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Abstract
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Executive Summary

The aim of this work is create a formal model that is both descriptive of real world social cre-
ativity, and can be implemented computationally. The report centres on a prototype system that
meets these criteria, but it also deals with treatments, that are on the one hand, more recognisably
descriptive of real-world social creativity, but less formal; and, on the other, more computationally
formal, but less directly recognisable. These efforts all have limitations, which we aim to address
through integration.

Our main contribution to the goals of the deliverable is an implementation of Lakatos’s di-
alectical patterns describing social creativity in mathematics. This research process begins with
Lakatos’s real-world examples which we have adapted into an abstract model of argumentation,
and an accompanying computational implementation. We were then able to show how further
real-world examples of collaborative mathematical proof map into this framework.

This is complemented by two additional strands of work. Firstly, we have analysed common
processes found in successful collaborations, using the language of design patterns. This work is
particularly useful for thinking about informal discourse that serves as “social glue.” The degree
to which social glue and out-of-domain discourse is required varies according to the scale and
scope of a project. Secondly, we present a simple computational model of social creativity using
cellular automata that have been modified to use Goguen’s Unified Concept Theory to carry out
evolutionary steps that evolve local behaviours over successive generations.

Work is underway to integrate these strands using a process calculus. In more complex do-
mains, more different kinds of moves are needed. The structure of arguments is recursive, or
more complex, even for relatively simple applications in the application domains of the Coinvent
project. An argumentation-based approach may be useful in many cases but more complicated
scenarios need more elaborate coordination methods.
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1 Introduction

The aim of this work is create a formal model that is both descriptive of real world social creativ-
ity, and can be implemented computationally. The report centres on a prototype system that meets
these criteria, but it also deals with treatments, that are on the one hand, more recognisably de-
scriptive of real-world social creativity (but less formal), and, on the other, more computationally
formal (but less directly recognisable). These efforts all have limitations, which we aim to address
through integration. Figure 1 depicts the situation in graphical form:

LAK ++

PP LAK MCA

D4.2

Figure 1: LAK : Lakatosian creativity (Sections 2 and 3); PP: Patterns of Peeragogy (Section
4); MCA : Meta-Cellular Automata (Section 5); LAK ++: Integration effort (Section 6)

Our discussion of LAK is summarised in Section 2. Our work on the “recognisably social
domain” PP is summarised in Section 4. Our work on the more formal domain MCA is sum-
marised in Section 5. Some words about integration and steps towards LAK ++ are presented
in Section 6. Full details can be found in [1, 7, 12, 2, 11], which we have highlighted in bold in
the bibliography.

2 A formal representation of Lakatosian creativity

Lakatos describes a notion of social creativity in mathematics which is inherently based on blend-
ing two conflicting theories and synthesising a third theory from the inconsistencies [13]. Social
aspects arise in that the conflicting theories come from different sources.

In [1], we explore the connections along the pipeline running from philosophical theory, to
formal expression of dialogue games, extending earlier work in [2]. This allows us to express
linguistic structures of reasoning in formal structured argumentation, abstract argumentation and
argumentation semantics, and finally, coming full circle, we show that such implementations can
provide value back to the linguistic communities from which the philosophical theory was derived.
The goal is to show, for the first time, how all of these pieces of the puzzle can be slotted together
to lay a foundation for formally sound and linguistically coherent collaborative intelligence and
social creativity.

The interpretation of Lakatos here is through the lens of dialogue game theory [10] and in
particular as a dialogue game ranging over structures of argumentation. The practice of interaction
between mathematicians is mediated by language, so the choice of argumentation theory is, in
the first instance, governed by the need to handle challenges presented by linguistic expressions
of reasoning. On the other hand, in order to manipulate and automatically reason over those
structures, there is a need for formal and ontological clarity, so we adopt the Argument Interchange
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Format (AIF) [6, 17] to handle the data. The understanding of Lakatos is refined and characterised
as a set of update semantics on AIF structures. Previous work [5] has shown how AIF can be
interpreted as a nonmonotonic system of structured argumentation, with mappings built from AIF
to one system in particular, ASPIC+1 [16]. From ASPIC+, Prakken has shown how abstract
argumentation systems in the style of [8] can be induced, from where the argumentation semantics
can be computed to provide labellings of the acceptability status of each argument. Our report [1]
shows how the labelling derived from the abstract argumentation framework corresponds precisely
to the theory that has been collaboratively created by the participants in a Lakatosian dialogue.

In addition, however, each of these formal steps is also available in implementation. The inter-
pretation of Lakatos as a formal dialogue game can be captured as an implemented specification
in the domain specific language, the Dialogue Game Description Language (DGDL) [25]. This
specification can be executed by a platform, the Dialogue Game Execution Platform (DGEP) [4]
which offers a series of web services to clients for executing a participant’s legal moves. Part of
the semantics of the dialogue game specification is to define updates on a shared information state
[24], in which the language of knowledge representation is AIF, implemented as a series of web
services provided by the AIF database infrastructure [14]. The AIF data created as a side effect
of the operational semantics of the turns in the dialogue game is in turn interpreted by The Online
Argument Structures Tool (TOAST) [21] as an ASPIC+ system and passed to DungOMatic [20]
to calculate the grounded extension, which returns, at each step in the game, the current state of
the co-created theory.

Finally, we show how the model can also be retrospectively applied to examples of extant
mathematical discussion [23]. In so doing, it is not only possible to demonstrate the depth of
Lakatos’ original insight, but also to show that the formal characterisation here remains both hon-
est to the original and of practical utility to mathematicians. This ties into real-world social cre-
ativity in that firstly Lakatos’s patterns were based on real world (if unusual and highly creative)
examples, and secondly we show that, in implementation, the theory reflects the practices of work-
ing mathematicians holding everyday creative discussions.

This technical report constitutes our main contribution to the goals of the deliverable in that it
is formal, descriptive of real world social creativity, and has been implemented.

3 Using Argumentation to Evaluate Concept Blends

The notion of value is crucial to computational creativity. In [7] we explore an argumentation ap-
proach to understanding and evaluating the meaning, interest, and significance of concept blends.
Specifically, we propose viewing evaluating blends as a process of argumentation, in which the
specifics of a blend are pinpointed and opened up as issues of discussion. This is based on the
intuition that in the context of new ideas, proposals, or artworks, people use critical discussion and
argumentation to understand, absorb and evaluate. We exemplify our approach in the domain of
computer icon design, where icons are understood as creative artefacts generated through concept
blending. We present a semiotic system for representing icons, showing how they can be described
in terms of interpretations and how they are related by sign patterns. The interpretation of a sign

1ASPIC+ is the follow-on work from the Argumentation Service Platform with Integrated Components (ASPIC)
project: http://www.cossac.org/projects/aspic
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pattern conveys an intended meaning for an icon. This intended meaning is subjective, and de-
pends on the way concept blending for creating the icon is realised. We show how the intended
meaning of icons can be discussed in an explicit and social argumentation process modelled as a
dialogue game, and show examples of these following the style of [1]. In this way, we are able to
evaluate concept blends through an open-ended and dynamic discussion in which concept blends
can be improved and the reasons behind a specific evaluation are made explicit. In the closing
section, we explore argumentation and the potential roles that can play at different stages of the
concept blending process.

This work concerns the notion of value and in particular the emergence of shared values, and
the social processes by which people (dis)agree, explain and justify their evaluations. It relates
more to real-world social creativity than formal theory.

4 Patterns of Peeragogy

“Patterns of Peeragogy” [11] uses the descriptive language of design patterns to take stock of
the common processes found in successful collaborations, a typical context for everyday social
creativity. This paper focuses on projects in which the structure of the collaboration is not fixed
in advance and must be created alongside the project’s primary products. The central pattern
describes the ways in which project participants collaborate to build a shared ROADMAP that
gets them “from here to there,” possibly integrating multiple different “heres and theres.” The
nine design patterns introduced in the paper are particularly useful for thinking about informal
discourse moves that serve as “social glue.” For example, another pattern aims to address the
needs of NEWCOMERS in a long-running project.

The degree to which social glue and out-of-domain discourse is required varies according to
a project’s scale and scope. For example, in the Polymath project, discussants needed to decide a
large-scale overall plan – including which problems to focus on. On the other hand, in MiniPoly-
math, a single problem was set in advance and participants only needed to develop a suitable
approach to solve it. Future work would formalise this material further, although the design pat-
tern methodology already provides a preliminary functional breakdown.

5 The Search for Computational Intelligence

“The Search for Computational Intelligence” [12] aims to present a minimal convincing compu-
tational model of social creativity that exhibits emergent results. Previous research has viewed
cellular automata “as multi-agent systems based on locality with overlapping interaction struc-
tures” [9]. Our paper takes the novel approach of permitting local adjustments to the behaviour
of cells in the automaton. These new systems are called meta-cellular automata or “MetaCAs”,
since most cellular automata run according to one global rule, whereas MetaCAs co-evolve the lo-
cal rule together with observed behaviour. From a philosophical perspective, this work is aligned
with 20th Century philosopher George Mead’s conception of the social as emergent co-evolution,
“an adjustment in the organism and a reconstitution of the environment” [15]. Our simulations
use a modified version of Goguen’s Unified Concept Theory to carry out evolutionary steps that
evolve local behaviours via concept blending over successive generations.
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Expanding on the semantically simple domain of cellular automata, future work could encode
mathematical problems and solution strategies in a MetaCA or “cellular program” and involve a
group of agents in finding solutions to these problems as a society. This would be informed by
the empirical analysis of real problem-solving activities, like MiniPolymath, as described in other
sections of this report.

6 Integration Work

We have developed a process calculus analysis which attempts to structure all of the utterances
in a mathematical conversation as a series of communications, using relations developed through
analysis of the text. This work continues in the tradition of the Lightweight Social Calculus [19].
In particular, we are synthesising a protocol which can both account for the behaviour observed,
and also admit the possibility of computational support. The underlying relations were developed
both synthetically (by analysing samples of mathematical discourse), and through literature re-
view. We presented an extended abstract describing this work at the First European Conference
on Argumentation. This abstract is included as Appendix A.

Making the outer predicate one of a small set of illocutionary forces lets us look at protocols
as sequences of locutions, which opens the way forward for dialogue induction. Opening the
‘black box’ of content – by adding structured identifiers – allows us to understand the relationships
between posts, and based on this, we can make a picture of the whole interaction. For example,
performatives are attached to text fragments, a provenance history of the evolution of core concepts
in the discussion becomes available, and some segments may tagged as explicitly Lakatosian. Our
strategy makes use of:

I. A (relatively) minimal set of performatives for the argumentation structure in the dialogue,
such as suggesting, asserting, retracting, and challenging.

II. A set of relations between the mathematical structures under discussion, such as: has property,
sub conjecture, equivalent, stronger, and weaker. This allows a model of information flow
between structures, in the sense of [3].2

III. A set of meta objects representing the conjectures to prove, and strategies to use to prove
them, such as goal, strategy and difficult.

Thus, for instance, we label the following utterance: “The following reformulation of the prob-
lem may be useful: Show that for any permutation s in Sn, the sum as(1)+as(2)+as( j) is not in
M for any j =< n.” [22] as assert(equivalent(main problem,any permutation)).

This outline reflects the view that much of an argument’s structure is carried by relations
between the mathematical objects under discussion. This strategy is useful, since we do not want
to have to represent the whole of mathematics in order to reason about individual proofs: this
gives us a level in between, and allows us to represent most of the important structure of specific
arguments. Labelling individual snippets of conversation in this way enables us to construct an

2These relationships go beyond those explicitly dealt with in LAK , and show recursive (and other) relationships
between theories. Cf. the comparison with intuitionistic logic in [18].
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overall picture of the interactions. We demonstrate this approach for the first few interactions in
[22], in Figure 2, and the overall argument for further posts, in Figure 3.

Reflecting back over the work described in previous sections, the ways in which the method
outlined in I–III could be expanded should be clear:

I′. As remarked in Section 4, in more complex domains, more kinds of moves are needed:
for instance, problem positing as well as problem solving. We intend to progressively ex-
pand the approach outlined above to deal with more actively social problem scenarios, like
Polymath.

II′. The ability to reason computationally about mathematical and musical structures is a core
part of our plan of work in Coinvent. Therefore, we plan to integrate the type of agent-
based model described in Section 5 with the simple structure annotations mentioned in II
and CASL representations of mathematical and musical objects to create a convincing sim-
ulation of social creativity in our target domains.

III′. In this work, we are not necessarily restricted to a Lakatosian or even an argumentation-
based approach, although these continue to be relevant in many situations. For example,
in the work described in Section 3, we explore an argumentation-based approach to un-
derstanding and evaluating the meaning, interest, and significance of concept blends, using
a simplified version of the Lakatosian dialogue game from [1]. However, scenarios with
“multiple right answers” [11] require more elaborate coordination methods.

7 Outlook

We have reviewed our work this year on a formal theory of social creativity, which has largely
taken place within the contexts of argumentation, social simulation, and design. We have further-
more summarised our plans for integration. The goal remains the creation of a formal, descriptive,
and computationally implemented system. In the move from the Lakatosian theory LAK to
“LAK ++”, we have the opportunity to be both more descriptive of everyday social reality, and
to explore more of what is computable using the techniques that Coinvent has to offer.
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[6] CHESÑEVAR, C., MCGINNIS, J., MODGIL, S., RAHWAN, I., REED, C., SIMARI, G.,
SOUTH, M., VREESWIJK, G., AND WILLMOTT, S. Towards an argument interchange for-
mat. Knowledge Engineering Review 21, 4 (2006), 293–316.

[7] Confalonieri, Roberto and Corneli, Joseph and Pease, Alison and Plaza, Enric and
Schorlemmer, Marco. Using Argumentation to Evaluate Concept Blends in Combi-
natorial Creativity. In Proceedings of the Sixth International Conference on Computa-
tional Creativity, ICCC 2015, S. Colton, H. Toivonen, M. Cook, and D. Ventura, Eds. 2015.
http://axon.cs.byu.edu/ICCC2015proceedings/7.4Confalonieri.pdf.

[8] DUNG, P. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77, 2 (1995), 321–
358.

[9] FLACHE, A., AND HEGSELMANN, R. Do irregular grids make a difference? Relaxing the
spatial regularity assumption in cellular models of social dynamics. Journal of Artificial
Societies and Social Simulation 4, 4 (2001).

[10] HAMBLIN, C. Fallacies. Methuen, London, 1970.

[11] Joseph Corneli and Charles Jeffrey Danoff and Charlotte Pierce and Paola Ricuarte
and Snow MacDonald, Lisa. Patterns of Peeragogy. In Pattern Languages of Programs
Conference 2015 (PLoP15), October 24-26, 2015, Pittsburgh, PA, USA (2015), F. Correia,
Ed. http://www.hillside.net/plop/2015/papers/peopleeducation/19.pdf.

[12] Joseph Corneli and Ewen Maclean. The Search for Computational Intelligence. In
Social Aspects of Cognition and Computing Symposium, Proc. Annual Convention of the
Society for the Study of Artificial Intelligence and Simulation of Behaviour (SSAISB), Uni-
versity of Kent, Canterbury, UK, 20-22nd April 2015 (2015), Y. J. Erden, R. Giovagnoli,
and G. Dodig-Crnkovic, Eds. http://www.cs.kent.ac.uk/events/2015/AISB2015/

proceedings/socialComp/papers/SACCS-AISB2015_submission_6.pdf.

[13] LAKATOS, I. Proofs and refutations: The logic of mathematical discovery. Cambridge
university press, 1976.

[14] LAWRENCE, J., BEX, F., REED, C., AND SNAITH, M. AIFdb: Infrastructure for the argu-
ment web. In Proceedings of the Fourth International Conference on Computational Models
of Argument (COMMA 2012) (2012), pp. 515–516.

[15] MEAD, G. H. The philosophy of the present. Open Court, 1932.

6 September 27, 2015 611553

http://axon.cs.byu.edu/ICCC2015proceedings/7.4Confalonieri.pdf
http://www.hillside.net/plop/2015/papers/peopleeducation/19.pdf
http://www.cs.kent.ac.uk/events/2015/AISB2015/proceedings/socialComp/papers/SACCS-AISB2015_submission_6.pdf
http://www.cs.kent.ac.uk/events/2015/AISB2015/proceedings/socialComp/papers/SACCS-AISB2015_submission_6.pdf


D4.2 Formal theory of social creativity FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

[16] PRAKKEN, H. An abstract framework for argumentation with structured arguments. Argu-
ment and Computation 1 (2010).

[17] RAHWAN, I., ZABLITH, F., AND REED, C. Laying the foundations for a world wide argu-
ment web. Artificial Intelligence 171 (2007), 897–921.

[18] RESTALL, G. Logics, situations and channels. Journal of Cognitive Science 6, 2 (2005),
125–150.

[19] ROBERTSON, D., MOREAU, L., MURRAY-RUST, D., AND O’HARA, K. An Open System
for Social Computation. Digital Enlightenment Yearbook 2014: Social Networks and Social
Machines, Surveillance and Empowerment (2014), 235–252.

[20] SNAITH, M., DEVEREUX, J., LAWRENCE, J., AND REED, C. Pipelining argumentation
technologies. In Proceedings of the 3rd International Conference on Computational Models
of Argument (COMMA 2010) (2010), P. Baroni, F. Cerutti, M. Giacomin, and Simari, Eds.,
IOS Press, pp. 447–454.

[21] SNAITH, M., AND REED, C. TOAST: online ASPIC+ implementation. In Proceedings of
the 4th International Conference on Computational Models of Argument (COMMA 2012)
(2012), IOS Press, Vienna.

[22] TAO, T., ET AL. Minipolymath1 project. https://terrytao.wordpress.com/2009/

07/20/imo-2009-q6-as-a-mini-polymath-project/, July 2009.

[23] TAO, T., ET AL. Minipolymath3 project. http://polymathprojects.org/2011/07/

19/minipolymath3-project-2011-imo/, July 2011.

[24] TRAUM, D., AND LARSSON, S. The information state approach to dialogue management.
In Current and New Directions in Discourse and Dialogue, J. Kuppevelt and R. Smith, Eds.

[25] WELLS, S., AND REED, C. A domain specific language for describing diverse systems of
dialogue. Journal of Applied Logic 10, 4 (2012), 309–329.

611553 September 27, 2015 7

https://terrytao.wordpress.com/2009/07/20/imo-2009-q6-as-a-mini-polymath-project/
https://terrytao.wordpress.com/2009/07/20/imo-2009-q6-as-a-mini-polymath-project/
http://polymathprojects.org/2011/07/19/minipolymath3-project-2011-imo/
http://polymathprojects.org/2011/07/19/minipolymath3-project-2011-imo/


D4.2 Formal theory of social creativity

problem

raa
strategyChristina

c_nDavid
Speyer introduce

2n_vertices

has_property
assert

integers

represents

assert

suggest

cannot_disconnect

sets_disconnect

measure_s

goal

goal

goal

suggest

suggest

suggest

any_permutation

equivalent

Haim

assert

Sn has_part

plan

prove

quite_large

has_property
assert

pigeonhole

strategy

plan

prove

using

suggest

x_in_M

x_sum

x_not_sum

case split

splitsinto
into

assert

sub_conjecture

assert

Cristina (1)

David Speyer (2)

problem_n2

n2_2

n2_1

case split

into

into

splits

Michael Lugo

Haim (3)

Michael Lugo (4)

Haim

special_caseassert

assert

supports

supports
n2_2proof

n2_1proof

set_j1

m_powerset

assert
equivalent assert

Haim (9)

Dave (10)

Dave

challenge

exists_permutation

equivalent

assert

counter

challenge

any_p_counter

induct_on_n strategyplan

prove
using suggest

subset_solution

Haim (12)
Haim

retract
agree

David Speyer (13)
counterDavid Speyer naming_problem

neal (14)
counterneal not_set

Haim (15)

Haim

agree

m_powerset'refines

assert

surjective_mapping

of

goal

suggest

neal (16)

retract

neal

math object

math object

math relation

Personperformative

meta
object

math object

two place
performative

goal, strategy

assert, introduce, suggest …

has_protperty,
equivalent,
weaker,
stronger,
…

Figure 2: Interactions in MiniPolymath 1 [22], where the person making the utterance are in
red; the performatives are in red (for supporting) and green (for challenging); the mathematical
objects and relations between them are in black; and meta-objects are in purple. (image by David
Murray-Rust, used with permission)

8 September 27, 2015 611553



D4.2 Formal theory of social creativity FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

Then consider a MOVE, given by taking a
segment $b 1,\ldots,b k$ of ordered beads,
of which the first and the last are colored.
Then reverse its order. now you have a new
coloring of the beads.
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cessive jumps to avoid an element of M” (this
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(2 4)).. in other words you compose your per-
mutation with inversions, or 2-cycles
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give an algorithm for the sequence right? I
dont know maybe something like find the first
member of M , use the most/least ai to arrive
to a number before it, then use some criteria
to select ai to jump over the members of M
which could be together or very close and so
on. Sorry for the rambling but I would like to
see a nice algorithm for this :)

integers

can M really be regarded as a subset of P
when P({1,2,. . . ,n}) since M is a set of n-
1 positive integers not containing s, and not
necessarily the set of {1,2,. . . ,(n-1)}

strategy

You’re right.

goal

exists permutation

equivalent

landmine assert

Post 14

Post 16

x in M

Post

This is always possible, since the a i are dis-
tinct and —M—=n-1; that is, there is always
an a i not in M.

equivalent

case split

Take (a 1, a 2, a 3) = (1,2,3) and take M =
{2,3}. Then none of the cyclic permutations
work.

strategy

assert

assert

Post

nevermind. my mistake

counter

assert

Unfortunately, the same integer may occur as
the sum of many different subsets of M. For
example, if M = {1,2,3}, do you assign the
integer 3 to {3} or to {1,2}?

Post 26

introduce

Post

c n

Post

equivalent

necklace move

it is that you assume “wlog” a fact which is
not a “generic” bad case. In the generic bad
case only one of the sums S {k} belongs to
M.

support

Post

weakers1proof

The following reformulation of the problem
may be useful: Show that for any permuta-
tion s in Sn, the sum a s(1)+a s(2). . . +a s(j)
is not in M for any j=¡n. Now, we may use the
fact that Sn is ’quite large’ and prove the ex-
istence of such permutation with some kind
of a pigeonhole-ish principle.

not set

problem

introduce

For any x in M, there are two possibilities: 1.
x can’t be represented as a sum of (distinct)
ai’s. 2. x=a j1+a j2. . . +a jk. In this case,
we may assign x the set {j1, j2. . . jk} So M
can actually be regarded as a subset of P({1,
2. . . n})

suggest

introduce

x sum

counter

assert

suggest

m powerset

Post 24

any permutation

And it doesn’t work; there are numbers
$a 1,a 2,\ldots,a n$ and sets $M$ of $n-1$
points such that, for instance, $a 1 \in M$.
Then any permutation starting with $a 1$
would not satisfy your conjecture for $j=1$.

challenge

s2

Post

induct on n

assert

agree

introduce

sub conjecture

Let C n be the edge graph of the unit n-cube:
so C n has 2ˆn vertices and n*2ˆ{n-1} edges.
There is an obvious map p from the vertices
of C n to the integers, sending the vertex (i 1,
i 2, ..., i n) to the point \sum i j a j.

induct on n

I’d like to induct on n.

has part

naming problem

support

So an indecomposable instance of the prob-
lem is one for which the smallest k with the
property above is k=n, these are the ones that
don’t directly fall to induction.

stronger

strategy

set j1

This was too simple, so there must be a mis-
take in my proof. What is it?

fsp

Post

using

But, just looking for *one* permutation that
satisfies $a s(1)+a s(2). . . +a s(j) ot \in M$
for any $j \leq n$ (which is basically the
statement of the theorem), could lend itself
well to induction. In other words, use the fact
that for every subset $M’ \subset M$ of size
$j$ not containing $a s(1)+a s(2). . . +a s(j)$,
there is a way to permute those $j$ numbers
to avoid $M’$.

cyclic permutation

But maybe the following statement, stronger
than the original claim, is true: for fixed M
and any permutation \sigma:\{1,\ldots,n\}
\rightarrow \{1,\ldots,n\}, some cyclic per-
mutation of \sigma will yield a sequence of
steps that avoid M.

Post

assert

Figure 3: The argument in MP1 (image by David Murray-Rust, used and adapted with permission)
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Synchronised multi-perspective analysis
of online mathematical argument

1 A multi-perspective approach

Polymath [20] is an online experiment in collaborative mathematics. Participants work
together to solve either open problems in mathematics, or questions from the Interna-
tional Mathematical Olympiad (IMO). The work is carried out online using a threaded
discussion system for research and a wiki to represent the current state of knowledge.

This provides a compelling test-bed for developing theories of argumentation, as there
is (i) a discourse where utterances are structured so that it is clear which post any com-
ment relates to; (ii) a domain of discourse which can be formally represented; (iii) a
synchronised representation of both how the dialogue unfolds over time and common
knowledge which is a result of the dialogue; (iv) the potential for mechanical assis-
tance to be brought in to the interaction if the activity can be sufficiently represented in
computational terms.

From an argumentation perspective, there are several aspects of this interaction that can
be analysed under different paradigms. In order to develop a rich understanding of how
the process of doing mathematics collaborative is carried out, we analyse the same set
of traces from multiple perspectives:

• A Lakatosian viewpoint [5], examining the utterances which fit into the schema
of proofs and refutations, examples, counterexamples. Here we look only at those
contributions which are congruent with Lakatos theories of how maths is done.
This is an attempt to fit an existing structure to an example of observed argumen-
tation.

• A process calculus analysis [8, 14] which attempts to structure all of the utter-
ances as a series of communications, using relations developed through analysis
of the text. Here, we try to synthesis a protocol which can both account for the
behaviour observed, and through its formality admits the possibility of computa-
tional support.

• Inference Anchoring Theory (IAT) [2] which is developed through the interac-
tion, which links into the utterances that provide components of the proof struc-
ture. This shows how the object under discussion relates to the text, highlighting
the gaps in the structure due to shared context and implicitly understood reason-
ing.

Finally, we integrate these analyses around a temporal axis, and compare with the proof
structures created to understand how the dynamic, sequential process of argumenta-
tion, of example and counterexample come together to form a coherent argument. This
allows us to place the alternative perspectives alongside each other to demonstrate cor-
respondences, areas of overlap and points of disagreement.

1
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2 Related Work

Stahl has done extensive research on mathematics in a social context [17, 18, 19],
developing research into “group cognition,” drawing on online interactions between
students. His notion of “adjacency pairs” is a broader category than what we call
Lakatosian moves. Stahl’s work focuses on computer supported collaborative learn-
ing, which is an inspiring domain for our work, although we also aim to add dimen-
sions related to computer simulated collaborative learning. Nevertheless, our approach
in the current phase of work, in which we will closely examine real-world dialogues,
is similar to Stahl’s. In our preliminary work, we have sought to establish a process
coding suited to the social mathematics context. Earlier research focused on tagging
texts created through speak-aloud protocals, for instance, Lucas et al. [7]. More recent
work by Schoenfeld [15] situates mathematical problem solving in a social context,
but the analysis of this material generally excludes social and cognitive details [15, p.
16]. Contemporary strategies from natural language processing, including the field of
argument mining [11] which has gained recently traction within the broader field of
discourse mining (e.g. [16, 21]) are also closely related, although here we only devel-
oping groundwork for future NLP-based efforts. In the current work we will not only
look at argumentative structures, but also at pre-argumentative structures, that is, we
consider the constructive features of informal logic (cf. [4]).

3 Illustrative Ideas

In Figures 1 and 2, we present short excerpts from MiniPolymath1 and MiniPolymath3,
respectively, coded with tags drawn from the frameworks collected in Table 1. The tag
sets SA, AD, PD are connected with primarily dialogical features; MC, MO, and LD with
logical features; and SS, PP, SF, and CE, with pragmatic features. The first excerpt is
adequately described as classic problem solving; it includes 6 “pragmatic” moves and
1 “dialogical” move. By contrast, the second is much more discursive, and includes
2 “pragmatic” moves, 3 “logical” moves, and 1 “dialogical” move. These distinctions
are somewhat ad hoc; what is important to note is that earlier research has focused
primarily on (“pragmatic”) problem solving. When compared with the 42 primary tags
used in [7], the tags that we used are much less focused on problem solving per se,
although there is a significant overlap in the terminology and sources used. Our tag set
will need to expand further in order to deal adequately with issues related to problem
identification, positing, and selection.

2
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Nate: Well, my first thought is to see if the hy-1

potheses seem reasonable.[ss3] The hypothesis that [ss3]explore2

s = a1 + . . . + an not lie in M is certainly neces-3

sary, as the last jump that the grasshopper takes4

will land on s.[pp2] The grasshopper’s other steps [pp2]conditions5

will land on a partial sums aσ(1) + . . . + aσ(k) for6

some permutation σ, but we get to choose the7

permutation. Thus it seems plausible that we can8

avoid a given set of n− 1 points.[ss2] [ss2]analyze9

Thomas: Quick observation.[sa2] The grasshopper [sa2]inform10

must make a first step.[sf2] This is always possi- [sf2]heuristic (simplify)11

ble, since the ai are distinct and |M| = n− 1; that12

is, there is always an ai not in M.[pp2] However, [pp2]conditions13

let’s say M matches all but one of the ai. Then the14

first step is uniquely determined. Still, according15

to the claimed theorem, a second step must still16

be possible.[pp3] [pp3]decomposition17

Figure 1: Excerpt from MiniPolymath1

Haggai Nuchi: The first point and line P0, l0 can-1

not be chosen[ce7] so that P0 is on the boundary [ce7]assertion2

of the convex hull of S and l0 picks out an ad-3

jacent point on the convex hull.[mc2] Maybe the [mc2]example (monster)4

strategy should be to take out the convex hull of5

S from consideration; follow it up by induction6

on removing successive convex hulls.[ld7] [ld7]lemma incorporation7

Haggai Nuchi: More specifically, remove the sub-8

set of S which forms the convex hull to get S1;9

remove the new convex hull to get S2, and repeat10

until Sn is convex. Maybe a point of Sn is a good11

place to start.[ss5] [ss5]implement12

Srivatsan Narayanan: Can we just assume by in-13

duction that we have proved the result for all the14

“inner points” S2 ∪ S3 · ∪Sn.[ad5] The base case [ad5]negotiation15

would be that S = S1, i.e., it forms a convex16

polygon.[mc4] [mc4]proof17

Figure 2: Excerpt from MiniPolymath3

3
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SA ackn, inform Speech-Act Annotated Corpus
Classified List of Speech Acts [6]

AD negotiation Aberdein’s patterns of proof dia-
logue [1]

PD question Prakken’s persuasion dialogues
[13]

LD conjecture, lemma incorporation Lakatosian moves [9]
MC concept, example (arbitrary inst.),

example (monster), proof, other
(phatic)

types of mathematical comments
[10]

MO article, problem, ephemera types of mathematical objects [3]

SS read, analyze, explore, implement,
verify, local assessments, transi-
tion

Schoenfeld’s interpretation of
“How to Solve It” [15]

PP goal, conditions, decomposition Pólya’s stages of planning [12]
SF resources, heuristic (compute!),

heuristic (decompose), heuristic
(formal gen.), heuristic (simplify),
heuristic (symmetry), heuristic
(total stuckness), control, belief
systems

Schoenfeld’s factors in mathemat-
ical thinking [15]

CE property, assertion components of explanation [in
preparation]

Table 1: Relevant tag sets with example tags

4
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