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Abstract

This deliverable presents examples of mathematical dialogue and examples of frameworks for thinking about mathematics. The
examples are drawn from real-time and text-based online problem solving interactions, and are supplemented by brief examples of
single-author works in order to provide a comparison case. Theoretical approaches are divided between dialectics, logic, and prag-
matics. The methods are qualitative, and oriented towards the design of future systems and experiments. We include a comparison
with social creativity in music to illustrate both the range of applicability of our approach and some of its limitations.
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Executive Summary

In this paper we are concerned here with both dialogue and logic, and with connections between
the two. We focus for the most part on the mathematics domain. We include a short discussion of
related issues in music that helps to illustrate both the range of applicability of our approach and
some of its limitations.

The primary ingredients in our formal theory of social creativity are Barwise and Seligman’s
Information Flow, Goguen’s Unified Concept Theory, and Lakatos’s Proofs and Refutations. In the
broader features of the model we are also inspired by the work of Katarzyna Budzynska and Chris
Reed on Inference Anchoring Theory (IAT), which develops connections between a dialogical
context and logical argument by way of illocutionary schemes. Motivated by Goguen’s discussion
of blending semiotic structures, we notice a role for dynamical blending in classic works of mathe-
matical philosophy from Lakatos and Pélya. We turn from these inspirations to a survey of analytic
frameworks in dialectics, logic, and pragmatics, corresponding to the three layers of IAT. Collat-
ing these, we collect 7 sets of tags (of which 6 relate directly to the mathematics domain), which
we apply to code several short texts, including student dialogues and online collaborative problem
solving exercises, and two short single author works as a comparison case (one of these written
by a computer program). This helps to illustrate relationships and interdependencies among the
several tag sets.

We build on this work to outline a potential programme for future research in mathematical Al
that would draw on contemporary research into social intelligence and mathematical reasoning.
A comparison with social creativity in music brings out further issues (indeterminacy, non-verbal
communication, problem selection, and context-dependence) that will be relevant to research in
computer mathematics and applications of the ideas discussed here to other domains.
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1 Introduction

We will present a catalogue of examples of social creativity in mathematics, together with a survey
of existing approaches to their socio-linguistic and “meta-mathematical” interpretation. Music
provides a comparison case that helps to flesh out a theory of social creativity — showing the
limitations, for example, of an entirely linguistic approach. William Thurston [75] talks about
why social creativity is important for mathematics in practice:

We are not trying to meet some abstract production quota of definitions, theorems
and proofs. The measure of our success is whether what we do enables people to
understand and think more clearly and effectively about mathematics.

Our long-term goal is build up a systematic, and ultimately implementable, computational
account of the way mathematical understanding develops. The examples in which we ground our
work at this early stage are of three kinds:

(A) Live, in-person mathematical dialogues may show best how mathematical sociality works
in practise, although recorded examples are somewhat limited, and tend to contain many
extra-mathematical features. These examples are useful for theory development, but harder
to systematise.

(B) At another extreme, recent developments in computer mathematics have produced proofs
written in a manner that resembles natural language, while other systems provide basic
examples of computational social intelligence. We would ultimately like to have a system
that can replicate both feature sets.

(C) Finally, perhaps the most central set of examples for this work are an existing catalogue of
social experiments known as the MiniPolymath projects. These focus on computer-mediated
problem solving activities at the advanced student level. In the future, we should be able to
replicate features of these discussions, for example, by running a series of “MiniPolymaths-
for-Machines”.

The idea underlying our treatment of these
examples is to look at how a relatively in-
formal mathematical discussion corresponds,
I in an appropriate sense, to set of formal and
computationally meaningful objects, such as
a proof plan [12]. Figure 1 presents a gen-
eral schematic that depicts this situation, and
Figure 2 shows one possible instantiation. We
will refer to each of the evolving components
as “diagrams”, although they need not be ex-
11 pressly pictorial. We envision both the pos-
sibility of participants in a discussion directly
modifying the state of a running computation
(I—=1II) — and of the computer intervening in
Figure 1: Schematic the discussion as a participant (II—1).

Discourse
A

Hypertextual model | TTT

A
Formal system
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extract
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Figure 2: The Online Visualisation of Argument (OVA) system as a bridge between Minipoly-
math3 and a discourse model in the Lightweight Social Calculus

In the typical case, moves in Diagram I drive moves in Diagram II, mediated by a model in
Diagram III. The situation as a whole resembles the general case of heterogeneous reasoning as
described by Barwise, and instantiated in his Hyperproof system [5]. In Hyperproof, Diagram I
would be a graphic with certain implicit rules governing its structure, and Diagram II the corre-
sponding logic problem. In a typical mathematics setting, Diagram I may include some explicit
pictorial features, but its basic structure is (implicitly) that of a graph or hypertext that depicts a
dialogue. This structure is made explicit in Diagram III. Diagram III has the important feature that
it reflects all of the structures in Diagram I that have a recognisable mapping into Diagram II, and,
symmetrically, there are no language-level features in Diagram II that do not have an analogue in
Diagram III. As Barwise [5] put it: “Inference, as we understand the term, is the task of extracting
information implicit in some explicitly presented information.”

Our strategy in the paper is to follow the parallels between dialogue and the interpretation
of dialogue, logic and models of logic, and contextualised discourse and its hypertextual models.
While we our overall approach considers examples in categories A (“live discussion”), B (“‘com-
puter mathematics™), and C (“computer-mediated discussion”) in terms of features from each of
Diagram I, II, and III, previous research has not always been so synthetic, and often focuses on
one of these components, rather than on their interconnections.

Our overall philosophical perspective on sociality derives from that of George Herbert Mead
[44], witnessed here by the key feature that both Diagram I and Diagram II are understood to be
evolving works-in-progress. If either is completed, the conversation ends, or the proof is resolved.
This is similar to the Meadian (multi-)perspective in which both “organism” and “environment”
undergo change together. In this metaphor, Diagram III corresponds to the sensory interface be-
tween “organism” and “environment.” Alternatively, from a linguistic point of view, Diagram III
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serves as a Rosetta stone that can be used to define translations. More formally, it is the exis-
tence of satisfactory mappings between discourse on the one hand and the logical description on
the other that allow us to think about connections between the two diagrams in terms of Barwise
and Seligman’s infomorphisms [6]. Barwise and Seligman would call Diagram III the core of the
information channel.

The work presented here is a preliminary step in a larger programme that aims to identify dia-
logical moves that can be associated with meaningful computational moves.' In the mathematics
domain, which is our primary focus in this paper, the relevant computations are typically logical.”
Other dualities (e.g. content and expression, genotype and phenotype, etc.) may potentially be
treated similarly: the key issue in each case is their pragmatic interplay — i.e. the effect of context
on the outcome of events. The role of context is well-studied in linguistics and the philosophy
of language, since merely decoding statements is not usually sufficient to determine the intended
meaning [69]. Context has also been studied in computing, although earlier attempts to formalise
the concept are not conclusive [68, 30] — with Hirst [30] in particular arguing that “the notion of
‘context’ can be defined only in terms of its effects in a particular situation.” Our notion of con-
text is embedded in Diagram III. The relationship of this notion to the metaphors of “perception”
and “translation” introduced earlier can be conveyed with a simple computer interface example,
namely a switch that converts a computer keyboard from the QWERTY to the Dvorak layout.
Whereas both keyboard layouts can model the same discourse (as represented by a flow of charac-
ters), throwing the switch influences the practical characteristics of the model. In short, Diagram
III may be stateful.

Our proposal to describe the pragmatic and computational features of mathematical discourse
is similar to earlier work described in [40], where the authors examined a specialised linguistic
task’, and found n-grams that were strongly associated with pre-defined speech acts [3, 15]. Here,
we present necessary preliminary work, charting a course for future NLP-based analyses. Our
current objectives are relatively high-level in comparison to contemporary work on the linguistic
analysis of mathematical texts [20, 80]. What we offer here is a synthetic, computational, approach
to mathematical understanding, drawing on philosophy of mathematics and adjacent fields.

Our first aim in the current paper is to outline the set of speech acts that underlie mathematical
dialogues. Although mathematics is a fairly specialised domain that is communicated with an
array of technical languages, as it is used in practise, mathematical language is also tremendously
expressive. Classifications of speech acts in expressive languages tend to be correspondingly
broad and nuanced [39, 74]. We address this aim through a survey of existing frameworks, and a
preliminary application of these frameworks to code several examples of mathematical dialogue
at differing levels of formality.

Our second aim is to develop an approach that can replicated to model social creativity in other
areas. The claim to generality is related in part to core theories that we build on, as described in
Section 2. In the concluding discussion section, we will look at how our approach could apply
in the music domain. This serves to draw out some general issues related to indeterminacy, non-
verbal communication, problem selection, and further explain the role of context.

IDialogic is more general than dialectic, which aims to converge on a common ground [65, pp. 18-20].

2Qther discourses appeal, for example, not to reason, but to the emotions, or to arguments based on character (viz.,
logos, pathos, ethos) [13].

3http://groups.inf.ed.ac.uk/maptask/
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2 Background and Related Work

The primary ingredients we will use to build a formal theory of social creativity are Barwise
and Seligman’s Information Flow [6], Goguen’s Unified Concept Theory (UCT) [22, 24], and
Lakatos’s Proofs and Refutations [37]. In the broader features of the model introduced in Section
1, we are also inspired by the work of Katarzyna Budzynska and Chris Reed on Inference Anchor-
ing Theory (IAT) [58, 10, 9], which develops connections between a dialogical context and logical
argument by way of illocutionary schemes. In this manner, IAT takes the earlier notion of dia-
logue games [16] (also known as dialogue systems) in a more explicitly computational direction.
“IWhereas logic defines the conditions under which a proposition is true, dialogue systems define
the conditions under which an utterance is appropriate” [57]. Like the work we present here, IAT
aims to build a bridge between dialogue and logic.

In Section 1, we briefly introduced the notions of infomorphisms and information channels.
The more formal definition of an information channel revolves around a core

€ = (tokens(%),types(%), =¢)

where |=¢ is a binary relationship between tokens and types; specifically, ¢ =4 T stands for the
statement ‘¢ is classified as being of type T in €.” The core is complemented by an indexed
collections of classifications and maps

{A; = (tokens(A;), types(A;), =a,) tier
{f: tokens(%€) — tokens(A;), f; : types(A;) — types(€) }ics
with the property that

=¢ fi(@)

The elements ¢ € tokens(%’) are called connections between the various tokens f;(c). A good
example would be English sentences (tokens) and their classification as dialogue moves (types,
e.g. “attack”, “conflict”, “question”, etc.), which are mapped to into a graphical representation
that shows the pattern of dialogical response together with the associated illocutionary points (e.g.
assertions, inferences).* The result could be placed in correspondence with a computational model

of the argument’s logical structure.

Vi€ I,c € tokens(%), & € types(A;): fi(c) =a, aiff ¢

In our setting, a locution E that presents an example of a concept might map to a hypertextual
representation that connects the example E to the concept C that it exemplifies, which could then
be mapped in a formal model of the dialogue to the statement example (C,E). The Lightweight
Social Calculus [48] (also known as the Lightweight Coordination Calculus [60]) mentioned in
Figure 2 is one suitable target language. Note that we do not require every conversation to happen
within the same scope or the same formal model, since information channels can themselves be
chained together and given multiple interpretations. One of the processes with which we will
be particularly concerned here is blending, in which using two different models, the result is not
either/or or both/and, but something more than the sum of the parts.

Blends are present both in the informal logic of proof and the literature on mathematics prob-
lem solving. However, these settings tend to bring a dynamical and empirical approach to blends

4See [59, 11] for an expanded discussion of this sort of example.
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that is not present is straightforward “concept blending” [22, 24]. This is paralleled in Borgo and
Goguen’s discussion about dynamical systems and creativity in the context of music [8]. Goguen’s
earlier work on concept blending was not of direct use as a core theory of musical creativity, “be-
cause musical structure is inherently hierarchical, and hence cannot be adequately described
using only atomic elements and relation instances among them’” [23]. However, the model was
largely salvageable as they turned to analogous structural blending, which draws upon the idea of
semiotic systems with level-ordering and priority ordering: “Levels express the whole-part hierar-
chy of complex signs, whereas priorities express the relative importance of constructors and their
arguments.”

That said, over the last 100 years there have been varied innovations in music (e.g. 12-tone
music, free jazz, free improv) with non-hierarchical structures and representations. For our pur-
poses it is worthwhile to note that semiotic structures can also express dynamics through the use
of recursion [2], although Goguen did not pursue this. We are interested in dynamical blending
because of the importance of modelling not just hierarchical content, but evolving, and emergent,
work-in-progress. Not only does discourse and its formal representation change over time, the
very terms by which this representation is made may change as the context changes.

Figure 3 presents a simple illustration of the idea: a path is
(0] traced out as a blend of several forces. Commenting on a simi-
lar image, Andersen [2] writes that the basic metaphor for think-
ing is travel. But rather than considering a simple path between
obstacles, we might envisage a skier descending amongst moguls.
Through continued use, the landscape shifts, and the classifications
of paths in terms of their homotopic features or their desirability
may change. The “relations between relations” [34] that define
semiotic systems can be hooked together and react back on them-
Figure 3: Paths as blends selves, as our representations, relations, and the world we live in
evolve over time.

In a mathematical setting, there seem to be blends associated with Lakatosian discourse that
take a conjecture and an example and that, depending on contextual features, yield a revised con-
jecture, or a revised example, corresponding to an update in a developing theory. Lakatosian
dialogue is based on empirical processes, although develops in relation to and with reference to a
logical structure. It is through an informal and often hands-on process of conjectures and coun-
terexamples that the underlying formal logical structure of a mathematical domain is made clear.
Section 3 includes further discussion of Lakatosian discourse.

In Pélya [53], there is a parallel constructive blend that develops in the course of decomposing
a given problem into several interrelated auxiliary problems. The blend, indeed, describes these
relationships, typically in terms of new unknowns. As the problem solution progresses, these
unknowns are determined using the given data. There may be a degree of indeterminacy in the
solution strategy (e.g. multiple possible paths to the goal in Figure 3), while any given solution
traverses various intermediate states between the given data and the goal as it is worked out. At
another level, problems (and, indeed solutions) can be combined, like the differential operators
in quantum mechanics. Gilles Deleuze [19] considers related issues from a broad philosophical
perspective’, drawing particularly on Albert Lautman’s earlier discussion of dialectics in mathe-

3On auxiliary problems, see esp. [19, p. 239].
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matics; see [38] for a relevant survey.

In its ability to “Find a block which is taller than the one you are holding and put it into the
box” [79], Winograd’s SHRDLU already combined several dynamic concepts, albeit in a simple
way. More recently, Push Singh [66] studied social collaboration in a construction task with more
complexity than anything found in the Blocks World. Singh’s program EM-ONE needed hundreds
of narratives and mental critics for the agents to use as they walked through the simulated collab-
orative construction process. It would not be surprising if we end up needing even more complex
heuristic strategies in order to simulate or effectively model mathematical creativity.® Singh drew
on Minsky’s idea of a panalogy architecture [67, 46] and we may find that we need a similarly
complex multi-layered architecture. Although Singh did not consider blends, it might be natural
to look at blending two narratives or two critics in the same way as we might blend two differ-
ential operators that define a problem or problem solving process. Considering Singh’s use of
LISP-based representations, earlier work in the field of Genetic Programming [35, 36] could in-
spire an evolutionary approach to the construction of such blends. Another related approach with
relevance to the work presented here is a previous application of dialogue games to multi-agent
systems [49]. This informed the subsequent development off a layered agent model [32] which is
reminiscent of both the Singh-Minsky architecture and Goguen’s comments on semiotic systems
[23], mentioned above.

Gerry Stahl has done extensive research on mathematics in a social context [71, 72, 73], de-
veloping research into “group cognition,” drawing on online interactions between students. His
notion of “adjacency pairs” is a broader category than what we call Lakatosian moves. Stahl’s
work focuses on computer supported collaborative learning, which is an inspiring domain for our
work, although we also aim to add dimensions related to computer simulated collaborative learn-
ing. Nevertheless, our approach in the current phase of work, in which we will closely examine
real-world dialogues, is similar to Stahl’s. Contemporary strategies from natural language pro-
cessing , including the field of argument mining [52] which has gained recently traction within
the broader field of discourse mining (e.g. [70, 78]) are also closely related, although here we
only developing groundwork for future NLP-based efforts. In the current work we will not only
look at argumentative structures, but also at pre-argumentative structures, that is, we consider the
constructive features of informal logic (cf. [31]).

3 Survey of analytic frameworks

In this section we will discuss a range of frameworks, under the headings “Diagram I, “Diagram
II”, and “Diagram III”’ depending on whether they have more to do with dialogue, logic, or prag-
matics, respectively. We note that these analytic frameworks are closely parallel to the three types
of examples (dialogical, computational, and computer-mediated) introduced in Section 1. We will
turn to concrete examples in Sections 4 and 5. We can justify presenting the analytic frameworks
first, since they help to guide our selection of examples.

I. Douglas Walton considers the basic patterns in dialogue to be: persuasion, negotiation, in-
Jformation seeking, deliberation, and quarrel [77]. In some earlier writings these were augmented

Cf. Gowers’s Tricki wiki, http://www.tricki.org.
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with a sixth category inquiry, and with the subtype pedagogy and mixed form, debate [76]. An-
drew Aberdein [1] indicates that “Many other familiar argumentational contexts may be repre-
sented in terms of Walton’s six basic types of dialogue by such hybridization and subdivision.” In
the mathematics context, Aberdein offers a discussion of proof dialogues instantiating Walton’s
dialogue types. Thus, we have proof as inquiry, proof as persuasion, proof as information seeking,
proof as deliberation, proof as negotiation, proof as eristic/debate. Each of these is described in
terms of an initial situation, the main goal the goal of the prover and the goal of the interlocutor.
Depending on which type of proof is under discussion, Aberdein indicates that the main goals are:

Prove or disprove conjecture (inquiry),

Resolve difference of opinion with rigour (persuasion),
Transfer of knowledge (information seeking)

Reach a provisional conclusion (deliberation),

Exchange resources for a provisional conclusion (negotiation),

AU o

Reveal deeper conflict (eristic).

In general “an utterance is appropriate if it furthers the goal of the dialogue in which it is
made” [57]. Henry Prakken [57] focuses on persuasion dialogues. He explains that in this con-
text, some of the typical dialogue features are: arguments and questions, claims, challenges,
conceding, and retraction.

In the context of informal mathematical discussions, Pease et al. [50] recast persuasion in
terms of Lakatosian moves relevant to conjectures and proof:

1. A conjecture is what is argued for.
2. Surrender consists of abandoning a conjecture in light of a counterexample.

3. Piecemeal exclusion defends a conjecture by dealing with exceptions through the exclusion
a class of counterexamples.

4. Strategic withdrawal uses positive examples of a conjecture and generalises from these to a
class of object, then limiting the domain of the conjecture to this class.

5. Monster-barring argues that a ‘counterexample’ can be ignored because it is not a coun-
terexample, as it is not within the claimed concept definition. Using this method, the original
conjecture is unchanged, but the meaning of the terms in it may change.

6. Monster adjusting is similar, in that one reinterprets an object in such a way that it is no
longer a counterexample, although in this case the object is still seen as belonging to the
domain of the conjecture.

7. Lemma incorporation distinguishes between global and local counterexamples. The first
would be counterexamples to the main conjecture, and the latter is a counterexample to one
of the proof steps or lemmas.

In domain non-specific work on the Speech-Act Annotated Corpus (SPAAC) presented in [39],
speech acts are conveniently organised into 5 superordinate categories (expressive, interpersonal
management, dialog control, mainly initiating, mainly responding), plus several acts classified
as “other” (external to dialog goals, unspecified).

611553 September 30, 2014 7
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II. As mentioned above in connection with the systems SHRDLU and EM-ONE, it should be
possible to model dynamical behaviour by applying “concept blending” to simple operators. The
Lakatosian moves just discussed can be thought of as operators whose outcome depends on the
way in which a new example is construed:

conjecture & counterexample — surrender this conjecture (D
conjecture @ exception — exclude of a range of examples 2)
conjecture & examples > limit scope 3)

conjecture & monster > revised statement 4)
conjecture & monster —> revised example ®))

conjecture @ counterexample — revised approach (6)

In particular, the “revised approach” in (6) may be associated with additional lemmas and
changes to existing lemmas or to the conjecture. There is no reason why (1)—(6) should limit the
range of possible moves. Thus, one would expect that there to be a set of discourse moves that take
place at the “managerial” level and that move the discourse between conjectures in ways that are
not explicitly connected with (counter)examples. There are many other “computational” heuristics
that may underlie and motivate the discourse moves mentioned above.” Pease and Martin [51]
introduced a related typology of comments that move a mathematical discussion forward: those
pertaining to concepts, examples, conjectures, proof, and other.

These Lakatos-inspired reflections remain somewhat abstract in the sense that they deal with
mathematical conjectures, examples, and lemmas but do not consider other kinds of (often en-
tirely mundane) mathematical objects. Corneli [18] describes the following kinds of mathematical
object types that are either supported in PlanetMath.org or planned for a future version of the
PlanetMath/Planetary system: article [A], link [/], project [X], post [T], solution [S], review [R],
update [1], question [Q], correction [C], fork [/], outcome [x], problem [P], collection [L)], classi-
fication [M], conjecture [J], group (G|, user [U], request [W1], heuristic [H], and ephemera [E].
On PlanetMath, the underlying logic depends on implementation features that describe how these
elements connect and interact. In everyday language, the various objects can be directly combined
with comments, like those described just above, for example, in a conjecture like “the ideas in this
article suggest the following...”

Whether the development of a mathematical theory is thought of in terms of dynamically con-
structed structure blends or growing networks of interrelated terms, within Diagram II, we require
a range of more or less mechanical operations to carry out the reasoning steps. One recent com-
putational example has been developed by Ganesalingam and Gowers, who describe an automatic
problem solving program ROBOTONE [21] that, they claim, works roughly in the same way that
people do. While this claim may be debated, programs that do not come with a similar claim would
not provide a schematic mapping between “human operations” and “machine operations.” As our
initial goal in the current work is to understand human operations in a social context, it is helpful
to have a potential target language to map into, even if it ends up being a moving target. In this
system, “An individual move is an operation that transforms a specific problem state into another

7For example, Minsky [47] mentions: reasoning by analogy, dividing the problem into parts, changing the problem’s
description, focusing on a more specific example, making a simpler version, trying to identify what makes the problem
hard, imagining what an expert would do, stopping what doing if you're stuck, retrieving the knowledge that tells you
how to solve the problem, and asking for help.
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state in a sound fashion; thus individual moves correspond to application of tactics to a specific
LCF-style prover state.”8 Ganesalingam and Gowers describe, in total, 27 different moves, from
move categories Deletion, Tidying, Applying, Suspension, and EqualitySubstitution. The basic
heuristic is to look at the problem state and apply the first possible move from an ordered list.”

III. The way people solve problems has been studied extensively, with the best-known work
being that of George Pdlya (e.g. [54, 55, 56, 53]). Empirical work continuing in this tradition has
been developed by Alan Schoenfeld (e.g. [62, 63, 64]) and others.

Pélya’s heuristics follow the well-known outline,

1. Understand the problem (unknown, data, condition),
2. Find the connection between the data and the unknown to obtain a plan of the solution,
3. Carry out the plan,

4. Examine the solution obtained.

The empirical aspects of Schoenfeld’s work connect with earlier protocol-based methods for doing
research in mathematics education, e.g. Lucas [41], and Lucas et al. [42] who built on earlier work
in process coding by Jeremy Kilpatrick [33] as well as early work by Schoenfeld himself (cf. [61]).
However, Schoenfeld found that the codings used in [42] to be overly complex, while still focused
only on tactics rather than strategy. Schoenfeld insists that omissions should be coded for, along
with explicit behaviour. His primary coding is divided among stages that are clearly informed by
Polya: Read, Analyze, Explore, Plan, Implement, and Verify. These are supplemented by New
information and local assessments, and Transition. In studying problem solving, Schoenfeld
argues “‘it is what the person does rather than what the person produces” that is important [62, p.
4]. One of Schoenfeld’s central research strategies was to put people in small groups or pairs and
have them talk through mathematical problems together. He points to two reasons for this choice:
one is to alleviate situational pressure. “[W]hen two students worked on the problem it was typical
for one student to turn to the other and say something like, ‘I have no idea what to do. Do you?”
This not only produced more natural records of a thought process, but also helped to avoid answers
that were formal for the sake of being formal [62, p. 279-281]. Nevertheless, a social setting is
no guarantee of success, as becomes clear from several dialogues that record attempts to solve this
problem:

Three points are chosen on the circumference of a circle of radius R, and the triangle
containing them is drawn. What choice of points results in the triangle with the largest
possible area? Justify your answer as best you can. [62, p. 319]

After a brief period of time spent reading, the first group of students spends the rest of the time
exploring in a rather meandering fashion, even though they had a suitable conjecture within the first
few moments of discussion [62, p. 294]. Schoenfeld remarks [62, pp. 288-289]: (1) The students

8LCF stands for Logic for Computable Functions (cf. [45, 26, 25]).

9Gordon [25] explains why activities related to deletion are seen to have particular priority in this type of program:
“The steps of a proof would be performed but not recorded, like a mathematics lecturer using a small blackboard who
rubs out earlier parts of proofs to make space for later ones.”
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neglected to assess the potential utility of calculating the area of the equilateral triangle; (2) the
discussants gave consideration to several interesting alternative problems that might have added
insight, but did not pursue them vigorously; (3) progress was not monitored or assessed during the
solution. A second group described a “hunch” that the answer was an equilateral triangle, but spent
most of the available time implementing a somewhat related demonstration to show the size of the
largest inscribed right triangle. They had no satisfactory answer when asked by the investigator
how what they found would relate back to the original problem. In short, as Schoenfeld observes:
“If one makes major strategic mistakes, then matters of tactics are of little importance” 62, p.
289].10

In this connection, the evolution of Pdlya’s framework in [53] is relevant. Here, he particularly
focuses on planning.

1. Identify the goal (what do you want?)
Identify the conditions (what do you have?)
Decompose the problem (introducing ancillary problems and new unknowns as needed)

Connect the data to the problem

ok we

Determine any unknowns

Schoenfeld introduces a “macro-level” framework [62, p. 15] that supplements the “micro-
level” frameworks derived from Pdlya, and that describes thinking in terms of four categories: re-
sources (“‘genetic epistemology”), heuristics (per Pélya), control (“decision making” and “metacog-
nition”), and belief systems (or “mathematical world view”). He points out that this framework
is “far from comprehensive” and that it generally excludes both cognitive and social details [62,
p- 16]. If we consider a social implementation, the issues are reversed, and we must find a way
to embed features like heuristics, control structures, and belief systems within a social rather than
personal context.

Pease, Aberdein, and Martin (forthcoming) are working on explanation in mathematical texts.
Explanations can be people-centred (paralleling Schoenfeld’s macro-level framework) or domain-
centred. Note that items on the following list can function either as an explanandum or an ex-
planans. For example, we might attempt to explain why we don’t understand something, or we
could point to the fact that we don’t understand something as an explanation.

. abilities (what can/can’t we do, e.g. we can reduce the problem to P)

. knowledge (what do/don’t we know, e.g. X is wrong)

. understand (what do/don’t we understand, e.g. do you see why this is a contradiction?)
. value/goals (what do/don’t we want, e.g. X is a good idea)

. initial problem (e.g. the initial problem is harder if P)

AN L AW =

. proof (e.g. A is not a useful approach)
7. assertions (e.g. M is subset of P)

10<Tactics-based proof systems” may or may not concern themselves with strategic matters; strategy does not appear
to play a particularly significant role in the system described by Ganesalingam and Gowers [21].
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8. specific cases/instances (e.g. there will always exist instance X that satisfies condition C}
9. arguments (e.g. let us suppose X. Then Y.)

10. representation (e.g. by reducing the problem to P)

11. property (e.g. We don’t know if it has property P)

4 Methods

Referring to the foregoing material, we could draw from a large array of possible annotations
at different levels of specificity (Table 1). Clearly there is redundancy among the elements of
this list, as we have attempted to illustrate, initially, with the numbering scheme (/a., 1b., etc.).
However, even taking this level of redundancy into account, a total of 7 possible dimensions
for tagging (of which 6 relate directly to the mathematics domain) put us a position at least as
complex as that taken up by Lucas et al. [42] —indeed more complex since these authors considered
only individual problem solvers working with a speak-aloud protocol. At this point in our study,
it seems best to take a comprehensive view than to risk leaving something out for the sake of
concision. Accordingly, in this design-oriented phase of work, we will intensively annotate several
brief passages, drawing as needed from all of the above formats, as we begin to develop a suitable
apparatus. In subsequent phases, when the coding and technologies have stabilised, we will deal
with longer passages (including full proofs), and will report on features like intercoder reliability.
In the current study, we instead sought direct consensus for coding of the sample texts. In Section
6, we will compare the resulting codes with those used in [42].

Data sets. We are particularly interested in the MiniPolymath problems that have been posed,
discussed, and solved on Terrence Tao’s blog and the Polymath blog. There have been four such
discussions to date; however, the experiment would be relatively easy to replicate. The problems —
drawn from Mathematics Olympiads — are interesting in that they are challenging enough to spur
considerable discussion, but not so challenging as to go unsolved when people put their heads
together.'! They do not yet have the scope of the full Polymath projects, which deal with research
topics (cf. [4, 28]), which we hope to tackle in future work. Unlike Lakatos’s Proofs and Refuta-
tions [37] — which remains inspiring — the data is “real” as opposed to “reconstructed in fictional
form.” The MiniPolymath data is also publicly available online. The questions that were discussed
in the four MiniPolymath sessions that have taken place to date are presented in an Appendix. In
the current paper we also consider brief excerpts from Schoenfeld’s data set (several dialogues
between students are presented in full in his book), an excerpt from a monologue presented in
a public lecture by Timothy Gowers on joint work with Mohan Ganesalingam on mathematical
discovery [27], and a proof written by a prototype system named ROBOTONE developed by
Ganesalingam and Gowers [21] that operationalises the line of thinking from the lecture.'? Sin-
gle author works addressed to an arbitrary audience can be coded using the frameworks we’ve
described, although this is not in general the intended application. Single author works provide a
natural point of comparison, as we think about what the “social dimension” brings to mathematics.

'Tao notes, regarding MiniPolymathl: “Of the 500-odd participants in the Olympiad, only a half-dozen or so
managed to solve this problem completely.”
IZhttp://people.ds.cam.ac.uk/mg262/robotone . pdf

611553 September 30, 2014 11


http://people.ds.cam.ac.uk/mg262/robotone.pdf

D4.1 Examples of social creativity

0.  The general-purpose SPAAC Classified List of Speech Acts (“sA”)
la. Walton’s patterns of dialogue (“WD”)
1b.  Aberdein’s interpretation of these in the context of proof dialogue (“AD”)
2a. Prakken’s specialisation to persuasion dialogues (“PD”)
2b. Pease et al.’s approximately parallel Lakatosian moves (“LD”)
3a. Polya’s stages of problem solving from “How to Solve It” (“PS”)
3b.  Schoenfeld’s refinements to this in the form of his process coding (“SS”)
3c. Polya’s stages of planning from “Mathematical Discovery” (“PP”)
4a. Schoenfeld’s framework describing factors in mathematical thinking (“SF”)
4b. Pease, Aberdein, and Martin’s components of explanation (“CE”)
5a. PlanetMath/Planetary’s types of mathematical objects (“MO”)
5b. Pease and Martin’s types of mathematical comments (“MC”)
6.  Ganesalingam and Gowers’s LCF-style tactics (“RO”)

Table 1: List of frameworks, with two-letter abbreviations

5 Results

Several short texts have been marked up with codes corresponding to the frameworks introduced
in Section 3. The coverage from the several tag-sets is illustrated in Figure 4. Tags attached to
dialogical and monological texts have been distinguished, with contributions from single-author
texts added as an “increment” above the tags used in dialogues. Table 2 collects the tags that
were used, divided into three segments depending on whether the tag set primarily describes (I)
dialogical, (II) logical, or (III) pragmatic discursive manoeuvres (see Section 3). The annotation
“*” means that all of the tags in a given tag set were used, up to redundancy among the various tag
sets. Tags that are redundant in this sense are enclosed in hard brackets in the category to which
they were associated in our tagging. The annotation “°” indicates that all but one of the tags was
used: namely, plan from the SS tag set is not used (while a detailed set of tags related to planning
from the PP tag set was used fairly extensively).

Figures 5-9, respectively, reproduce our tagging of: a short passage from a student problem
solving dialogue, a single-threaded discussion in Minipolymath 1, a portion of one of the threads
in the discussion in Minipolymath 3, the full solution to a challenge problem presented by mathe-
matician Timothy Gowers, and a portion of a textbook-style problem solved by Ganesalingam and
Gowers’s program ROBOTONE. Although they are recorded, we did not tally the tactical moves
produced by ROBOTONE (R0). The coding in Figure 9 corresponds to mainstream practices of
“expanding the definition.” We also did not include Walton’s patterns (WD) which in this context
would be redundant with Aberdein’s interpretation (AD); and similarly, we do not include tags
denoting Pdlya’s stages of problem solving (PS), preferring Schoenfeld’s slightly more detailed
rendering (SS).

113

The most popular tag set was Schoenfeld’s “macro-level” framework (SF), with 11 applica-
tions overall. Many of these deal with the application of specific heuristics, such as: if you can
compute something, do it!; it’s a good idea to decompose a problem into sub problems; and try
a simple case. Note that a discussion about a heuristic, as in Lines 14-16 of Figure 5 — tagged
“heuristic (decompose)” — is treated differently from the application of a heuristic, as in Lines

12 September 30, 2014 611553
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10 |-

SA AD PD LD MC MO SS PP SF CE

Figure 4: Count of tags from the several schemes

SA ackn, inform

AD  negotiation

PD  question

LD  [conjecture], lemma incorporation

MC*  concept, example (arbitrary inst.), example (monster), [proof], other (phatic)

MO  ephemera

SS°  read, analyze, explore, implement, verify, local assessments, transition

PP  goal, conditions, decomposition

SF* resources, heuristic (compute!), heuristic (decompose), heuristic (formal
gen.), heuristic (simplify), heuristic (symmetry), heuristic (total stuckness),
control, belief systems

CE  property, [assertion]

Table 2: Summary of tags used, by category
611553 September 30, 2014
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10-17 of Figure 6 — tagged as “decomposition” from the Pélya planning (PP) tag set.

The “Pélya-Schoenfeld” tag set (SS) and Pélya planning (PP) were both used frequently, with
9 applications each, although not all of the tags were used. The Lakatos (LD) and comment-type
(MC) tag sets were used with moderate frequency, with 5 applications each. Note that conjectures
are mentioned in several different tag sets, and for consistency, tagging into LD was preferred.
We have tagged examples, including counterexamples, into MC. We only used two tags from the
Classified List of Speech Acts (SA), despite this being a general-purpose lexicon, and having the
largest set of available tags. This sort of general purpose conversational move seems particularly
likely to happen in in-person, real-time dialogues, which are not well represented in our data set.

We included only one tag, ephemera, selected from our list of types of mathematical objects
(M0). This appears to be related to the issue of “use versus mention”. Thus, for example, discus-
sants typically referred to concepts, rather than to articles where the definitions of these concepts
could be found. We also include only one tag, negotiation, from Aberdein’s interpretation of proof
dialogues (AD). Aberdein’s discussion of the goals associated with proof includes “prove or dis-
prove the conjecture” (corresponding to the tag inquiry) as one of 6 different intentional states. In
the examples we looked at, this was generally a goal that all of the participants shared, so using
this tag would convey no information. We interpreted Lines 13-15 of Figure 7 to be (part of) a
brief negotiation about the need for a “backward” operation in an induction proof. Finally, we
include one tag, question, from Prakken’s framework (PD).'* Lines 1-2 of Figure 7, marked as
assertion using the components of explanation framework (CE), might have, synonymously, been
marked as a claim. The tag “assertion” is therefor recorded in hard brackets in Table 2. In addition
to directly redundant tags, tagging these sample texts also makes more clear the relationships and
interdependencies among the dimensions. For example, as noted above, PP supplies a dimension
that expands on the idea of planning that is noted abstractly in SS. MC records examples, which are
a necessary input for most of the elements of LD. The tag sets are also associated with different
senses: not only “use versus mention”, but also use-to-explain or use-to-question.

6 Discussion

6.1 General comments

In terms of our earlier decomposition: SA, AD, PD, and LD were initially presented in connection
with dialogical features; MC and MO, together with an interpretation of LD, in connection with
logical features; and SS, PP, SF, and CE in connection with pragmatic features. Further work on an
implementation layer, as well as an expanded corpus of tagged texts, will be needed to see more
clearly how these moves contribute to the development of a proof-in-progress.

Frameworks that are only used for one (AD, PD, and MO) or two (CE, LD) tags are nevertheless
interesting and worthy of further attention and potential refinement. Other terms from these frame-
works (for example, Prakken’s challenges) are likely to come up if we examine longer texts and
other settings. Similarly, more instances of negotiation and deliberation about sub-problems and

3For reasons of typographical convenience, the question tag is not explicitly recorded in Figures 5-9 — rather, we
count each paragraph that includes at least one question mark as a question. We have also counted the question-like
sentence on Lines 13-15 of Figure 7 which is punctuated with a period as a question.
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DK: [reads the question][551]

BM: Do we need calculus for this?51l So we can
minimize, or rather maximize it.[mc1]

DK: My guess would be more like [indiscernable]
my basic hunch would be that it would be —[id1]

BM: An equilateral 11411

DK: 60, 60, 60[m<1]

BM: Yeah.[s22]

DK: So what choice of points has to be where on
the triangle[PP!] — these points are gonna be.[PP?]

BM: Try doing it with calculus — see if you can —just
draw the circlels$3! — see what we’ll do is figure
out the right triangle —[5¢]

DK: Yeah, or why don’t we find — or why don’t
we know the — some way to break this problem
down intolsf2! — like, what would a triangle be for
half the circle?[s2]

Figure 5: Excerpt from Schoenfeld [pp.

Nate: Well, my first thought is to see if the hy-
potheses seem reasonable.[s$3] The hypothesis that
§ = aj + ...+ a, not lie in M is certainly neces-
sary, as the last jump that the grasshopper takes
will land on 5.[PP2] The grasshopper’s other steps
will land on a partial sums a,(1) + ... + dgx) for
some permutation o, but we get to choose the
permutation. Thus it seems plausible that we can
avoid a given set of n — 1 points.[5?]

TroMAs: Quick observation.[2] The grasshopper
must make a first step.[2] This is always possi-
ble, since the a; are distinct and |M| = n — 1; that
is, there is always an 4; not in M.IPP2l However,
let’s say M matches all but one of the ;. Then the
first step is uniquely determined. Still, according
to the claimed theorem, a second step must still
be possible.[PP3]

[ss1]

[sf1]

read
resources

[me1] concept

[1d1]

ida] conjecture
[mc1]

conjecture

concept

[saz] ackn

[PP1lo0a1
lpp2] §0nditions

[553]explore

[ss8] transition

[szlheuristic (decompose)

[sf2] heuristic (symmetry)

324-325]

[553]explore

[PP2] onditions

[ss2] analyze

[sa2] inform

If2lpeuristic (simplify)

[PP2] onditions

lpp3] decomposition

Figure 6: Excerpt from MiniPolymathl

September 30, 2014

15



D4.1 Examples of social creativity

1+ Haccar Nucar: The first point and line Py, Iy can-

2 not be chosenl®?! so that Py is on the boundary
s of the convex hull of S and Iy picks out an ad-
4 jacent point on the convex hull.™ Maybe the
s strategy should be to take out the convex hull of
6 S from consideration; follow it up by induction
7 on removing successive convex hulls.[197]

« Haccar NucH: More specifically, remove the sub-
0 set of S which forms the convex hull to get Sq;
10 remove the new convex hull to get Sy, and repeat
1 until S, is convex. Maybe a point of S, is a good
2 place to start.[s5]

1 SRIVATSAN NARAYANAN: Can we just assume by in-
n duction that we have proved the result for all the
15 “inner points” Sy U S3 - US,,.[2d5] The base case
16 would be that S = Sy, i.e., it forms a convex

1 polygon.[med]

[ce7] assertion

[me2] example (monster)

147]1emma incorporation

[ss5] implement

[ad5]egotiation

[meg] proof

Figure 7: Excerpt from MiniPolymath3

 Gowers: What is the 500 digit of (/2 +1/3)20127[ss1]

2 Even this, eventually, a computer will be able
3 to solve.[mes]

s For now, notice that total stuckness can make
5 you do desperate things.[2] Furthermore, know-

s ing the origin of the problem suggests good things
7 to try. The fact that it is set as a problem is a huge

s clue.[s4]

0 Can we do this for (x + y)?[53] For ¢? Rationals
10 with small denominator?sf]

1 And how about small perturbations of these?!s3!
2 Maybe it is close to a rational?ld1]

1 mth digit of (v/2 4 +/3)"2[5f2]

1 (\/EJF ﬁ)z?[sfz]

s (2 + Zﬁ\/g—k 3)[m020]

10 (V2+V3)* + (V3 — v2)? = 106
i (V24 v/3)212 1 (/3 — 1/2)212 j5 an integer![ce1]

18 And (\/§ — \/5)2012 is a very small number.[ss7]
10 Maybe the final answer is “g”?[1d1]

20 We need to check whether it’s small enough.[ss5]
o (\/g_ \/5)2012 < (%)2012 — ((%)4)503 — (%)503 <
2 199 5o we're in luck. . .[ss6]

[ss1] read
[mes]oiher (phatic)

[f2heuristic (total stuckness)

[sf4]elief systems
[553]explore
[szlheuristic (compute!)
15531 control
“dl]conjecture
[szlheuristic (formal gen.)
Isf2lheuristic (simplify)
[mozo]ephemera
[szlheuristic (compute!)
[ee11]property

[57]10cal assessments
Udl]conjecture
[s55]implement

[556]Verify

Figure 8: Partial transcript from Timothy Gowers’s Maxwell Institute Lecture, November 2, 2012
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1 ROBOTONE: If A and B are open sets, then AN B is

2 open.[551] [ss1] aq

3 Let x be an element of A N B.[me2] [mcz]example (arbitrary inst.)
4 Sincex € ANB,x € Aand x € B.Ipp3] [pp3]decomposition

5 Since A is open and x € A, there exists 7 > 0

6 such that u € A whenever d(x,u) < 7.[Pp2] [PP2lconditions

7 Since B is open and x € B, there exists § > 0

s such that v € B whenever d(x,v) < 6.[Pp2] [PP2leonditions

’ We would like to find § > 0st. v € ANB

10 whenever d(x,y) < 8.lPp1] lPPlgoal

Figure 9: Partial transcript of ROBOTONE’s proof that the intersection of two open sets in a
metric space is open

proof strategies would be likely in more wide-ranging discussions (like the research-level Poly-
math projects). Note, as well, that a framework that has proved to be particularly popular source
of tags may be calling out to be separated into several different interrelated frameworks.

Many “standard” problem solving approaches can be implemented in a “social” way (cf. [71],
[18, p. 193]). This is hardly surprising in light of the Meadian hypothesis — in which the very
emergence of agency is seen as social [43].'* Although our sample size is too small to make strong
conclusions, it nevertheless offer several interesting clues as to what “social thinking” brings to
mathematics. In the first instance, as Tao noted the MiniPolymath problems are not easy, and yet,
working as a group, participants have been able to solve them at a (time-wise) competitive rate.
Why might that be?

People in discussions are presumably more likely to negotiate. Indeed, the entire Lakatosian
framework might be considered in terms of negotiation and an exchange of resources, rather than
simply persuasion and the resolution of differences. Relatedly, discussants may be more likely to
plan. They are, certainly, more likely to discuss, and as a result may possibly consider a wider
range of examples. That said, at least in the texts we studied, single authors were more likely to
ask questions, even if this was only to create a simulated conversation. If they know what they’re
doing, they may be more likely to simply get on with it and do problem solving. They may tend to
rely on heuristics rather than negotiation to overcome difficulties.

Compared with the 42 primary tags used in [42], the 27 tags that we used are less focused
on problem solving per se, although there is a significant overlap in the terminology and sources
used. The problem solving aspects may be addressable using our combined “pragmatic” tag set
(that is, SS, PP, SF, and CE, the segment of our tag collection which bears the closest similarity to
[42]) as the core of an information channel, and using these elements to map between “subjective”
dialogical moves, and “objective” state changes in a logical setting. However, this set of tags would
presumably to be expanded in order to deal with problem identification, positing, and selection.

With ROBOTONE, we get the logical mapping for free, albeit in a monological rather than
dialogical format; thus, as they appear in Figure 9, example (arbitrary inst.) corresponds to the

14111t is only by acting toward ourselves as others do ... that we recognize and understand ourselves as objects

and authors of our own activity. As we learn to coordinate our acting with the acting of others, we differentiate and
develop our selves and our abilities to self-determine. Eventually, we not only understand the perspectives (i.e., action
orientations and possibilities) of numerous particular others, but also those perspectives explicit and implicit within the
broader, more generalized social, cultural practices in which we are immersed” [43].
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moves expandPreUniversalTarget followed by peelBareUniversalTarget, and decompo-
sition corresponds to the move expandPreExistentialHypothesis; etc. While ROBOTONE
seems to be becoming reasonably proficient at basic problem solving, it currently has no social
intelligence. It does not seem unreasonable to expect this system or one like it to expand to include
many moves described in the Lucas et al. tag set — without yet requiring social intelligence. After
all, as we mentioned above, this earlier tag set had been designed to analyse single-author texts.
Working from the other direction, systems like Singh’s EM-ONE do possess at least a modicum
of social intelligence. It would be natural to extend EM-ONE with narratives related to the SA,
AD, and PD (dialogical) tag sets. It would be a bigger challenge to develop the domain-specific
knowledge base related to MC, MO, and LD, and mappings between this register and the others.

6.2 Extensions to other domains

Naturally, in different domains it will make sense to consider different types of annotations. There
are different “relations between relations” to be considered, both within disparate fields of human
endeavour, and in different situations within a given field. Nevertheless, analogues to musical ex-
perience may be found readily in other domains; music makes a useful initial point of comparison.

Cook [17] proposes to think of a musical score as a “script,” rather than as text that is complete
in itself. In this way, the space between score and performance is understood as an open and non-
linear one, and perhaps more easily conceivable as a continuous exchange between processes
and products, comparable to our comments above on the relationship between discussion and
proof. Bruce Ellis Benson’s work on improvisation-as-dialogue identifies 11 types of performance
situations that could cover virtually any type of music [7, pp. 26-30]. Benson’s typology ranges
from fully notated works (types 1 to 3) to the deliberate subversion of expectations associated with
a particular compositional or performative tradition, via real-time improvisation (type 11).

Types 7 to 11 in Benson’s typology are well illustrated by examples in jazz and freer forms of
improvisation, and are particularly useful in investigating open problem-solving spaces, where
structure and meaning are formed and communicated in real time. On that front, Borgo and
Goguen [8] attempted a typology of real-time transitions in their joint work on free jazz, in an
analysis of a recording by Sam Rivers'”.

1. sudden/unexpected segue (an unprepared, immediate change with unexpected continua-
tion)

2. pseudo-cadential segue (an implied cadence with sudden and unexpected continuation)
3. climactic segue (a peak moment that stimulates unexpected change and continuation)

4. feature overlap (one feature of the antecedent section is sustained and becomes part of the
consequent section)

5. feature change (a gradual change of one feature that redirects the flow, usually subtly)
6. fragmentation (a gradual breaking up, or fragmenting, of the general texture and/or rhythm)

7. internal cadence (a prepared cadence followed by a short silence then continuation with
new material)

15This work would match types 10 and 11 in Benson’s categories.
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In their experimental work with free improvisers, Canonne and Garnier [14] relied on mu-
sicians’ own subjective accounts of short improvised sessions in 3-person teams, and found sig-
nificant evidence of intersubjective structural patterns emerging in the interactions between par-
ticipants. This led to a distinction between stable and oscillating behaviours, corresponding to
coordinated musical sequences (representable as fixed points in phase space) and discoordinated
sections (representable as spaces without fixed attractors). Canonne and Garnier identified four
main strategies that improvisers used to convey intentions while playing: Stabilization, “Wait
and see”’, “Playing along”, Densification. The decision to employ these strategies, as well as
the end-result of each strategy employed, depends on the overall musical situation, understanding
of other musiciansa individual intentions and objectives, and on team preferences, based on e.g.
competence, range of instruments used, etc. As a result, “misrepresentations” and, by extension,
“contrasting evaluations of a given situation” may occur. Improvisers therefore often resort to
“meta-pragmatic” evaluations of their strategies while playing, e.g. repeating a strategy until in-
tention is successfully conveyed, or re-evaluating a strategic goal in real-time on the basis of new
information gathered from another player’s response [14, pp. 202-203]. Similar issues, and more,
would apply in any setting where people are not solving predetermined problems.

There are some additional challenges and limitations in the above annotation paradigms.
Firstly, given the largely non-discursive, or at least non-verbal, nature of musical performance,
any dialogic pattern reflecting decisions vis-a-vis structure or other parameters is usually repre-
sented post-hoc, and mostly through the aid of recordings. Other domains (including mathematics)
have many non-verbal features that can limit the range of applicability of text-based methods. Sec-
ondly, musical situations that correspond to Benson’s types 1-6 involve a higher level of consensus
as to what constitutes musical meaning, and what formal or structural prerequisites are necessary
for its production. They are thus closer to Hall’s [29] definition of “low-context” (LC) situations
— whereas types 8-11 involve highly subjective, “high-context” (HC) processes. The latter are
prone to contrasting evaluations, and pose a range of challenges for modelling. Contexts that
change over time or depending on the observer’s perspective suggest the need to develop a theory
of information flow that takes on emergent properties.

6.3 Future Work

The Wordpress blogs that served as a platform for the MiniPolymath experiments, though ad-
equate, do not seem especially elegant, and it would be interesting to pursue experiments with
other systems that are more tuned to the domain and/or the discourse structure. For now there is
plenty of data to be had from extant sources, however, as the understanding of discursive structure
discussed here evolves, more of what we learn can be pushed into systems like Planetary [18]
made directly available to users, rather than added in a separate secondary analysis.

Developing a version of MiniPolymath for machines would be an interesting related challenge.
In this regard both ROBOTONE and EM-ONE are inspiring examples, although neither system
would currently be ready to participate in MiniPolymath-like activities, for different reasons. Con-
cerning infrastructure and overall orientation, the Arguing Agents Competition [81] is one point
of inspiration, although we prefer a more collaborative tack.

The Graphic Score/Harmonic Spaces case study conducted at A.U.TH. in May-June 2014
qualitatively investigated 11 students’ ways of creating a new piece of improvised music while
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dealing with a combination of two modes of representation: a graphic score open to interpretation,
and a series of harmonic spaces drawn from automatic harmonisation trials of early-stage tech-
nologies from the COINVENT project (comprised of low-context elements, of Benson’s types
1-6, in comparison to the high-context graphic score).'® A preliminary analysis reveals shared
patterns in participants’ communication strategies including the following:

1. Narrowing the problem space (e.g. from an open “what if...” or a more case-specific “what
to do with these two sources” to a directional “how can we use source 1 [the harmonic
spaces] to interpret source 2 [the graphic score]” and “how do we make this work?”’)

2. Assigning functions and/or meaning to the set material (e.g. using particular elements
in the graphic score as durational markers, or assigning narrative significance to particular
harmonies)

3. Mapping sonic elements onto visual ones, and vice versa (e.g. creating subscores and
testing them via different realisations)

4. Defining end-product ontologies (agreeing on what the resultant piece should be described
as, and what its constituent elements are)

Decisions reached verbally were often reconfigured and in some cases entirely reversed based
on playing and listening sessions between discussions. More work is necessary to arrive at a
more conclusive representation of how individual aesthetic preferences were negotiated by each
group. A more detailed analysis of recorded conversations, performance sessions and reports
collected during the study may provide further examples of common or shared strategies employed
among participants. In parallel, we plan to pursue extensions to the tag sets used here, and greater
alignment in the descriptions of collaborative dynamics in the mathematics and music domains.
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Appendix

MiniPolymath1:

Let ay,a,...,a, be distinct positive integers and let M be a set of n — 1 positive
integers not containing s = a; +ap + ...+ a,. A grasshopper is to jump along the real
axis, starting at the point 0 and making » jumps to the right with lengths ay,az,...,a,
in some order. Prove that the order can be chosen in such a way that the grasshopper
never lands on any point in M.

MiniPolymath2:

In each of six boxes Bj, By, B3,Bs,Bs,Bg there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box B; with 1 < j < 5. Remove one coin from B; and
add two coins to Bj .

Type 2: Choose a nonempty box By with 1 < k < 4. Remove one coin from By and
exchange the contents of (possibly empty) boxes By 1 and By.».

Determine whether there is a finite sequence of such operations that results in boxes

. .. 2010 .
By, B, B3, By, Bs being empty and box Bg containing exactly 201020107 coins.
(Note that a® := a(bc).)

MiniPolymath3:

Let S be a finite set of at least two points in the plane. Assume that no three points
of § are collinear. A windmill is a process that starts with a line ¢ going through a
single point P € S. The line rotates clockwise about the pivot P until the first time
that the line meets some other point Q belonging to S. This point Q takes over as the
new pivot, and the line now rotates clockwise about Q, until it next meets a point of
S. This process continues indefinitely. Show that we can choose a point P in S and a
line £ going through P such that the resulting windmill uses each point of S as a pivot
infinitely many times.

MiniPolymath4:

The liar’s guessing game is a game played between two players A and B. The rules of
the game depend on two positive integers k and n which are known to both players.

At the start of the game, A chooses two integers x and N with 1 <x < N. Player
A keeps x secret, and truthfully tells N to player B. Player B now tries to obtain
information about x by asking player A questions as follows. Each question consists
of B specifying an arbitrary set S of positive integers (possibly one specified in a
previous question), and asking A whether x belongs to S. Player B may ask as many
such questions as he wishes. After each question, player A must immediately answer
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it with yes or no, but is allowed to lie as many times as she wishes; the only restriction
is that, among any k + 1 consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set X of at most
n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove that:

1. If n > 2k then B can guarantee a win.

2. For all sufficiently large k, there exists an integer n > 1.99% such that B cannot
guarantee a win.
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