SEVENTH FRAMEWORK °

PROGRAMME

o Concept
* * Invention
et B Theory

DS.2

Evaluation criteria for automated
serendipity

Authors Joseph Corneli, Alison Pease, Simon Colton
Reviewers Tarek Besold
Grant agreement no. 611553
Project acronym COINVENT - Concept Invention Theory
Date September 1, 2015
Distribution PU/RE/CO

Disclaimer

The information in this document is subject to change without notice. Company or product names mentioned in this document may
be trademarks or registered trademarks of their respective companies.

The project COINVENT acknowledges the financial support of the Future and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the European Commission, under FET-Open Grant number 611553.

Abstract

‘We adapt the Standardised Procedure for Evaluating Creative Systems (SPECS), a high-level, customisable evaluation strategy that
was devised to judge the creativity of computational systems to turn our definition into a set of evaluation guidelines. We pilot
our framework by examining the degree of serendipity of existing and hypothetical computational systems from three domains:
evolutionary computing, recommender systems, and automated programming. In each of the examples, the evaluation framework
shows ways in which the system’s potential for serendipity could be enhanced. For future work, we propose an approach to
evaluation that would build on the ideas of this report but more fully embed evaluation within the system itself.

Keyword list: serendipity, evaluation, computational creativity, autonomous systems

Changes

Version | Date Author Changes

0.1 01.08.15 | Joseph Corneli Creation

0.2 01.09.15 | Joseph Corneli Initial version for review

0.3 28.09.15 | Joseph Corneli Response to reviewer comments

Executive Summary

This document expands and revises the preliminary of evaluation criteria presented in D5.1. In or-
der to be self-contained, a succinct summary our model of serendipity is presented in an appendix.
The model shows the inputs, outputs, and processing steps we are prepared to call “serendipity”,
at a suitably abstract level for broad application.

The present document focuses on three case studies that show how the model can be used
to evaluate the potential for serendipity in computational systems. A definition of serendipitous
processing is introduced. A central feature of our definition is that the relevant processing steps
are not guaranteed in advance.

We adapt the Standardised Procedure for Evaluating Creative Systems (SPECS), a high-level,
customisable evaluation strategy that was devised to judge the creativity of computational systems
to turn our definition into a set of evaluation guidelines. We pilot our framework by examining
the degree of serendipity of existing and hypothetical computational systems from three domains:
evolutionary computing, recommender systems, and automated programming. In each of the ex-
amples, the evaluation framework shows ways in which the system’s potential for serendipity
could be enhanced.

This appears to be the first proposed method for evaluating computational serendipity. For
future work, we propose an approach to evaluation that would build on the ideas of this report but
more fully embed evaluation within the system itself.

CONTENTS

Contents

1 Introduction 1
2 Using SPECS to evaluate computational serendipity 2
3 Case Study: Evolutionary music improvisation 3
4 Case Study: Next-generation recommender systems 5
5 Case Study: Automated flowchart assembly 6
6 Summary and Conclusions 7
Annex

A A computational model of serendipity 11

iv September 1, 2015 611553

D5.2 Evaluation of automated serendipity ~FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

1 Introduction

This document expands and revises the preliminary of evaluation criteria presented in Section
5.2 (“Using SPECS to evaluate computational serendipity”) of D5.1 (“Computational account of
serendipity”). It follows the conceptual framework for serendipity introduced in that deliverable.
In order to be self-contained, a succinct summary our model of serendipity is presented in Ap-
pendix A of the current document. The model shows the inputs, outputs, and processing steps we
are prepared to call “serendipity”, at a suitably abstract level.

The present document focuses on three case studies that show how the model can be used
to evaluate the potential for serendipity in computational systems. Further technical details on
the third case study appear in D8.4. Full details are presented in [5]. The key elements of our
conceptual framework are encapsulated in the following:

Definition of serendipity. (1) Within a system with a prepared mind, a previously uninteresting
trigger arises due to circumstances that the system does not control and cannot predict, and is
classified as interesting by the system; and, (2) The system uses the trigger and prior prepara-
tion, together with relevant computational processing, networking, and experimental techniques,
to obtain a novel result that is evaluated favourably by the system or by external sources.

The several components of this definition — the focus shift that facilitates the move from (1)
to (2), the trigger itself, the prepared mind, the bridge, the result — are left generic, so that
researchers can apply them to a range of systems. For instance, serendipity may also arise in com-
posite socio-technical systems. A standard spell-checking program might suggest a substitution
that the user deems especially fortuitous; and we might agree that serendipity has taken place, al-
though we would not attribute serendipity to the spell-checker. In this case, it is the user’s prepared
mind that forms the bridge from trigger to result. Note, however, that it should not be assumed
that any system that can accommodate user interaction will directly lead to serendipity; take for
example the use of a calculator, where the potential for serendipity through user interaction is
minimal.

A central feature of our definition is that the relevant processing steps are not guaranteed in
advance. We will refer to the chance that the trigger is observed by the system; curiosity as a
measure of the likelihood that the trigger will be identified as interesting; sagacity as a measure
of the likelihood that a bridge to the result will be found. We also need to estimate the value of
the result. Note that “embedded evaluation” is a requisite part of our definition of serendipity, and
that this is different from the kind of overall evaluation we describe here.

The factors that influence serendipitous outcomes are encouraged by a number of qualitative
factors, including a dynamic world, exposure to multiple contexts, interaction with multiple
tasks, and a system that is affected by multiple influences. These contributing factors are familiar
from historical instances of serendipitous discovery and invention Programming computers that
can make use of these features is likely to pose challenges. In the case studies, we use these
factors to look at ways in which the system’s potential for serendipity could be improved.

In [5], we argue that serendipity is particularly relevant for autonomous systems, and that
the potential for serendipity goes along with the ability to learn, the capacity to interact in a
recognisably social manner, and that building greater sophistication at embedded evaluation is a
good starting point for developers to work from.

611553 September 1, 2015 1

D5.2 Evaluation criteria for automated serendipity

2 Using SPECS to evaluate computational serendipity

We adapt the Standardised Procedure for Evaluating Creative Systems (SPECS), a high-level,
customisable evaluation strategy that was devised to judge the creativity of computational systems
[10]. In the three step SPECS process, the evaluator defines the concepts and behaviours that
signal creativity, converts this definition into clear standards, and then applies them to evaluate the
target systems. We follow a slightly modified version of Jordanous’s earlier evaluation guidelines,
in that rather than attempt a definition and evaluation of creativity, we follow the three steps for
serendipity. With similar adaptations, SPECS could be used to evaluate other system features (like
“intelligence”). Note that on the understanding developed here, serendipity is only meaningfully
attributed to a particular kind of process. It is not a property of a generated artefact (like novelty
or usefulness), nor is it a system trait (like skill or autonomy).

Step 1: Identify a definition of serendipity that your system should satisfy to be considered
serendipitous.

Definition of serendipity. (1) Within a system with a prepared mind, a previously uninteresting
serendipity trigger arises due to circumstances that the system does not control, and is classified as
interesting by the system; and, (2) The system uses the trigger and prior preparation, together with
relevant computational processing, networking, and experimental techniques, to obtain a novel
result that is evaluated favourably by the system or by external sources.

Step 2: Using Step 1, clearly state what standards you use to evaluate the serendipity of your
system.

With our definition and other features of the model in mind, we propose the following standards
for evaluating serendipity in computational systems. These criteria allow the evaluator to assess
the degree of seredipity that is present in a given system’s operation.

(A - Definitional characteristics) The system can be said to have a prepared mind, consisting
of previous experiences, background knowledge, a store of unsolved problems, skills, ex-
pectations, readiness to learn, and (optionally) a current focus or goal. It then processes a
trigger that is at least partially the result of factors outside of its control, including random-
ness or unexpected events. It classifies this trigger as interesting, constituting a focus shift.
The system then uses reasoning techniques and/or social or otherwise externally enacted
alternatives to create a bridge from the trigger to a result. The result is evaluated as useful,
by the system and/or by an external source.

(B - Dimensions) Serendipity, and its various dimensions, can be present to a greater or lesser
degree. If the criteria above have been met, we consider the system (and optionally, generate
ratings as estimated probabilities) along several dimensions: (a: chance) how likely was this
trigger to appear to the system? (b: curiosity) On a population basis, comparing similar
circumstances, how likely was the trigger to be identified as interesting? (c: sagacity) On a
population basis, comparing similar circumstances, how likely was it that the trigger would
be turned into a result? Finally, we ask, again, comparing similar results where possible: (d:

2 September 1, 2015 611553

D5.2 Evaluation of automated serendipity ~FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

value) How valuable is the result that is ultimately produced? Low likelihood a x b x ¢ and
high value d are the criteria we use to say that the event was “highly serendipitous.”

(C - Factors) Finally, if the criteria from Part A are met, and if the event is deemed sufficiently
serendipitous to warrant further investigation according to the criteria in Part B, then in order
to deepen our qualitative understanding of the serendipitous behaviour, we ask: To what
extent does the system exist in a dynamic world, spanning multiple contexts, featuring
multiple tasks, and incorporating multiple influences?

Step 3: Test your serendipitous system against the standards stated in Step 2 and report the
results.

We will pilot our framework by examining the degree of serendipity of existing and hypothetical
computational systems in the following case studies.

Pease et al. [15] used an earlier variant the SPECS criteria to analyse three examples of po-
tentially serendipitous behaviour: dynamic investigation problems, model generation, and poetry
flowcharts. Using our updated criteria, we discuss two new examples below, and revisit poetry
flowcharts in our third example, reporting on recent work. As Campbell [3] writes, “serendipity
presupposes a smart mind,” and these examples suggest potential directions for further work in
computational intelligence.

3 Case Study: Evolutionary music improvisation

[9] reported a computational jazz improvisation system (later given the name GAmprovising [10])
that uses genetic algorithms. Reevaluating GAmprovising can shed light on the degree to which
evolutionary computing can encourage computational serendipity.

GAmprovising uses genetic algorithms to evolve a population of Improvisors. Each Improvisor
is able to randomly generate music based on various parameters such as the range of notes to be
used, preferred notes, rhythmic implications around note lengths and other musical parameters,
see [9]. These parameters are what define the Improvisor at any point in the system’s evolution.
After a cycle of evolution, each Improvisor is evaluated using a fitness function based on Ritchie’s
[16] formal criteria for creativity. This model relies on user-supplied ratings of the novelty and
appropriateness of the music produced by the Improvisor to calculate 18 metrics that collectively
indicate how creative the system is. The fittest Improvisors are used to seed a new generation of
Improvisors, through crossover and mutation operations.

The GAmprovising system can be said to have a prepared mind through its background
knowledge of what musical concepts to embed in the Improvisors and the evolutionary abilities
to evolve Improvisors. A potential serendipity trigger comes from the combination of previous
mutation and crossover operations with current user input. To be clear, in the current version of the
system a human evaluator is largely responsible for the system’s focus shift, since the user tells
the system which improvisations are most valuable. [9] notes that this “introduces a fitness bot-
tleneck.” In future versions of the system, autonomous evaluation could potentially take over for
the human evaluator. Once the interesting samples have been collected (from whatever source),
a bridge is then built to new results through the creation of new Improvisors. The results are

611553 September 1, 2015 3

D5.2 Evaluation criteria for automated serendipity

the various musical improvisations produced by the fittest Improvisors (as well as, perhaps, the
parameters that have been considered fittest).

The probability of encountering any particular pair of Improvisor and user evaluation is van-
ishingly low, given the massive dimensions of this search space. However, there will always be a
highest-scoring Improviser, whose parameters will be used to seed the next round. Do we estimate
the chance of the trigger appearing according to its uniqueness, or according to the system’s atten-
tive observation of all triggers that cross its path? Consider de Mestral’s encounter with burrs: the
chance of encountering burrs while out walking was high, and the details of the particular burrs
that were encountered effectively irrelevant. The situation here is similar: despite their uniqueness,
the trigger appearing is “high.” The evolution of Improvisors captures a sense of curiosity about
how to satisfy the musical tastes of a particular human user who identifies certain Improvisors as
interesting. The sagacity of the system corresponds to its methods for enhancing the likelihood
that the user will appreciate a given Improvisor’s music (or similar music) over time. With little
basis for comparison, we can only say that these two dimensions are “typical.” The aim of the
system is to maximise the value of the generated results by employing a fitness function. Indeed,
the system

“[Wlas able to produce jazz improvisations which slowly evolved from what was es-
sentially random noise, to become more pleasing and sound more like jazz to the
human evaluator’s ears” [9].

However, the very reliability of the system ultimately bears against its overall potential for
serendipity. Following Step 2, Part B of the SPECS procedure, we find a likelihood measure of
high x moderate X moderate, with outcomes of moderate value, so that the system as a whole
is “not very serendipitous.” Evaluating individual threads (as members of a larger population)
would yield varied results, which emphasises the importance of system scoping, mentioned above.
However, it would be inaccurate to simply say that successful threads are serendipitous and un-
successful threads are unserendipitous, since that ignores components other than value. At the
moment, individual threads are effectively equivalent regarding chance, curiosity, and sagacity; a
thread-by-thread analysis should be deferred until there would be more to say.

This is related to other changes that would improve the global serendipity score, as the fol-
lowing qualitative factor analysis indicates. The GAmprovising system does operate in dynamic
world, assuming that the user’s tastes may change. A more elaborate version of the system that
could cater to multiple users is not yet implemented, but would be occupied with a considerably
more complex problem, spanning and integrating multiple contexts. The system clearly engages
with multiple tasks, but these are largely separate, for instance, one global fitness function is
used, rather than evolving a local fitness function for each user along with their ratings. Multiple
influences are present but currently only at compile time, in the design of the fitness function, and
the selection of musical parameters that can later be set. Greater dynamism in future versions of
the system would be likely to increase its potential for serendipity.

4 Case Study: Next-generation recommender systems

Recommender systems are one of the primary contexts in computing where serendipity is cur-
rently discussed. Serendipity, for current recommender systems, means suggesting items to a user

4 September 1, 2015 611553

D5.2 Evaluation of automated serendipity ~FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

that will be likely to introduce new ideas that are unexpected, but close to what the user is already
interested in. As we noted, these systems mostly focus on supporting discovery for the user —
but some architectures also seem to take account of invention of new methods for making recom-
mendations, e.g. using Bayesian methods, as surveyed in [7]. In light of our working definition
of serendipity, we need to distinguish serendipity on the user side from serendipity in the system
itself.

Current recommendation techniques associate less popular items with high unexpectedness
[8, 12], and use clustering to discover latent structures in the search space, e.g., partitioning users
into clusters of common interests, or clustering users and domain objects [11, 14, 17]. But even
in the Bayesian case, the system has limited autonomy. A case for giving more autonomy to
recommender systems can be made, especially in complex and rapidly evolving domains where
hand-tuning is cost-intensive or infeasible.

With this challenge in mind, we investigate how serendipity could be achieved on the system
side. In terms of our model, current systems have at least the makings of a prepared mind,
comprising both a user- and a domain model, both of which can be updated dynamically. User
behaviour (e.g. following certain recommendations) or changes to the domain (e.g. adding a new
product) may serve as a potential trigger that could ultimately cause the system to discover a new
way to make recommendations in the future. Note, however, that it is unexpected behaviour in
aggregate, rather than a one-off event, that is likely to provide grounds for a focus shift. A bridge
to a new kind of recommendation could be created by looking at exceptional patterns as they
appear over time. For instance, new elements may have been introduced into the domain that do
not cluster well, and clusters may appear in the user model that do not have obvious connections
between them. A new recommendation strategy serves the organisational mission would be a
serendipitous result for the system.

The system has only imperfect knowledge of user preferences and interests. At least relative
to current recommender systems, the chance of noticing some particular pattern in user behaviour
seems quite low. The urge to make recommendations specifically for the purposes of finding out
more about users could be described as curiosity. Such recommendations may work to the detri-
ment of other metrics over the short term. In principle, the system’s curiosity could be set as a
parameter, depending on how much coherence is permitted to suffer for the sake of gaining new
knowledge. Measures of sagacity would relate to the system’s ability to develop useful exper-
iments and draw sensible inferences from user behaviour. For example, the system would have
to select the best time to initiate an A/B test. A significant amount of programming would have
to be invested in order to make this sort of judgement call autonomously, so such systems are
understandably rare. The value of recommendation strategies can be measured in terms of tradi-
tional business metrics or other organisational objectives. In this case, we compute a likelihood
measure of low X variable x low, with outcomes of potentially high value, so that such a system is
“potentially highly serendipitous.”

Recommender systems have to cope with a dynamic world of changing user preferences and a
changing collection of items to recommend. A dynamic environment which exhibits some degree
of regularity represents a precondition for useful A/B testing. The system’s multiple contexts
include the user model, the domain model, as well as an evolving model of its own organisation.
A system matching the description here would have multiple tasks: making useful recommen-
dations, generating new experiments to learn about users, and improving its models. In order to

611553 September 1, 2015 5

D5.2 Evaluation criteria for automated serendipity

make effective decisions, a system would have to avail itself of multiple influences related to
experimental design, psychology, and domain understanding.

5 Case Study: Automated flowchart assembly

Here we consider the design of a contemporary experiment with the FloWr flowcharting frame-
work [4]. FloWr is a user interface for creating and runnable flowcharts, built of small modules
called ProcessNodes. In day-to-day use, FloWr can be viewed as a visual programming environ-
ment. However, it can also be invoked programmatically, on the Java Virtual Machine, or with
any language using a new web API. The goals of FloWr are both to be a user friendly tool for co-
creativity, and to be an autonomous Flowchart Writer. Our experiment targets the latter scenario,
assembling available ProcessNodes into flowcharts automatically. This can be viewed as a simple
example of automated programming.

In the backend, FloWr’s flowcharts are stored as scripts. These detail the names of the involved
nodes together with their (input) parameters and (output) variable settings. Connections between
nodes are established when one node’s input parameter references the output variable of another
node. Inputs and outputs have constraints. For instance, the WordSenseCategoriser node has
a stringsToCategorise parameter, which is seeded with an ArrayList of strings. The node
produces useful output only when these strings can be parsed as as a space-separated list of words.
The node’s requiredSense parameter needs to be seeded with a string that represents exactly one
of the 57 British National Corpus Part of Speech tags. Given constraints of this nature, the first
challenge in automated flowchart assembly is to match inputs to outputs correctly, and to make
sure that all required inputs are satisfied.

In our current experiment, the system’s potential triggers result from trial and error with
flowchart assembly. Some valid combinations of nodes will produce results, and some will not.
Due to the dynamically changing environment (e.g., updates to data sources like Twitter) some
flowcharts that did not produce results earlier may unexpectedly begin to produce results. The
system’s prepared mind lies in a distributed knowledge base provided by ProcessNodes, showing
the constraints on their inputs and outputs, and in the global history of successful and unsuccessful
combinations. The system will not try combinations that it knows cannot produce results, but it
will try novel combinations and may retry earlier flowchart specimens that have the chance to be-
come viable. Turning a collection of nodes for which no known working combination existed into
a working flowchart is an occasion for a focus shift: what made this particular combination work?
Is there a pattern that could be exploited in the future? However, it may be that no broader pattern
can be found, other than the fact that the combination works. Successful combinations and any
further inferences are stored, and referred to in future runs. The bridge to the next set of results
is accordingly found by informed trial and error. In these early experiments, the basic result the
system is aiming to achieve is simply to generate a new combination of nodes that can fit together
and that generate non-empty output. Subsequent versions of the system may have more detailed
evaluation functions, setting a higher bar. For example, a future version of the system could be
tuned to search for flowcharts that generate poetry, as we discuss in [6].

The chance of finding a novel successful combination of nodes is fairly low, as this depends
on both the output from certain nodes, and in terms the combinatorial search strategy itself. Com-
pared to humans users of FloWr, the search process is exceptionally curious, since it tries many

6 September 1, 2015 611553

D5.2 Evaluation of automated serendipity ~FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

combinations programmatically. Remembering viable combinations and avoiding combinations
that are known not to work presents only a modest degree of sagacity. At the moment, the sys-
tem’s criterion for attributing value is simply that the combination of nodes generates non-empty
output; however an external evaluator is not likely to judge these combinations as useful. The
associated likelihood score is low x low X high, which is favourable, however, until there is a more
discriminating way to judge value, the attribution of serendipity to any particular run may be pre-
mature. One fairly obvious route would be to attribute value to explanatory heuristics, rather than
generated texts; this would require increased sagacity on the part of the system as well.

The dynamic world the system operates in is dynamic in two ways: first, in the straightfor-
ward sense that some of the input sources, like Twitter, are changing; and also in the sense that the
system’s knowledge of successful and unsuccessful node combinations changes over time. The
current version of the system does not seem to deal with multiple contexts; even though we have
broken the experiment into separate sub-populations to constrain the search, these do not inter-
act. However, in a future version of the system, interaction between different heuristically-driven
search processes would be possible, and could produce more unexpected results. Along these
lines, as more goals are added, the system could more readily be seen to have multiple tasks.
For instance, one search process could look for narrative outlines to structure a poem with, and
another process could look for lines or stanzas to fill out that outline. As for multiple influences,
the population of ProcessNodes will constrain (and, as more nodes are added, extend) the possible
strategies for assembling flowcharts.

6 Summary and Conclusions

Table 1 summarises how the condition, components, dimensions and factors in our model of
serendipity appear in an evolutionary music system, in hypothetical “next-generation” recom-
mender systems, and in our current work on a flowchart-assembly system. Each of the case studies
shows clear potential for serendipity. There are also clear ways in which the measure of serendipity
could be enhanced.

1. A future version of the evolutionary music system would be more convincingly sagacious if
it could evaluate works without user intervention. It might also be able to tailor its fitness
function to the individual user. More broadly, interaction between the system’s tasks and
more dynamism in its influences would help differentiate individual threads or system runs,
and some elements of this population might be more serendipitous than others.

2. The next-generation recommender systems we’ve envisioned need to be able to make in-
ferences from aggregate user behaviour. This points to long-term considerations that go
beyond the unique serendipitous event. How “curious” should these systems be? One obvi-
ous criterion is that short-term value should be allowed to suffer as long as expected value
is still higher.

3. The flowchart assembly process would need more stringent, and more meaningful, criteria

for value before third-party observers would be likely to attribute serendipity to the system.
In addition to raising challenges for autonomous evaluation (as in the evolutionary music

611553 September 1, 2015 7

D5.2 Evaluation criteria for automated serendipity

Evolutionary music

Condition

Next-gen. recommenders

Flowchart assembly

Focus shift

Driven by (currently,
evaluation of samples

human)

Unexpected behaviour in the ag-
gregate

Find a pattern to explain a suc-
cessful combination of nodes

Components

Trigger

Previous evolutionary steps, in
combination with user input
Prepared mind

Musical knowledge, evolution

mechanisms

Bridge
Newly-evolved Improvisors

Result

Music generated by the fittest Im-
provisors

Input from user behaviour

Through user/domain model

Elements identified outside clus-
ters

Dependent on organisation goals

Trial and error in combinatorial
search

Constraints on node inputs and
outputs; history of successes and
failures

Try novel combinations

Non-empty or more highly quali-
fied output

Dimensions

Chance
Looking for rare gems in a huge
search space

Curiosity

Aiming to have a particular user
take note of an Improvisor
Sagacity

Enhance user appreciation of Im-
provisor over time, using a fitness
function

Value

Via fitness function (as a proxy
measure of creativity)

Imperfect knowledge of user pref-
erences and behaviour

Making unusual recommenda-

tions

Update recommendation model
after user behaviour

Per business metrics/objectives

Changing state of the outside
world; random selection of nodes
to try

Search for novel combinations

Don’t try things known not to
work; consider variations on suc-
cessful patterns

Currently “non-empty results”;
more interesting evaluation func-
tions possible

Factors

Dynamic world
Changes in the user tastes

Multiple contexts

Multiple users’ opinions would
change what the system is curious
about and require greater sagacity

Multiple tasks

Evolve Improvisors, generate mu-
sic, collect user input, carry out
fitness calculations

Multiple influences

Through programming of fitness
function and musical parameter
combinations

As precondition for testing sys-

tem’s influences on user be-
haviour
User model, domain model,

model of its own behaviour

Make recommendations, learn

from users, update models

Experimental design, psychology,
domain understanding

Changing data sources and grow-
ing domain knowledge

Interaction between different
heuristic search processes would
increase unexpectedness

Generate new heuristics and new
domain artefacts

Learning to combine new kinds of
ProcessNodes

September 1, 2015

Table 1: Summary: applying our computational serendipity model to three case studies

611553

D5.2 Evaluation of automated serendipity ~FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

system case), this requirement would impose more sophisticated constaints on processing
in earlier steps, which would require the system to be more sagacious.

As an overall comment on the evalation method, this appears to be the first proposed method
for evaluating computational serendipity, so comparison to other methods is not currently possible.
Nevertheless, some comments can be advanced. Firstly, the proposal is more of a meta-method
than a specific testing procedure: as we saw in the case studies, there was some work to do in each
case to sufficiently define the components of serendipity required by the model. It may be useful
in certain contexts to fix more concrete circumscribed definitions and thresholds. For instance,
in addition to the question, “how curious should these systems be?”, a related question is how
fallible should they be. Pease et al. [15] reported “willingly mak[ing] the system less effective to
encourage incidents which onto which we might project the word serendipity,” which is not the
direction we ultimately want to go, though it serves to underscore the importance of fallibility.

In [5], we propose to create a pattern language, after [1], describing various plans that can
be put in place to encourage serendipitous discovery and invention. In this setting, each pattern
would be fallible, but the ability to learn new patterns would create a sort of guarantee against
absolute failure. For example, in an apparent run of bad luck, interdepartmental meetings would
not produce any new ideas, but noticing the run of bad luck, and changing behaviour accordingly
would help to ensure something was learned after all. The key thing about this approach is that it
more fully embeds evaluation within the system.

It is worth noting that this approach has direct bearing on conceptual blending. in [2], we
noted that that the concept blending generally makes some assumptions about the form of the
blend. An experimental approach in which the system asks and answers questions, and evaluates
results would have to transform raw data into “strategic data”, after [13, p. 506]. The guidelines in
this report give an idea about how to bring about the focus shifts that can help make that happen.

References

[1] ALEXANDER, C., ISHIKAWA, S., AND SILVERSTEIN, M. A Pattern Language: Towns,
Buildings, Construction. Center for Environmental Structure Series. Oxford University
Press, Oxford, 1977.

[2] Bou, F., CORNELL, J., GOMEZ-RAMIREZ, D., MACLEAN, E., SMAILL, A., AND PEASE,
A. The role of blending in mathematical invention. In Proceedings of the Sixth International
Conference on Computational Creativity, ICCC 2015, S. Colton, H. Toivonen, M. Cook, and
D. Ventura, Eds. 2015.

[3] CAMPBELL, W. C. Serendipity in research involving laboratory animals. ILAR journal 46,
4 (2005), 329-331.

[4] COLTON, S., AND CHARNLEY, J. Towards a Flowcharting System for Automated Process

Invention. In Proceedings of the Fifth International Conference on Computational Creativity
(2014), D. Ventura, S. Colton, N. Lavrac, and M. Cook, Eds.

611553 September 1, 2015 9

REFERENCES

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

10

CORNELI, J., JORDANOUS, A., GUCKELSBERGER, C., PEASE, A., AND COLTON, S.

Modelling serendipity in a computational context. Submitted to Minds and Machines (Oct
2015).

CORNELI, J., JORDANOUS, A., SHEPPERD, R., LLANO, M. T., MISZTAL, J., COLTON,
S., AND GUCKELSBERGER, C. Computational poetry workshop: Making sense of work
in progress. In Proceedings of the Sixth International Conference on Computational Cre-
ativity, ICCC 2015, S. Colton, H. Toivonen, M. Cook, and D. Ventura, Eds. Association for
Computational Creativity, 2015.

GUoO, S. Bayesian Recommender Systems: Models and Algorithms. PhD thesis, The Aus-
tralian National University, 2011.

HERLOCKER, J. L., KONSTAN, J. A., TERVEEN, L. G., AND RIEDL, J. T. Evaluating

collaborative filtering recommender systems. ACM Transactions on Information Systems 22,
1 (Jan. 2004), 5-53.

JORDANOUS, A. A fitness function for creativity in jazz improvisation and beyond. In
Proceedings of the International Conference on Computational Creativity (Lisbon, Portugal,
2010), pp. 223-227.

JORDANOUS, A. A Standardised Procedure for Evaluating Creative Systems: Computational
Creativity Evaluation Based on What it is to be Creative. Cognitive Computation 4, 3 (2012),
246-279.

KAMAHARA, J., AND ASAKAWA, T. A community-based recommendation system to re-
veal unexpected interests. In Proceedings of the 11th Internationall Multimedia Modelling
Conference (2005), pp. 433-438.

Lu, Q., CHEN, T., ZHANG, W., YANG, D., AND YU, Y. Serendipitous Personalized
Ranking for Top-N Recommendation. 2012 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology (Dec. 2012), 258-265.

MERTON, R. K. The Bearing of Empirical Research upon the Development of Social The-
ory. American Sociological Review (1948), 505-515.

ONUMA, K., TONG, H., AND FALOUTSOS, C. TANGENT: A Novel ‘Surprise-me’ Recom-
mendation Algorithm. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining (2009).

PEASE, A., COLTON, S., RAMEZANI, R., CHARNLEY, J., AND REED, K. A Discussion
on Serendipity in Creative Systems. In Proceedings of the Fourth International Conference
on Computational Creativity (2013).

RITCHIE, G. D. Some empirical criteria for attributing creativity to a computer program.
Minds and Machines 17 (2007), 67-99.

ZHANG, Y. C., SEAGHDHA, D. O., QUERCIA, D., AND JAMBOR, T. Auralist: Introducing
Serendipity into Music Recommendation. In Proceedings of the fifth ACM international
conference on Web search and data mining (2011), pp. 13-22.

September 1, 2015 611553

D5.2 Evaluation of automated serendipity ~FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

A A computational model of serendipity

Figure 1a is a heuristic map of the features of serendipity. Dashed paths ending in ‘X’ show some
of the things that can go wrong. A serendipity trigger might not arise, or might not attract interest.
If interest is aroused, a path to a useful result may not be sought, or may not be found. If a result
is developed, it may turn out to be of little value. Prior experience with a related problem could be
informative, but could also hamper innovation. Similarly, multiple tasks, influences, and contexts
can help to foster an inventive frame of mind, but they may also be distractions.

Figure 1b removes these unserendipitous paths to focus on the key features of “successful”
serendipity. The serendipity trigger is denoted here by 7. The prepared mind corresponds
to those preparations, labeled p and p’, that are relevant to the discovery and invention phases,
respectively. These preparations may include training, current attitude, access to relevant knowl-
edge sources, and so on. A focus shift takes place when the trigger is observed to be interesting.
The now-interesting trigger is denoted 7*, and is common to both the discovery and the invention
phases. The bridge is comprised of the actions based on p’ that are taken on 7* leading to the
result R, which is ultimately given a positive evaluation.

Figure 1c expands this schematic into a sketch of the components of one possible idealised
implementation of a serendipitous system. An existing generative process is assumed. This may
be based on observations of the outside world, or it may be a purely computational process. In any
case, its products are passed on to the next stage. After running this data through a feedback loop,
certain aspects of the data are singled out, and marked up as “interesting.” Note that this designa-
tion need not arise all at once: rather, it the outcome of a reflective process. In the implementation
envisioned here, this process makes use of two primary functions: p;, which notices particular
aspects of the data, and p,, which offers reflections about those aspects. Together, these functions
build up a “feedback object,” T*, which consists of the original data and further metadata. This
is passed on to an experimental process, which has the task of verifying that the data is indeed
interesting, and determining what it may be useful for. This is again an iterative process, relying
on functions p/ and p), which build a contextual understanding of the trigger by devising exper-
iments and assessing their results. Once implications or applications have been found, a result is
generated, which is passed to a final evaluation process, and, from there, to applications.

The ellipses at the end of the workflow in Figure 1c are intended to suggest that applications
are open-ended; however, an important class of applications will result in changes to one or more
of the system’s modules, for example by expanding the knowledge base that they have available.
Note that earlier components of the workflow cannot, in general, anticipate what the subsequent
phases will produce or achieve. If the system’s next steps could be anticipated, we would not say
that the behaviour was serendipitous. In other words, serendipity does not adhere to one specific
part of the system, but to its operations as a whole. Although Figures 1b and 1c treat the case of
successful serendipity, as indicated in Figure 1a, each step is fallible, as is the system as a whole.
Thus, for example, a trigger that has been initially tagged as interesting may prove to be fruitless.
Similarly a system that implements all of the steps in Figure 1c, but that never achieves results
of value does not have potential for serendipity. However, a system only produces results of high
value would also be suspect, since it would indicate a tight coupling between trigger and outcome.
Fallibility is a “meta-criterion” that transcends the other criteria.

611553 September 1, 2015 11

D5.2 Evaluation criteria for automated serendipity

“Value prepared
ésult t- oo o ind N
xw T N P, \N‘\’ 08
----- W et
R ' S\M
g o O
- A ‘\
o S R S o
S o teeeee===="" 5
0 --------------------- 4 ‘\
§ e :) x
.S trigger . . RS \ .
S ---------------- - “ - . . - o R ‘ .
S chance oo R S x
5 - '
DISCOVERY INVENTION
7 -+

(a) A heuristic map, showing serendipitous and unserendipitous outcomes

/

N N
T o T* R |R| >0
U/

Y

(b) A simplified process schematic, showing the key features of the model

reflective
process

pr
Discovery: ii’;ﬁgswe feedback

[Focus shift] \)
evaluation
Invention: \v . process =

A__| experimental
process

(c) A boxes-and-arrows diagram, showing one possible implementation architecture

Figure 1: Three representations of the elements of serendipity

12 September 1, 2015 611553

	Introduction
	Using SPECS to evaluate computational serendipity
	Case Study: Evolutionary music improvisation
	Case Study: Next-generation recommender systems
	Case Study: Automated flowchart assembly
	Summary and Conclusions
	A computational model of serendipity

