. Inertia is modelled with different
non-inertial predicates that state when an element in a domain concept remains unchanged after
the execution of a refinement operator type. Effect rules model how a refinement operator type
changes a concept in the domain knowledge. We represent the execution of an upward refinement
operator type with an atom exec(γx,C, t). This atom denotes that a generalisation operator type
γx ∈ {γA,γC,γr,γr− ,γC−} is applied to C at step t.

Upward refinement of atomic concepts. A fact app(genConcept(Ex,A,B),C, t) denotes the ap-
plicability of the generalisation of a concept A to a concept B in a conjunct Ex of C at step t using
γA:

app(genConcept(Ex,A,B),C1, t)← (5.8)

hasConjunct(C1,Ex,A, t),

subConcept(A,B),

not hasRoleEx(C1,A,_,_,_, t),

not hasConjunct(C1,A,_, t),

conjunctNotEq(C1,C2,A, t),

not exec(genConcept(Ex,A,B),C2, t),dConcept(C2)

There are several preconditions for generalising an atomic concept in a conjunct Ex. First, Ex
involves a concept A that has a parent concept B in the subsumption hierarchy defined by the
axioms of the TBox (first two EDB predicates). Second, Ex is neither a role expression nor a
complex expression. Third, A is not equivalent in C1 and C2 (conjunctNotEq/4). This latter atom is
true when either C1 or C2 does not contain A. Another condition is that A is not being generalised
in C2, since we want to keep elements that are common in C1 and C2.

We also need a simple inertia rule for generalising a concept in a conjunct. This is as follows:

noninertialGenConcept(C,Ex,A, t)← exec(genConcept(Ex,A,_),C, t), (5.9)

hasCon junct(C,Ex,A, t)

noninertialGenConcept atoms will cause a concept A to remain in a conjunct Ex in C, as defined
via rule (5.18a).

Upward refinement of range concepts. A fact app(genConceptInRole(Ex,r,A,B), C, t) denotes
the applicability of the generalisation of a concept A to a concept B when A fills the range of a role
r in a role expression RoleEx of C at step t using γC:

app(genConceptInRole(RoleEx,r,A,B),C1, t)← (5.10)

hasRoleEx(C1,RoleEx,Depth,r,A, t),

app(genConcept(RoleEx,A,B),C1, t),

hasRoleExNotEq(C1,C2,RoleEx, t),Depth≤ k,

not exec(genConceptInRole(RoleEx,_,_,_),C2, t),dConcept(C2)

88

The preconditions for generalising a concept filling the role of a role expression RoleEx are similar
to the case of the upward refinement of an atomic concept: RoleEx involves a concept A that is
generalisable, the role expression is not equivalent in C1 and C2 (hasRoleExNotEq/4), and the
concept to be generalised must not be under generalisation in C2. Please note how the maximum
role depth of a concept k controls the applicability of this rule.

The inertia rule for generalising a concept that fills the range of a role in C is:

noninertialGenConceptInRole(C,RoleEx,r,A, t)← (5.11)

exec(genConceptInRole(RoleEx,r,A,_),C, t),
hasRoleEx(C,RoleEx,_,r,A, t)

noninertialGenConceptInRole atoms will cause a concept A to remain in the range of a role as
defined via rule (5.18b).

Upward refinement of roles. A fact app(genRole(RoleEx,r,s),C, t) denotes the applicability of
the generalisation of a role r to a role s in a role expression RoleEx of C at step t using γr:

app(genRole(RoleEx,r,s),C1, t)← (5.12)

hasConjunct(C1,Ex,RoleEx, t),

hasRoleEx(C1,RoleEx,_,r,A, t),

subRole(r,s),

roleInExpressionNotEq(C1,C2,RoleEx,r, t),

not exec(genRole(RoleEx,r,_),C2, t),dConcept(C2)

The main precondition for generalising a role r contained in a role expression RoleEx is that r has a
parent role s in the subsumption hierarchy defined by the axioms of the TBox. Other preconditions
are that the role expression RoleEx is not equivalent in C1 and C2 (roleInExpressionNotEq/4) and
is not being generalised in C2.

The inertia rule for generalising a role in a role expression is:

noninertialGenRole(C,RoleEx,r, t)← exec(genRole(RoleEx,r,_),C, t), (5.13)

hasRoleEx(C,RoleEx,_,r,A, t)

noninertialGenRole atoms will cause a role r to remain in a role expression RoleEx in C, as defined
via rule (5.18b).

Removal of a role. A fact app(rmRole(RoleEx,r,A),C, t) denotes the applicability of the removal
of a role r from a role expression RoleEx of C at step t using γr− :

app(rmRole(RoleEx,r,A),C1, t)← (5.14)

hasConjunct(C1,Ex,RoleEx, t),

hasRoleEx(C1,RoleEx,_,r,A, t),

not app(genRole(RoleEx,r,s),C1, t),

not app(genConceptInRole(RoleEx,r,A,_),C1, t),

hasRoleExNotEq(C1,C2,RoleEx, t),

not exec(rmRole(RoleEx,r,_),C2, t),dConcept(C2)

89

Essentially, a role r is removable from a role expression RoleEx when neither itself nor the
concept filling its range are generalisable. This is captured by the negated-by-failure predicates
app/3. Other preconditions are that the role expression RoleEx is not equivalent in C1 and C2
(hasRoleExNotEq/4) and is not being removed from C2.

The inertia rule for removing a role in a role expression is:

noninertialRmRole(C,Ex,RoleEx,r,A, t)← exec(rmRole(RoleEx,r,A),C, t), (5.15)

hasCon junct(C,Ex,RoleEx, t),

hasRoleEx(C,RoleEx,_,r,A, t)

noninertialRmRole atoms will cause a role r to remain in a role expression in C, as defined via
rules (5.18a-5.18b).

Removal of a concept. A fact app(rmConcept(C,A),C, t) denotes the applicability of the removal
of a concept A from a conjunct Ex of C at step t using γC− :

app(rmConcept(Ex,A),C1, t)← (5.16)

hasConjunct(C1,Ex,A, t),

not app(genConcept(Ex,A,_),C1, t),

conjunctNotEq(C1,C2,A, t),

not exec(rmConcept(Ex,A),C2, t),dConcept(C2)

Essentially, a concept A is removable from a conjunct Ex when is not generalisable. This is cap-
tured by the negated-by-failure predicates app/3. Other preconditions are that the conjunct from
where the concept will be removed is not equivalent in C1 and C2 (conjunctNotEq/4) and A is not
being removed from C2.

The inertia rule for removing a concept is:

noninertialRmConcept(C,Ex,A, t)← exec(rmConcept(Ex,A),C, t), (5.17)

hasCon junct(C,Ex,A, t)

noninertialRmConcept atoms will cause a concept A to remain in a conjunct Ex in C, as defined
via rule (5.18a).

Inertia. The following rules state which concepts remain unchanged when they are inertial.

hasConjunct(C,C,A, t +1)← hasConjunct(C,C,A, t), (5.18a)

not noninertialGenConcept(C,C,A, t),

not noninertialRmRole(C,C,A,_,_, t),

not noninertialRmConcept(C,C,A, t)

hasRoleEx(C,C,r,Depth,A, t +1)← (5.18b)

hasRoleEx(C,C,r,Depth,A, t),

not noninertialGenConceptInRole(C,C,r,A, t),

not noninertialGenRole(C,C,r,A, t),

not noninertialRmRole(C,_,C,r,A, t)

90

Effects. Effect rules model how the knowledge changes when a concepts is generalised. The
rule below shows an example of the effects of the generalisation of an atomic concept. Other two
effect rules model the changes in the case of the generalisation of a role and of a concept in the
range of a role.

hasConjunct(C,C,B, t +1)← (5.19)

hasConjunct(C,C,A, t),

exec(genConcept(C,A,B),C, t)
Additional rules handle the case in which the generalisation adds facts that model concept defi-
nitions (Eq. 5.6a-5.6e). In such a case, the number of roles Depth can be increased. To this end,
the precondition Depth ≤ k in Eq. 5.10 prevents the applicability of further generalisations of a
concept filling the range of a role when Depth reaches k, the maximum number of nested roles
allowed.

Checking the equivalence between generalisations. As seen in the previous section, the up-
ward refinement operator γ is proper when those generalisations, which are equivalent to the con-
cept being generalised, are discarded (see Eq. 4.4). To this end, during the generic space search, we
discard these generalisations. The clingo solver allows one to interleave the solving capabilities of
ASP with a procedural language such as Python. This allowed us to check the equivalence between
two generalisations in an external Python function and return the result to the ASP program. The
rule below shows an example of how an external function isGenEq can be called from our ASP
program.

poss(genConcept(Ex,A,B),C1, t)← (5.20)

app(genConcept(Ex,A,B),C1, t),

EQ 6= 1,EQ = @isGenEq(‘genConcept ′,C,Ex,_,A,B, t)

The isGenEq function internally does two things. First, it builds the concept description C
based on the current generalisation. Since the incremental ASP solving process is controlled by a
Python script, the Python function contains all the generalisations of a concept. Second, it checks
whether the generalisation at step t is equivalent to the generalisation at step t− 1. This is done
by means of the jcel reasoner [36].8 We test the equivalence between the current and the previous
generalisation by checking the corresponding subsumptions. If the two generalisations are equiv-
alent, then the function returns 1. In this case, the applicability of a generalisation operation is
disabled by preventing the instantiation of the corresponding poss/3 predicate.

5.3 Upward refinement search

We use ASP for finding a generic space and the generalised versions of the concepts in the domain
knowledge of an EL++ TBox T , which can lead to a blend. This is done by successively general-
ising the concepts in the domain knowledge by means of the upward operator steps we described
in the previous subsection.

8 The jcel is a modular rule-based reasoner for description logics of the EL family implemented in Java. It uses a rule-
based completion algorithm in which a set of completion rules are successively applied to saturate data structures
that are used to model EL axioms. The algorithm is based on the CEL’s algorithm [5] but is generalised with a
change propagation approach. It implements reasoning tasks such as classification, consistency, satisfability, and
entailment. The main advantage of the jcel reasoner is that these tasks are computable in polynomial time.’

91

Given a concept description C in an EL++ TBox T , the repetitive application of the generali-
sation operator types is a refinement path.

Definition 12. Let C be a domain concept in an EL++ TBox T , let {γ1
x , . . . ,γ

n
x } be the set of

generalisation steps for C, 0 = t1 < · · ·< tn = n be refinement steps and γx ∈ {γA,γC,γr,γr− , γC−}
. The set of atoms S = {exec(γ1

x ,C, t1), · · · , exec(γn
x ,C, tn)} is a refinement path of C. A refinement

path of C leads to the generalised concept Cn = γn
x (· · ·γ2

x (γ
1
x (C))). We write C j (1 ≤ j ≤ n) to

denote the concept C after j generalisation steps.

Refinement paths are generated by means of a choice rule, that allows one or zero refinement
operators per C at each step t. The only generalisations that are executed are those whose pre-
conditions are satisfied. Refinement paths lead from the domain concepts to a generic space. A
generic space is reached, if the generalised domain concepts are equal. A constraint ensures that
the generic space is reached in all stable models. The ASP program generates one stable model
for each combination of generalisation paths that lead to the generic space.

We should note at this point that the ASP implementation is sound and complete w.r.t. the
upward refinement operator γ ′. So, given two EL++ concepts C1 and C2, each stable model of the
logic program P —encoding the generic space search and the two concepts— contains the refine-
ment paths S1 and S2 through which C1 and C2 can be generalised to a concept G that is a generic
space according to Definition 9. Proving this result can be done by induction over the structure of
toASP and P, similar to the proof in [17, Appendix B]. On the other hand, if two concepts have a
generic space G by applying γ ′, this generic space is found by P, thus, the implementation is com-
plete. However, the ASP implementation is neither sound nor complete w.r.t. the EL++ semantics
(vT) since the operator is not complete (Theorem 1).

Example 7. Let us consider the SearchHardDisk and EditDocument concepts in Example 1 rep-
resenting icons in the domain knowledge of the ComputerIcon ontology. Their refinement paths
are:

SSearchHardDisk = {exec(genConceptInRole(roleEx(6),hasMeaning,HardDrive,

Ob jectType),SearchHardDisk,0),

exec(genRole(roleEx(3), isAboveIn, isInSpatialRelation,subEx(4)),

SearchHardDisk,1),

exec(genConceptInRole(roleEx(4),hasMeaning,Search,Action),

SearchHardDisk,2)}
SEditDocument = {exec(genConceptInRole(roleEx(4),hasMeaning,Edit,Action),

EditDocument,0),

exec(genRole(roleEx(3), isAboveInRight, isInSpatialRelation,subEx(4)),

EditDocument,1),

exec(genConceptInRole(roleEx(6),hasMeaning,Doc,Ob jectType),

EditDocument,2)}

The refinement paths are parsed in order to translate the ASP encoding back to EL++ and apply
the corresponding generalisation operators. The application of the refinement paths to the input

92

concepts lead to the generalised concepts and to their a generic space. It is easy to check that this
corresponds to the generic space in Example 3.

The output the generalisation search is then passed to a blending algorithm in order to create and
evaluate EL++ blended concepts, as described next.

6 Blending EL++ concepts

Conceptual blending by Fauconnier and Turner [21] is a cognitive theory that explains human
creativity. According to this theory, humans create through a mental process that takes different
mental spaces as input and combines them into a new mental space, called a blend. A blend is
constructed by taking the commonalities among the input mental spaces into account, to form a so-
called generic space, and by projecting the non-common structure of the input spaces in a selective
way to the novel blended space. Since this theory focuses on the cognitive aspects of human
creation, it is not a computational framework. It needs to be re-interpreted in a computational way,
when one wants to use it in computational creativity.

In working towards this objective, we have characterised mental spaces in terms of EL++

concept descriptions and we have devised a generalisation algorithm to find the generic space
between EL++ concepts. In this section, we provide an algorithm to find EL++ blended concepts.
From a cognitive point view, conceptual blending involves the following aspects:

1. blend generation: it takes the generic space of two input spaces into account and combines
their non-common structure in a selective way to a novel blended space;

2. blend completion: it constructs the emergent structure of a blend —a structure that is not
directly copied from the inputs— by taking some background knowledge into account;

3. blend evaluation: it assesses the quality of a blend by means of certain optimality principles.

Our algorithm for blending EL++ concepts (Algorithm 1) implements these aspects as three
phases, and re-interprets them in order to provide a computational account for conceptual blending.
The implementation of the conceptual blending algorithm is available at: https://bitbucket.
org/rconfalonieri/ontolp-implementation.

The blend generation is implemented according to the definition of an amalgam (Definition 4).
To this end, first, a generic space is found by means of the ASP-based generalisation process de-
scribed in the previous section. The method generalise finds different refinement paths of two
(domain) EL++ concepts that lead to a generic space (Line 1). Then, a blend is created by com-
puting the most general specialisation (MGS) of a pair of generalised concepts (Line 4). The MGS
of two EL++ concepts corresponds to their conjunction.

Due to this combinational way of generating the blends, some of them might have already
been found using some previous refinement paths, and they are simply not considered. Some
other blends, on the other hand, may be not interesting. For instance, they might not have certain
desirable properties.

In the algorithm, blend evaluation consists of two parts: a logical check and a heuristic func-
tion (Line 5 and 7).9 The logical check discards those blends that do not satisfy certain properties.

9 Blend evaluation is an open research topic in conceptual blending and it can be accomplished in different ways. For
instance, evaluation could be achieved through an argumentative dialogue, in which users engage in order to decide

93

https://bitbucket.org/rconfalonieri/ontolp-implementation
https://bitbucket.org/rconfalonieri/ontolp-implementation

Algorithm 1 Conceptual blending of EL++ concepts

Input:

An EL++ TBox T
Two domain concepts C1 and C2

A consequence requirement CR
A maximum role depth k

Output: A ranked list of blended concepts B
{〈C′1,C′2〉 denotes a set of generalisations for C1 and C2 that lead to a generic space.}

1: for all 〈C′1,C′2〉 ← generalise(C1,C2,k) do
2: for C′1 ∈ C′1 do
3: for C′2 ∈ C′2 do
4: Cam←MGS(C′1,C

′
2)

5: if Cam 6∈ B and {T ∪Cam} entails CR then
6: C′am← completion(Cam)
7: rankBlend(C′am,compactness(C′am),B)
8: end if
9: end for

10: end for
11: end for
12: return B

Desirable properties are modeled as an ontology consequence requirement CR that is given as in-
put to the algorithm. For instance, a consequence requirement can ask that a blend should contain
certain concepts and roles. For our purposes, it can require that a blended concepts contains a sign
with meaning search above a sign with meaning document, which can be modeled in EL++ as
Signu∃hasMeaning.Searchu∃isAboveIn.Signu∃hasMeaning.Doc, To verify whether a conse-
quence requirement is satisfied or not, the algorithm makes use of the jcel reasoner. Consequence
satisfaction is achieved by checking whether the ontology in the TBox T and the new blended
concept entail the consequence requirement (Line 5).10

Then, those blends that satisfy the consequence requirement are completed. In conceptual
blending, completion refers to the “background knowledge that one brings into a blend” [21].
Clearly, in a computational setting, there can be different interpretations of what background
knowledge stands for. In our implementation, we interpreted it as structural properties that a blend
should have. In blending computer icons, we expect new blended icon concepts to be defined by
one spatial relation between signs in which each sign has only one meaning relation.11 To this
end, completion is an operation that transforms the structure of a blend by taking this background
knowledge into account. In particular, completion consists of a set of transformation rules that
aggregate roles and concepts by taking the axioms in the TBox into account.

To implement completion, we specified a simple rewriting system using Maude [12], a system
that supports rewriting logic specification and programming. The transformation rules that we used

which blend to keep and which one to discard. We refer the interested reader to [13] where a discussion about the
use of Lakatosian reasoning to evaluate conceptual blends is presented.

10 Consequence satisfaction can be checked by means of the ‘entailment’ option of the jcel reasoner as: java -jar
jcel.jar entailment ontology.owl -conclusion=conclusion.owl, where ontology.owl
is the ontology extended with the definition of a new blended concept Blend and conclusion.owl contains
an axiom of the form Blendv CR.

11 This constraint is not expressable in EL++. We re-interpreted it as the background knowledge used to complete
blended concepts.

94

for completing a blend are:

AuB is transformed to A if AvT B (6.1a)

∃r.Cu∃s.C is transformed to ∃r.(CuD) if r vT s (6.1b)

Besides, we make use of concept definitions—equivalence axioms in the TBox—to rewrite a blend
into a shorter equivalent form. It is worthy to notice that whilst this last rewriting preserves concept
equivalence—therefore, it can be considered a simple instance of DL rewriting [3]—the above
rules do not. Indeed, the rule in Eq. 6.1b is not invariant w.r.t. EL++ semantics, since it transforms
a concept into a more specific one. Blends are completed before a heuristic function is applied
(Line 6).

To decide which blends are better than others, the algorithm ranks them by means of a heuristic
function (Line 7). The compactness heuristic counts the number of concepts and roles used in the
definition of a blend B:

compactness(B) =
1

conceptsNr(B)+ rolesNr(B)
(6.2)

The algorithm considers as best blends those that have a higher compactness value. This heuristic
can be considered as a computational interpretation of some of the optimality principles proposed
by Fauconnier and Turner [21]. The integration principle, for instance, states that “a blend must
constitute a tightly integrated scene that can be manipulated as a unit”. The compactness of a
blend captures the idea behind this principle in the sense that minimises the number of concepts
and roles that are used to define a blend.

Example 8. Let us consider C1 = SearchHardDisk, C2 = EditDocument, G in Example 3 and the
generalisation steps in PSearchHardDisk and in PEditDocument of Example 7. Given a consequence re-
quirement expressing that a blended concept should contain a sign with meaning search above a
sign with meaning document, modeled in EL++ as Signu∃hasMeaning.Searchu∃isAboveIn.Sign
u∃hasMeaning.Doc, and the maximum role depth k = 2, the algorithm returns the following
ranked blends:12

Blend Compactness
MGS(C1

1 ,C
2
2) 0,33

MGS(C1,C1
2) 0,2

MGS(C1,C2
2) 0,16

MGS(C1
1 ,C

1
2) 0,14

MGS(C1,C2) 0,13
MGS(C1

1 ,C2) 0,1

Each blend is obtained by combining different generalisations of the input concepts C1 and C2. The
concepts C1

1 and C2
2 correspond to the generalised concepts ‘GenConcept1’ and ‘GenConcept2’ in

Figure 3 respectively. They are obtained by applying the generalisations steps from Example 7.

12 Recalling Definition 12, in the table, C j
i stands for ‘ j generalisations have been applied to the concept i’. When j is

omitted, Ci denotes the input concept i with no generalisations.

95

C1
1 is obtained from C1 in one generalisation step by generalising the concept HardDrive (filling

the role hasMeaning) to ObjectType. C2
2 is obtained from C2 in two generalisation steps by gen-

eralising the concept Edit (filling the role hasMeaning) to Action and the role isAboveRightIn to
isInSpatialRelation. MGS(C1

1 , C2
2) is completed and elaborated into

MagnifyingGlassu∃isAbove.Document

and its compactness value is 0,33. MGS(C1
1 ,C

2
2) is the best blend found by the algorithm. Other

valid but less ranked blends are obtained by other combinations of generalised concepts.

7 Related Work

Conceptual blending in EL++ as described in this paper is a special case of the amalgam-based
concept blending model described in [10], and implemented for CASL theories in [19] in order to
invent cadences and chord progressions. This model has also been used to study the role of blend-
ing in mathematical invention [11]. This concept blending model, as the one presented here, is
based on the notion of amalgam defined over a space of generalisations [37]. The space of gener-
alisations is defined by refinement operators, that can be specialisation operators or generalisation
operators, notions developed by the Inductive Logic Programming (ILP) community for induc-
tive learning. These notions can be specified in any language where refinement operators define a
generalisation space like ILP [30], description logics [40], or order-sorted feature terms [38].

Several approaches for generalising ontology concepts in the EL family exist in the DL and
ILP literature.

On the one hand, in DL approaches, the LGG is defined in terms of a non-standard reasoning
task over a TBox [1, 2, 6, 44, 45]. Generally speaking, since the LGG w.r.t. general TBoxes in
the EL family does usually not exist, these approaches propose several solutions for computing it.
For instance, Baader [1, 2] devises the exact conditions for the existence of the LGG for cyclic
EL-TBoxes based on graph-theoretic generalisations. Baader et al [6] propose an algorithm for
computing good LGGs w.r.t. a background terminology. Turhan and Zarrieß [44], Zarrieß and
Turhan [45] specify the conditions for the existence of the LGG for general EL- and EL+-TBoxes
based on canonical models. As already commented in the introduction, our work relates to these
approaches, but it is different in spirit, since we do not need to find the LGG between (two) EL++

concepts for the kind of application we are developing.

Our work also relates to the problem of concept unification in EL [4]. However, we do not
focus on finding the substitutions needed to make two EL++ concepts equivalent, but rather than
on generalising them by taking the axioms in the TBox into account.

An approach in DL that does use refinement operators is [40], where the language chosen for
representing the generalisation space is that of DL Conjunctive Queries. Here LGG between two
inputs, translated to conjunctive queries, can be determined by searching over the generalisation
space using downward specialisation operators.

On the other hand, studying the LGG in terms of generalisation and specialisation refinement
operators has been used for order-sorted feature terms and Horn clauses in ILP. Anti-unification (or
LGG) in order-sorted feature terms was studied in [38], which was conducive to later develop the
notion of amalgam [37]. The notion of refinement operator, that originated in ILP, has been more

96

studied in the space of Horn clauses [30], but LGG in particular has not been a topic intensively
pursued in the context of inductive learning in ILP.

Finally, other approaches that combine ASP for reasoning over DL ontologies worthy to be
mentioned are [16, 39, 42].

8 Conclusion and Future Works

In this paper, we defined an upward refinement operator for generalising EL++ concepts for con-
ceptual blending. The operator works by recursively traversing their descriptions. We discussed
the properties of the refinement operator. We showed that the operator is locally finite, proper, but
it is not complete (Propositions 2-3 and Theorem 1). We claimed, however, that completeness is
not an essential property for our needs, since being able to find a generic space between two EL++

concepts, although not a LGG, is already a sufficient condition for conceptual blending.

We presented an implementation of the refinement operator in ASP. We showed how to model
the description of EL++ concepts in ASP and to implement a search process for generalising
the domain knowledge of an EL++ TBox. The stable models of the ASP program contain the
generalisation steps needed to be applied in order to generalise two EL++ concepts until a generic
space is reached. We embedded the ASP-based search process in an amalgamation process to
implement an algorithm for conceptual blending. The algorithm creates new EL++ concepts by
combining pairs of generalised EL++ concepts. The blends are logically evaluated and ranked
by means of ontological consequence requirements and a heuristical function respectively. We
exemplified our approach in the domain of computer icon design.

We envision some directions of future research. We aim at employing a richer DL, such as
SROIQ [27] (the DL underlying the Web Ontology Language OWL 213), in our conceptual
blending framework. This will allow us to capture more complex concept descriptions and con-
sequence requirements. By doing this, however, we will have to sacrifice efficiency, since the
reasoning tasks in this logic are computational more expensive than in EL++. A possible way to
find a tradeoff between expressivity and efficiency is to employ a richer DL only in one of the
phases of our blending algorithm, e.g., either in the generation or in the evaluation phase. For in-
stance, SROIQ could be employed in the generation phase (to this end, we will need to extend
the generalisation operator), while the blend evaluation could be realised through argumentation
[13]. On the contrary, we can keep EL++ in the generation phase and use SROIQ in the evalua-
tion. These options are perfectly justifiable from the conceptual blending point of view, since the
blend generation and evaluation are separate processes that can use different languages and tech-
niques. This is also what usually happens in data mining approaches to computational creativity
[43].

Another extension of the framework that we wish to explore is the blending of entire ontologies
rather than just single concepts. Blending ontologies has already been explored in an ontological
blending framework [26, 29], where blends are computed as colimits of algebraic specifications.
In this framework, the blending process is not characterised in terms of amalgams, nor are input
concepts generalised syntactically. Rather, the generic space is assumed to be given and mapped to

13 http://www.w3.org/TR/owl2-overview/, accessed 04/12/2015

97

http://www.w3.org/TR/owl2-overview/

the input ontologies via theory interpretations. Therefore, the results of this paper can be extended
and directly applied to this framework as a computational solution to creating generic spaces.

We consider the work of this paper to be a fundamental step towards the challenging task of
defining and implementing a computational framework for concept invention that uses DLs as its
formal underpinning language.

98

Bibliography

[1] Baader F (2003) Computing the Least Common Subsumer in the Description Logic EL w.r.t.
Terminological Cycles with Descriptive Semantics. In: Ganter B, de Moor A, Lex W (eds)
Conceptual Structures for Knowledge Creation and Communication, Lecture Notes in Com-
puter Science, vol 2746, Springer Berlin Heidelberg, pp 117–130

[2] Baader F (2005) A Graph-Theoretic Generalization of the Least Common Subsumer and the
Most Specific Concept in the Description Logic EL. In: Hromkovič J, Nagl M, Westfechtel B
(eds) Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science,
vol 3353, Springer Berlin Heidelberg, pp 177–188

[3] Baader F, Küsters R (2006) Non-standard Inferences in Description Logics: The Story So
Far. In: Gabbay DM, Goncharov SS, Zakharyaschev M (eds) Mathematical Problems from
Applied Logic I, International Mathematical Series, vol 4, Springer New York, pp 1–75

[4] Baader F, Morawska B (2009) Rewriting Techniques and Applications: 20th International
Conference, RTA 2009 Brasília, Brazil, June 29 - July 1, 2009 Proceedings. Springer Berlin
Heidelberg, Berlin, Heidelberg, chap Unification in the Description Logic EL, pp 350–364

[5] Baader F, Brandt S, Lutz C (2005) Pushing the EL Envelope. In: Proceedings of the 19th
International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, pp 364–369

[6] Baader F, Sertkaya B, Turhan AY (2007) Computing the least common subsumer w.r.t. a
background terminology. Journal of Applied Logic 5(3):392 – 420

[7] Baader F, Brandt S, Lutz C (2008) Pushing the EL Envelope Further. In: Clark K, Patel-
Schneider PF (eds) In Proceedings of the OWLED 2008 DC Workshop on OWL: Experi-
ences and Directions

[8] Baral C (2003) Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press

[9] Besold TR, Plaza E (2015) Generalize and Blend: Concept Blending Based on General-
ization, Analogy, and Amalgams. In: Proceedings of the 6th International Conference on
Computational Creativity, ICCC15

[10] Bou F, Eppe M, Plaza E, Schorlemmer M (2014) D2.1: Reasoning with Amalgams.
Tech. rep., COINVENT Project, available at http://www.coinvent-project.eu/
fileadmin/publications/D2.1.pdf

[11] Bou F, Schorlemmer M, Corneli J, Gomez-Ramirez D, Maclean E, Smail A, Pease A (2015)
The role of blending in mathematical invention. In: Proceedings of the 6th International
Conference on Computational Creativity, ICCC15

[12] Clavel M, Durán F, Eker S, Lincoln P, Martí-Oliet N, Meseguer J, Talcott C (2003) The
Maude 2.0 System. In: Nieuwenhuis R (ed) Rewriting Techniques and Applications (RTA
2003), Springer-Verlag, no. 2706 in Lecture Notes in Computer Science, pp 76–87

[13] Confalonieri R, Corneli J, Pease A, Plaza E, Schorlemmer M (2015) Using Argumentation
to Evaluate Concept Blends in Combinatorial Creativity. In: Proceedings of the 6th Interna-
tional Conference on Computational Creativity, ICCC15

[14] Confalonieri R, Eppe M, Schorlemmer M, Kutz O, Peñaloza R, Plaza E (2015) Upward
Refinement for Conceptual Blending in Description Logic —An ASP-based Approach and
Case Study in EL++. In: Proceedings of 1st International workshop of Ontologies and Logic
Programming for Query Answering, ONTOLP 2015, co-located with IJCAI-2015

http://www.coinvent-project.eu/fileadmin/publications/D2.1.pdf
http://www.coinvent-project.eu/fileadmin/publications/D2.1.pdf

[15] Cornet R, de Keizer N (2008) Forty years of SNOMED: a literature review. BMC medical
informatics and decision making 8 Suppl 1

[16] Eiter T, Ianni G, Lukasiewicz T, Schindlauer R, Tompits H (2008) Combining answer set
programming with description logics for the semantic web. Artificial Intelligence 172(12–
13):1495–1539

[17] Eppe M, Bhatt M (2015) Approximate Postdictive Reasoning with Answer Set Program-
ming. Journal of Applied Logic 13(4, Part 3):676–719

[18] Eppe M, Bhatt M, Dylla F (2013) Approximate epistemic planning with postdiction as
answer-set programming. In: Cabalar P, Son TC (eds) Logic Programming and Nonmono-
tonic Reasoning: 12th International Conference, LPNMR 2013, Corunna, Spain, September
15-19, 2013. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 290–303

[19] Eppe M, Confalonieri R, Maclean E, Kaliakatsos-Papakostas MA, Cambouropoulos E,
Schorlemmer WM, Codescu M, Kühnberger K (2015) Computational Invention of Cadences
and Chord Progressions by Conceptual Chord-Blending. In: Yang Q, Wooldridge M (eds)
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI Press, pp 2445–2451

[20] Eppe M, Maclean E, Confalonieri R, Kutz O, Schorlemmer WM, Plaza E (2015) ASP, Amal-
gamation, and the Conceptual Blending Workflow. In: Calimeri F, Ianni G, Truszczynski M
(eds) Logic Programming and Nonmonotonic Reasoning - 13th International Conference,
LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, pp 309–316

[21] Fauconnier G, Turner M (2002) The Way We Think: Conceptual Blending And The Mind’s
Hidden Complexities. Basic Books

[22] Gebser M, Kaminski R, Kaufmann B, Schaub T (2014) Clingo = ASP + control: Preliminary
report. CoRR abs/1405.3694

[23] Gebser M, Kaminski R, Kaufmann B, Lindauer M, Ostrowski M, Romero J, Schaub T, Thiele
S (2015) Potassco User Guide 2.0. Tech. rep., University of Potsdam

[24] Gelfond M, Kahl Y (2014) Knowledge Representation, Reasoning, and the Design of Intel-
ligent Agents: The Answer-Set Programming Approach. Cambridge University Press, New
York, NY, USA

[25] Gelfond M, Lifschitz V (1988) The stable model semantics for logic programming. In: Pro-
ceedings of the Fifth International Conference on Logic Programming, (ICLP’88), The MIT
Press, pp 1070–1080

[26] Hois J, Kutz O, Mossakowski T, Bateman J (2010) Towards ontological blending. In: Dicheva
D, Dochev D (eds) Artificial Intelligence: Methodology, Systems, and Applications, Lecture
Notes in Computer Science, vol 6304, Springer Berlin Heidelberg, pp 263–264

[27] Horrocks I, Kutz O, Sattler U (2006) The Even More Irresistible SROIQ. In: Doherty P,
Mylopoulos J, Welty CA (eds) Proceedings, Tenth International Conference on Principles of
Knowledge Representation and Reasoning, Lake District of the United Kingdom, June 2-5,
2006, AAAI Press, pp 57–67

[28] Kowalski R (1974) Predicate Logic as Programming Language. In: Proceedings of Interna-
tional Federation for Information Processing, pp 569– 574

[29] Kutz O, Bateman J, Neuhaus F, Mossakowski T, Bhatt M (2014) E pluribus unum: Formali-
sation, Use-Cases, and Computational Support for Conceptual Blending. In: Computational
Creativity Research: Towards Creative Machines, Thinking Machines, Atlantis/Springer

[30] van der Laag PR, Nienhuys-Cheng SH (1998) Completeness and properness of refinement
operators in inductive logic programming. The Journal of Logic Programming 34(3):201 –
225

100

[31] Lee J, Palla R (2012) Reformulating the Situation Calculus and the Event Calculus in the
General Theory of Stable Models and in Answer Set Programming. Journal of Artificial
Intelligence Research 43:571–620

[32] Lehmann J, Haase C (2010) Ideal Downward Refinement in the EL Description Logic. In:
Proc. of the 19th Int. Conf. on Inductive Logic Programming, Springer-Verlag, Berlin, Hei-
delberg, ILP’09, pp 73–87

[33] Lehmann J, Hitzler P (2010) Concept learning in description logics using refinement opera-
tors. Machine Learning 78(1-2):203–250

[34] Ma J, Miller R, Morgenstern L, Patkos T (2013) An Epistemic Event Calculus for ASP-based
Reasoning About Knowledge of the Past, Present and Future. In: International Conference
on Logic for Programming, Artificial Intelligence and Reasoning

[35] McCarthy J (1986) Applications of circumscription to formalizing common-sense knowl-
edge. Artificial Intelligence 28(1):89–116

[36] Mendez J (2012) jcel: A Modular Rule-based Reasoner. In Proceedings of the 1st Interna-
tional Workshop on OWL Reasoner Evaluation (ORE 2012) 858

[37] Ontañón S, Plaza E (2010) Amalgams: A Formal Approach for Combining Multiple Case
Solutions. In: Bichindaritz I, Montani S (eds) Proceedings of the International Conference
on Case Base Reasoning, Springer, Lecture Notes in Computer Science, vol 6176, pp 257–
271

[38] Ontañón S, Plaza E (2012) Similarity measures over refinement graphs. Machine Learning
Journal 87(1):57–92

[39] Ricca F, Gallucci L, Schindlauer R, Dell’Armi T, Grasso G, Leone N (2009) OntoDLV: An
ASP-based System for Enterprise Ontologies. Journal of Logic and Computation 19(4):643–
670

[40] Sánchez-Ruiz A, Ontañón S, González-Calero P, Plaza E (2013) Refinement-Based Similar-
ity Measure over DL Conjunctive Queries. In: Delany S, Ontañón S (eds) Case-Based Rea-
soning Research and Development, Lecture Notes in Computer Science, vol 7969, Springer
Berlin, pp 270–284

[41] Spackman K, Campbell K, Cote R (1997) SNOMED RT: A reference terminology for health
care. Journal of the American Medical Informatics Association

[42] Swift T (2004) Deduction in Ontologies via ASP. In: Lifschitz V, Niemelä I (eds) Logic
Programming and Nonmonotonic Reasoning, Lecture Notes in Computer Science, vol 2923,
Springer Berlin, pp 275–288

[43] Toivonen H, Gross O (2015) Data mining and machine learning in computational creativity.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 5(6):265–275

[44] Turhan A, Zarrieß B (2013) Computing the lcs w.r.t. general EL+-TBoxes. In: Proceedings
of the 26th International Workshop on Description Logics, pp 477–488

[45] Zarrieß B, Turhan AY (2013) Most Specific Generalizations w.r.t. General EL-TBoxes. In:
Proceedings of the 23th International Joint Conference on Artificial Intelligence, AAAI
Press, IJCAI ’13, pp 1191–1197

101

	Fabricating Monsters is Hard: Towards the Automation of Conceptual Blending
	Choosing the Right Path: Image Schema Theory as a Foundation for Concept Invention
	Image schemas in computational conceptual blending
	Upward Refinement Operators for Conceptual Blending in the Description Logic EL++

