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Abstract
The COINVENT melodic harmonizer is based on blending harmonic concepts extracted either through statistical learning or from a
data pool with “real example/world” representations of historical traditions of music creation. To this end, rich multi-level structural
descriptions of harmony of different idioms are necessary, so that meaningful mappings may be made, giving rise to “coherent”
harmonic blends. Therefore, a diverse collection of musical pieces drawn from different historic eras and from drastically different
harmonic styles has been assembled. Each idiom/style is internally as coherent as possible such that regularities of the specific
harmonic space can be extracted; the idioms among them are as different as possible. Additionally, the musical pieces are manually
annotated such that structural harmonic features may be extracted at various hierarchic levels. A novel music encoding scheme
along with a framework based on musicXML have been developed, allowing this dataset to act as a knowledge repository, where
music primitives together with manually annotated analytical descriptions are encoded and extracted according to the requirements
of the user/researcher. At a harmonic level above the plain note level, a new idiom-independent representation of chord types that is
appropriate for encoding tone simultaneities in any harmonic context (such as tonal, modal, jazz, octatonic, atonal) is proposed and
utilized, namely the General Chord Type (GCT).
Keyword list: Dataset, Harmonic training, Harmony annotation, Harmony encoding
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1 Introduction

The development of the COINVENT melodic harmonizer incorporates statistical learning and the
extraction of harmonic concepts from a data pool with “real example/world” representations of
historical traditions of music creation. The COINVENT system should be able to learn different
harmonies, and then allow the invention of new harmonic spaces via mechanisms of conceptual
blending. Conceptual blending enables structural mapping between diverse harmonic spaces and
combination of different harmonic concepts into a novel coherent harmonic system. A melodic
harmonisation assistant that facilitates conceptual blending should allow a highly structured rep-
resentation of harmonic concepts in an explicit manner at various hierarchic levels and parametric
viewpoints. Rich multi-level structural descriptions of harmony of different idioms are necessary,
so that meaningful mappings may be made, giving rise to “coherent” harmonic blends.

To achieve this goal, a diverse collection of musical pieces drawn from different historic eras
and from drastically different harmonic styles has been assembled. Each idiom/style is internally
as coherent as possible such that regularities of the specific harmonic space can be extracted; the
idioms among them are as different as possible. Additionally, the musical pieces are manually
annotated such that structural harmonic features may be extracted at various hierarchic levels, as-
sembling the harmonic spinal chord of the generic space that pairs of diverse idioms (input spaces)
share. More specifically, the following structural aspects are manually annotated: a) harmonic
reduction(s) of each musical work/excerpt so that structural harmonic/non-harmonic notes are ex-
plicitly marked, b) local scale/key changes are determined so that harmonic concepts relating to
modulations can be learnt, and c) grouping structure is given so that cadential patterns at various
hierarchic levels can be inferred. Although this dataset was created with respect to the formation
of a training dataset mainly for harmonic concepts, other important musical aspects (e.g. rhyth-
mic organization, voice movement, etc.) are also taken into account. By selecting an appropriate
music representation scheme and developing a framework to extract information, this dataset acts
as a knowledge repository, where music primitives together with manually annotated analytical
descriptions are encoded and extracted according to the requirements of the user/researcher.

At the lowest level of the musical surface (i.e. the actual notes of a musical piece) a custom
text-based encoding is used; annotated pieces are encoded using the musicXML format. This
format has been chosen for the following reasons: a) it is a widely used music encoding scheme for
music scores and most commercial music notation packages have adopted it, b) it is user-friendly
in the sense that musicians/musicologists can readily create annotated files for music pieces and
save them as musicXML files using the music notation software of their preference, c) it can be
adjusted to incorporate any required structural harmonic feature, d) computational environments
(such as music21) are available for handling musicXML files and extracting appropriate harmonic
structural features, e) annotations can easily be inspected by a user as they are score files that can
be read by any standard music notation package.

At a harmonic level above the plain note level, a new idiom-independent representation of
chord types that is appropriate for encoding tone simultaneities in any harmonic context (such
as tonal, modal, jazz, octatonic, atonal) is proposed. The General Chord Type (GCT) [1] repre-
sentation, allows the re-arrangement of the notes of a harmonic simultaneity such that abstract
idiom-specific types of chords may be derived; this encoding is inspired by the standard roman
numeral chord type labeling, but is more general and flexible. The proposed representation is ideal
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for hierarchic harmonic systems such as the tonal system and its many variations, but adjusts to
any other harmonic system such as post-tonal, atonal music, or traditional polyphonic systems.
This novel chord-type representation is considered of utmost importance for developing a com-
mon harmonic generic space for chords that will facilitate blending of seemingly incompatible
harmonic idioms (e.g. tonal and atonal).

In this report we present a custom information retrieval scheme for musical data and annota-
tions, and a computational framework that manages the representation of the above information
for the objectives of the COINVENT’s deliverable “D7.1 Harmonic training dataset”. Initially, we
selected music pieces with diverse harmonic content and organized them into groups depending
on various analytical criteria. Secondly, we created an open representation for musical data and
annotations to encode them. Thirdly, we developed an extensible computational shell to manage
various aspects of the dataset and perform operations for exporting the desired information. Fi-
nally, we created a novel chord-type representation scheme that allows a common encoding of
chords in any harmonic idiom facilitating thus further learning and conceptual blending.

The remaining of the report is organized as follows: Section 2 describes the harmonic content
of the dataset from a musicological point of view indicating various ways it can be grouped to
obtain meaningful information (historically, evolutionary, composer-styles etc.). In Section 3, we
present an extensible and versatile music encoding scheme for annotated music. Although many
symbolic representation templates have been proposed for music, we justify some of the reasons
and benefits that led us to the customization of a selected scheme. Additionally, this section de-
scribes the computational framework that manages the above representation. In general, this is
an extensible data interface that can operate various datasets and extract primitive and structured
information. This system could be used as a data-layer service providing parsing and database
operations interfacing datasets and models. In Section 4 we explain the General Chord Type
Representation that forms the basis for representing note simultaneities in any idiom. Future per-
spectives about the data, the data management tools and the overall orientation of the COINVENT
melodic harmonizer research are presented in Section 5.

2 Dataset description

The dataset consists of over 430 manually annotated musicXML documents categorized in 7 sets
and various subsets. The separation of pieces in sets primarily focuses on genre categorization,
while subsets are created within genres that present notable differences in their harmonic structure.
For instance, the Chorales of Bach belong to different set than Jazz music, while modal Jazz pieces
belong to a different subset from jazz standards that incorporate tonality transpositions. To this
end, the purpose of this dataset is not only to constitute a rich knowledge background of examples
that facilitates conceptual blending, but also to provide valid and accurate harmonic content in an
accessible, user-friendly encoding for various model applications in computational musicology.

There are many ways to set up and manage a music database. The most common approach is
to use file documents as the lowest dataset entry (RS200 dataset, 9GDB dataset, Isophonic anno-
tations and ISPG dataset, McGill Billboard dataset). Although there are many custom file formats
that are usually accompanied with scripts and frameworks to operate them (e.g. humdrum), there
are efforts to standardize both music data documents structure (KERN, musicXML) and even more
specific music encodings (e.g. Harte, text-Harmony). Other approaches aggregate data encodings

2 October 1, 2014 611553



D7.1 Harmonic training dataset FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

in single text files (KP dataset1 , DFT dataset2 , JazzCorpus) and there are some interesting imple-
mentations that use database systems like MySQL (Jazzomat monophonic dataset). (More details
about music representations in Section 2)

The symbolic music file format “musicXML” is becoming a standard in score notation3 and
its formal document structure provides a convenient data container for computational access. In
recent years there is active development of computational tools that operate with musicXML files
(e.g. music21) and public datasets with musicXML are emerging (e.g. GTTM dataset4). Advances
in music computational frameworks potentially enable each musicXML score to become the basis
for general-purpose music datasets.

Since the dataset is oriented for harmonic training, the criteria for music selection were focused
on the harmonic content of musical pieces and excerpts. Depending on a variety of harmonic fea-
tures, these dataset entries were grouped into subsets to form various training cases. The primary
criteria for selecting the dataset’s pieces were diversity and consistency of harmonic features be-
tween subsets. Diversity in harmonic features allows the inclusion of a wider spectrum of options–
a richer knowledge background – for potential blends in harmonic concepts, enabling the COIN-
VENT melodic harmonizer to produce harmonizations with strong references to diverse idioms.
The term “consistency” on the other hand, indicates each subset of pieces encompasses a “pattern”
in harmonic features that is characteristic to this subset, in a sense that these features are often en-
countered in several pieces within this idiom. Thereby, the produced harmonic blends will include
diverse harmonic features that constitute strong references to the incorporated idioms.

2.1 Background

The selection of pieces or excerpts for the creation of the categories and subcategories of the
dataset was mainly determined by a contextual and evolutional conceptualization of harmony and
of the art of melodic harmonization. In this context, two different melodic harmonization princi-
ples are considered as processional frameworks:

1. the use of sonorities stemming from the melodic pitch space (closed system), or

2. the use of sonorities beyond the pitch space of the melody (open system).

In this context, the pitch class material of the melody and of the harmony can be regarded as two
separate pc sets with variable number of common elements (their intersection ranging from the
null set to full equality).

Between these extremes various mixed/hybrid systems can occur and a multitude of harmo-
nization concepts can be employed. Commencing from the hypothesis that the creation of hybrid
systems by the composers of each particular era/place/style actually generated the historical and
stylistical evolution and diversity of the art of harmonization, we arrived at a hierarchy of cate-
gories of musical pieces/excerpts suitable for the training dataset.

1http://theory.esm.rochester.edu/temperley/kp-stats/
2http://marl.smusic.nyu.edu/wordpress/projects/feature-learning-deep-architectures/deep-learning-python-

tutorial/#data
3http://www.musicxml.com/software/
4http://music.iit.tsukuba.ac.jp/hamanaka/gttm.htm#
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The creation of a simple and stylistically coherent harmonization system involves some basic
harmonization principles that can be considered universal and diachronic:

1. the identification of the melody’s structural pitches, which will be part of the chords/sonorities
that will be used in the context of the chosen harmonic system and

2. the application of rules for voice-leading (linear movement, manipulation of dissonance)
and rules for functional progression of chords (if such exist) and

3. the creation of melodic/harmonic closure formulas (cadence patterns).

However, following the concept described above, the evolution of new complex and diverse
harmonic styles and idioms can be seen as a combination of closed or open harmonic systems
and/or of the harmonic concepts that they incorporate, i.e. by conceptual blending. So, since our
goal is a system that can invent interesting novel harmonizations through blending, a need for the
study of simple harmonic systems emerges, from which blending can occur at later stages.

2.2 Criteria and categories

The main criteria for the inclusion of a category of pieces or excerpts in the dataset was stylistic
integrity, the capability of breaking down the harmonization style to a relatively small number
of simple interconnecting concepts, the degree of evolutionary overlapping between neighboring
categories and the broad stylistic diversity of the entire corpus. In this context, the following
historical or stylistical broad categories – with a brief description of their properties/concepts –
were considered:

1. Modal Harmonization in the Middle Ages (11th – 14th centuries).

• Closed system: the pitch material is confined to the diatonic space of the eight diatonic
modes (1st to 8th – later called Dorian, Phrygian, Lydian, Mixolydian and their plagal
forms). External/open element: the use of B[ for the avoidance of the tritone.

• Almost exclusive use of parallel sonorities made of perfect 8ths and 5ths (parallel
organum technique).

• Optional use of parallel sonorities made of minor or major 3rds and 6ths (fauxbourdon
technique), in combination with perfect interval at cadences points

• Gradual use of contrary and oblique movement, as well as of other vertical intervals.

2. Modal Harmonization in the Renaissance (15th – 16th centuries).

• Closed System: both melody and harmony come from the heptatonic diatonic pitch
space (system of 8 or 12 modes, with two possible pitch collections) with one main
pitch center (initial/final mode) and other temporary pitch centers (other modes). Ex-
ternal/Open Elements: Pitch classes B[ and E[ (mobile pitches) and the artificial lead-
ing tones (C], F], G]). Overall, a non-enharmonic chromatic scale is produced.

• Use of tertian chords (chords built from stacked major and minor 3rds): major chords,
minor chords, diminished chords in 1st inversion.
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• Non-functional chord progression, except from the cadence points, where the descend-
ing perfect 5th relation prevails.

• Voice leading: Avoidance of parallel perfect intervals, dissonance in weak beats as
passing or auxiliary notes, dissonance in strong beats with preparation and stepwise
downward resolution, use of chromatic leading tones in cadences.

• During the transitional homophonic style (ca 1600 a.D.) a gradual liberation of chro-
maticism occurred, especially in madrigals.

3. Tonal Harmonization (17th-19th centuries).

• Closed System: heptatonic diatonic scales of two types (major, minor) in 12 transpo-
sitions. Permanent external element: the chromatic leading tone in minor scales. The
pitches of pitch collections come from seven steps in the cycle of perfect 5ths. There
are 12 discrete diatonic pitch collections (key signatures).

• Main use of tertian chords belonging to the basic tonality.

• Possible transposition of the harmonized melody to other tonalities, that are up to six
steps away in the circle of perfect 5ths.

• Open elements: use of certain types of external/chromatic tertian chords that do not
belong to the main tonality, but are borrowed from other tonalities (e.g. borrowed
dominant chords, neapolitan chord, etc.) or transformation of the diatonic chords (e.g.
chromatic or altered chords, mode mixture). So, chromatic tonal harmony is a partially
open/hybrid system.

• Functional chord progressions, stemming mainly from 5th and 3rd chord relationships.
Part of the functional system is the systematic use of the “perfect cadence” V→ I
(major dominant to major or minor tonic) at the conclusion of every major formal
segment.

• Rules of voice leading: 1) avoidance of parallel perfect intervals, 2) dissonances
(mainly in 7th chords) are resolved with downward stepwise motion.

4. Harmonization in National Schools (19th – 20th centuries).

• Return of diatonic modality, but with more liberal, chromatic harmonization (mixture
of closed and open systems).

• Liberation from functional chord progressions and from the obligatory use of the per-
fect cadence.

• Mixture of modal, tonal and free chromatic harmony (blending)

• Gradual use of post-tonal harmonic structures: whole-tone scale, octatonic scale, syn-
thetic scales.

5. Harmonization in the 20th century (extensive blending).

• Closed systems with diatonic or non-diatonic (symmetrical scales, chromatic/synthetic
scales) pitch structures.

• Closed systems with non-triadic sonorities (verticalities created from 4ths, 5ths, 2nds,
mixed intervals, extended/altered tertian chords, polychords, free verticalization of
scales/modes).
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• Open harmonization systems of every possible type and hybridization level, up to the
complete absence of common pitches between melody and harmony.

• Abolishment of traditional voice leading: emancipation of parallel sonorities (diatonic
or real) and of dissonances.

• Abolishment of functionality stemming from the circle of 5ths, emphasis on the “color”
and “character” of sonorities. Free cadence patterns, absence of explicit pitch center,
pandiatonicism.

• Multiple layers of musical texture and harmonization.

6. Harmonization in folk traditions.

• Mainly closed systems, where melody and harmony stem from the same pitch class
set/mode.

• Most systems are strictly monophonic and the harmonization is considered an external
distorting element (consequence of blending).

• External elements (blending types) create widely-ranging chromaticism (e.g. the use
of major chords with minor 7th for the harmonization of minor pentatonic melodies in
the blues idiom).

7. Harmonization in 20th century popular music and jazz.

• Closed modal or tonal harmonic systems greatly differing in style and individual fea-
tures.

• Open systems with fusion between styles (extensive blending).

Within the aforementioned categories, we preferred (with some interesting exceptions) mainly
homophonic styles/sub-categories that allow for explicit separation of the melodic line and its har-
monization (e.g. chorale harmonizations, folk song harmonizations within national styles, songs
for voice and piano, choir music, etc.) and for identification of cadence/closure patterns (which
provide syntactical organization). Also, within the 20th century category, we preferred the neotonal
styles from the atonal ones, as the former yield more clearly identifiable harmonizational features
through the concept of pitch center and the use of specific pitch spaces. Moreover, an emphasis
was given to the harmonization of Greek folk songs (by three different composers: Labelet Con-
stantinidis and Skalkottas, each with distinctively different harmonic style), as well on Greek folk
music (Epirus polyphonic songs and Rebetika songs).

The dataset consists mainly of complete relatively short pieces, that provide syntactically com-
plete harmonic structures. However, the use of short excerpts over complete pieces was preferred
in cases where the amount of harmonic concepts of a category was relatively large, and a concise
way of training the system to this multitude of concepts was required. Two such cases must be
highlighted:

1. the classical/romantic tonal harmonization category, that was described by the public dataset
of Kostka-Payne corpus (KP dataset) as presented from David Temperley (chord-list file)
and Bryan Pardo (midi files with chord’s quality)
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2. the 20th century harmonization techniques category, that was described by selected excerpts
from the textbooks of Stefan Kostka, Kent Williams, Stefan Kostka and Dorothy Payne,
Connie Mayfield, Walter Piston and various other sources (see details in Table 1, point
5.1.).

2.3 The Dataset – categories and sub-categories

Summarizing, the categorization in Table 1 was made with specific training targets in mind:

• Historical evolution of harmony through closed or open systems.

• Harmonic content (types of sonorities employed and their diversity).

• Harmonic syntax (chord functions, cadence types).

• Amount of blending between idioms or harmonization concepts.

• Styles of special interest (composer or idiom specific).

Moreover, since research goals are forming the grouping criteria, we are creating a versatile filter
mechanism so that groups can be created from meta-data queries (e.g. time period composed) or
even by their harmonic properties (e.g. major phrases)(see Section 4).

Conclusively, the full list of categories and subcategories that we considered appropriate for
this approach is the following:

Table 1: Categorization of the dataset files. For an extensive listing of the files attributes,
the interested reader is referred to the webpage. The numbers in parenthesis beside the
dataset subset name indicate the number of pieces that comprise the collection.

1. Modal Harmonization in the Middle Ages (11th–14th centuries).

(a) Medieval Sets (12)

• Organum
• Fauxbourdon
• Franconian motet

2. Modal Harmonization in the Renaissance (15th-16th centuries) (44)

(a) Modal 16-17th cent. music (10)

• Motet
• Madrigal
• Frottola
• Stabat Mater

(b) Modal Chorales (34)

• ionian
• dorian
• phrygian
• lydian
• mixolydian
• aeolian

611553 October 1, 2014 7



D7.1 Harmonic training dataset

3. Tonal Harmonization (17th–19th centuries) (100)

(a) J.S. Bach Chorales (35)

• major
• minor

(b) Kostka-Payne corpus (KP dataset) (46)
(c) Tonal Harmonization Sets (18th–19th century) (19)

4. Harmonization in National Schools (19th–20th centuries) – folk song harmonizations (55)

(a) Norway: Edvard Grieg (10)
(b) Hungary-Romania: Béla Bartók (17)
(c) Greece: George Labelet 5/ (simple diatonic modal style) (5)
(d) Greece: Yannis Constantinidis 20/ (impressionistic style) (20)
(e) Greece: Nikos Skalkottas 6/ (chromatic style) (3)

5. Harmonization in the 20th century (109)

(a) Excerpts (ca 80) for training on specific harmonization techniques and concepts (89):

• Category 1: simple concepts
– Scales/harmonic spaces: diatonic modes, pentatonic modes, acoustic scale, octatonic scale,

whole-tone scale, hexatonic scale, altered scale, chromatic scale/atonal space
– Harmony and Sonorities: tertian harmony, quartal harmony, secundal harmony
– Texture and Voice-leading: parallel harmony - diatonic, parallel harmony - chromatic, pandia-

tonicism, pedal notes/drones
• Category 2: conceptual blending

– Scales/harmonic spaces: modal interchange, bitonality/bimodality
– Harmony and Sonorities: free sonorities, poly-chords, chords with added notes, chords with split

members
– Texture and Voice-leading: multi-layer texture

(b) Choral music a capella (neoclassical-neotonal styles) (15):

• Claude Debussy: Trois Chansons
• Paul Hindemith: Six Chansons
• Eric Whitacre: A boy and a girl, Cloudburst (b. 1-57), Sleep, Water Night, With a lilly in your hand
• Igor Stravinsky: Pater Noster, Ave Maria (2 versions)
• Fidel Calalang: Pater Noster
• Alfred Schnittke: 3 choral pieces

(c) Vocal music (neotonal style) (5)

6. Harmonization in folk traditions (75)

(a) Tango (classical and nuevo styles) (24)
(b) Epirus polyphonic singing (based on minor pentatonic pitch space) - Selection of 22 three or four-voice pieces

(transcriptions by Kostas Lolis) (29):

• Three-voice: nos. 28, 29, 30, 32, 35, 36, 39, 42, 44, 45, 49, 51, 56, 57, 59, 61
• Four-voice: nos. 68, 70, 72, 73, 76, 77, 78, 79, 82, 84, 87, 90, 91, 92

(c) Rebetika songs (based on the triadic harmonization of oriental modes) (22)
7. Harmonization in 20th century popular music and jazz (65)

(a) Mainstream Jazz (30)
(b) Bill Evans (25)
(c) Beatles songs (10)

3 Encoding of the annotated data

The creation and operation of a harmonic dataset requires the demarcation of the specifics in har-
monic information that are required for the task at hand, as well as the level of detail. Additionally,
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since the project’s goal is based in machine learning and artificial intelligence algorithms, the data
encoding process that is followed has been developed to satisfy two aspects: human annotations
(concerning facilitation with musical score) and richness and consistency of harmonic informa-
tion. Harmony and music in general potentially incorporate many levels of information, beginning
from low-level audio, to high-level descriptive information of composite concepts, e.g. chords,
tonality, genre, etc. The types of information that are required for a musical piece, in the context
of COINVENT, are only symbolic (no audio information is required), roughly described by the
following point: a) primitive musical data that are described by musical surfaces, b) expert an-
notations that are provided as manually entered analytical information about the contents and c)
meta-data for database management.

The musical surface is the lowest level of representation that has musical significance ([18],
p.219). The current proposal provides voicing, temporal and pitch attributes to music elements,
essentially notes. Voicing information concerns the horizontal organization of the notes, while
temporal information positions each note in the rhythmic and metric lattice. Pitch has many ways
to be represented depending on the pitch context we refer to. Concerning the dataset collection
and the algorithmic context that is utilized for the present project, each note has an exact symbolic
notation based on the equal tempered scale.

Expert annotations in a music piece describe musicological aspects that refer to specific an-
alytical concepts (e.g. the use of harmonic symbols to describe note simultaneities, modulations,
phrasing etc.). In general, annotations may incorporate any kind of musical information that may
be required, for any element or group of elements from the musical surface. Expert annotations
are of utmost importance towards the COINVENT melodic harmonizer development, since these
annotations isolate and describe some harmonic concepts that will comprise parts of the blending
process. Expert annotations are more thoroughly described in Section 3.3.

Meta-data are helpful for the organization of large collections of pieces and therefore their
inclusion is essential. Meta-data include information about the composer, year of composition
and additional information concerning some compositional techniques utilized in each piece – as
a means of indexing harmonic concepts that may be included.

3.1 Previous work on text based music encoding

There is a plethora of text-based encoding schemata for music [31]. While it is beyond the pur-
poses of this report to provide a complete reference for all these encoding methodologies, some of
them are outlined, focussing on their drawbacks concerning the COINVENT melodic harmonizer
perspective, consequently highlighting the reasons that lead us to develop a novel encoding and
annotation scheme.

Among the most prominent – yet legacy – musical encodings for polyphonic encodings are the
Humdrum and Kern [17] and the MuseData [15]. Humdrum consists of two distinct components,
namely the Humdrum Syntax and the Humdrum Toolkit. The first is a grammar for representing
information using a variety of encoding schemes. The **kern format is a score representation
scheme. The Humdrum Toolkit is a collection of UNIX scripts that were designed to work in con-
junction with each other, as well as in combination with UNIX commands in order to manipulate
text data (ASCII) that conform to the humdrum syntax. Humdrum syntax is like a spreadsheet
where columns can represent various types of data and rows successive moments in time. The
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**kern encoding represents the basic or core musical score-related information, emphasising on
the underlying functional information between musical elements rather than the visual information
of a score.

The principle that supports the development of these encodings and their accompanying tools,
is the conversion of symbolic music data to ASCII-based, machine-readable formats. These en-
codings and the accompanying tools are suitable for representing musical primitives, as well as
extracting some harmonic abstractions, like chords and tonality. However, these encoding systems
are “closed”, in a sense that they do not support in an obvious way expandability to custom anno-
tations. For instance, it would be difficult to annotate phrase grouping, the beginning of a cadence
or a cadence extension.

The need for transforming information about music to machine readable formats has led to
the development of the Music Encoding Initiative (MEI5). MEI is am attempt to create a unified
framework that encompasses heterogeneous information about music, covering a wide range in
levels of abstraction, e.g. information about historical data, audio, technological aspects of record-
ing, or music-theoretical considerations. All this diverse information is gathered and encoded into
the MEI schema, which is a core set of rules for recording physical and intellectual characteristics
of music notation documents. Ultimate goal of MEI is to eliminate the need for creating spe-
cialized and potentially incompatible notation encoding standards. However, the MEI framework
has not yet expanded to the harmonic encoding according to the standards required for the COIN-
VENT melodic harmonizer research – even though the encoding developed for COINVENT could
potentially be a part of the MEI framework in the future [12].

3.2 Selecting a music representation for the harmonic training dataset

Regarding the harmonic representation, a goal was set to achieve a balance between human-
friendly interpretation of data and computationally accessible encoding. Specifically, the desired
characteristics that shaped the representation format were:

1. Low level – maximum information from musical surface, which allows the extraction of
musical information from the original musical text, according to potential requirements of
future research.

2. Access to primitive data, which again potentially enables the extraction of information at
any level.

3. Visual (score) edits, a fact that enables musicologists and musicians who are familiar with
music notation software to actively participate in the current and potential future research,
by providing manual annotations to a “written language” they understand better.

4. Manual and algorithmic annotations, thus enabling not only human, but also computer-
driven interpretation of data, making the dataset easily manageable for computationally-
based research.

5. Extensibility for future additions, allowing the inclusion of annotated fields that might
emerge from future research on the dataset under discussion.

5http://www.music-encoding.org

10 October 1, 2014 611553



D7.1 Harmonic training dataset FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

To accomplish these qualifications we selected common music notation as the basic representa-
tion for both music surfaces and annotations, i.e. both notes and harmonic structural markers are
inserted and displayed on musical staves. Encoding is thereby realized in a structured musicXML
file with specific staff types and custom music-notation encoding schemes. Since the level of de-
scriptiveness and information is meant to be maximal, standard music notation provides enough
detail to map the musical surface and also a convenient representation to reference complex tem-
poral and data formations.

We selected the musicXML format as the representation scheme for the encoding of the har-
monic training dataset. MusicXMLis an XML instance intended as an interchange format suf-
ficient for notation, analysis, retrieval, and performance applications, and, in fact, it is the most
widely implemented in music notation programs [14]. The content represented by the format
is score-oriented, i.e., notes are represented as symbolic and graphical objects. MusicXML ad-
dresses the integration of the performance and notational aspects of music, but it does not address
the integration of other layers such as audio or structural. As demonstrated by MusicXML [8, 9],
representation of music information with XML can be a successful approach to data standardiza-
tion and interchange. In this case, the adoption of musicXML by commercial software has taken
place very quickly. This has led it to be the first XML music format widely used in the music
notation software market.

Additionally, the musicXML format offers capabilities to graphically represent and process
music through the music21 toolkit [3], which has a well-developed and expandable framework
for importing scores and other data from the most common symbolic music software (e.g. Finale,
Sibelius, MuseScore, among others). Thereby, music21 and musicXML offer the capability to
have both notational efficiency for music experts (through advanced score editing facilities) and
flexibility in extracting symbolic or numerical music features – for applying machine learning and
artificial intelligence algorithms. In fact, the music21 toolkit has been successfully integrated in a
system that allows the extraction of musical features from musical score, allowing various music
categorization tasks to be successfully materialized [4].

The graphical edit abilities of this representation enable the creation of a dataset entry by any
user accustomed with music notation software. Moreover, we selected and extended the music21
toolbox since this is a highly active and adequate programming interface for this and other formats.

3.3 A musicXML template for the Harmonic training dataset

Since musicXML represents a score, score components such as staves and stave groups act as
the basic data containers for all operations. We group the staves of the document in two basic
categories: a) musical surfaces and b) annotations. Music surface (ms) staves encode the music
data while annotation staves encode any of the annotator’s descriptions in custom dictionaries of
music notation. Examples of such annotated descriptions are “tonality” and “grouping” structure,
which are elaborated later. Additionally, all parts of the score (ms and annotation staves) share
temporal organization (time-signatures), whereas annotation staves have independent and neutral
key. Annotation staves are required to comply with the temporal organization of the piece, since
their indications concern the time instance where an event happens (e.g. when tonality changes).
On the other hand, annotation staves use pitch-specific identifiers with an encoding scheme that
does not require the indication of a tonality key.
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A music surface can be encoded in single or paired staves. The original music content is en-
coded in staves tagged as ms 0. Any reduction levels (time-span reductions) of the original content
are encoded in another set of staves named ms N where N is the level of the time-span reduction.
The amount of musical surface reductions (ms N) that a document may reach is unlimited. A
feature that is examined in each surface part is voicing information. There are three cases con-
cerning the voicing information of the music data: a) voice organization exists and each voice is
monophonic (Vm), b) voice organization exists but voices are not monophonic (streams) (Vs), and
c) no voicing information is available (Vf). Knowing the status of voicing information is crucial
since various operations depend on that.

Annotation staves are parts with specific music notation. Each annotation staff interprets the
indicators it contains in music notation. Using music notation for annotations, we can annotate
using common music notation software and edit custom indicators visually. Although the anno-
tation parts were added to the template to manually annotate valid information about aspects of
the music surface, various algorithms can be used to add information computationally. For in-
stance, the tonality annotation can be automatically computed by a key detection algorithm [21].
Annotation staves are unlimited, but each part must follow a specific formalism, as defined by a
dictionary. A dictionary file includes translations of the annotation descriptions, as defined by
the annotator; since all the annotations are manually entered, the annotator is responsible for the
translation encoding that an annotation staff offers. For the tonality and grouping annotations that
are presented later, we have developed a custom dictionary that is analyzed in detail.

Apart from the music surface and the annotations, for each piece in the harmonic training
dataset we encoded the meta-data in a text file and the music data together with the annotations
in a musicXML file, using at least the information levels exhibited in Table 2. Specifically, the
musicXML pieces in the dataset consist of (at least) six staves: two or more staves for the original
song/content preserving voicing information (ms0, Vm), one for tonality annotations where the
scale is written as a note cluster, one for grouping boundaries where the number of notes indicates
grouping level and two parts that contain an annotated time-span reduction of the original content
(ms1) (see Figures 2 and 3). Whenever voicing information is not available (e.g. in homophonic
pieces), at least the voice of the piece’s melody is annotated in Vm.

Table 2: Least requirements for information information levels for musicXML files annotation.
music surface ms0, Vm/Vs (monophonic voices when available)
music surface ms1, Vm/Vs (monophonic voices when available)

annotation Tonality - basic scales dictionary
annotation Grouping - phrases, monophonic content, cadence extension

The songs were encoded at two reductional levels, corresponding to two adjacent levels of
the metrical/time-span hierarchy: level ms0 closely describes the musical surface by including
embellishing figures, neighbor notes, etc. and corresponds to the metrical level of sixteenth or
eighth notes (depending on the metrical tactus and beat level) of the transcription, while level ms1
describes a deeper structure by omitting most elaborations6 and corresponds to the eighth or fourth
notes of the transcription – see example in Figures 2 and 3. The reduction was deemed analytically

6Elaborations include passing tones, neighboring tones, appoggiatura, escape tone, suspension, retardation, antici-
pation
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Figure 1: Annotated xml file containing original song transcription (ms0), time-span reduction of
the original content (ms1), as well as tonality and grouping information.

necessary in order to disclose the idiom’s harmonic functions and cadence patterns. There is no
limit to the number of reductions that can be added to the xml. However, through reduction, while
we gain clear chordal content, we have loss of voice leading information.

Tonality staff annotations This part contains information about the tonality changes at the low-
est level musical surface. Tonality indicators contain all the scale tones in the form of note-cluster
chords and are placed whenever there is key change. The system reads the enharmonic pitch of
the base of the cluster and by analyzing the interval components it matches a tonality descrip-
tion from the tonality annotations dictionary. A tonality dictionary includes vectors with scale
degrees for standardized scales, e.g. major, minor-harmonic, pentatonic, octatonic, whole-tone,
acoustic and modal modes among others (see tonality.dic). Examples of how various tonalities
are presented on score are given in Figure 2, where a part of an annotated xml piece is illustrated.
Therein, the tonality staff indicated two tonality changes. The indicators of the tonality – and the
tonality changes – include accidentals in chordal form, while the time instance of a tonality acti-
vation/change is defined by the indication’s onset. Additionally, it has to be noted that at least one
tonality indicator at the beginning of the piece is required otherwise the tonality annotations of the
piece are considered absent, while repetitions of the same indicator are ignored.

Figure 3 demonstrates examples of various tonalities. Using this encoding to identify the tonal-
ity annotations there is a conflict, for example, between Major scales and Ionian modal modes,
since these scales have the same intervalic content. A possible solution to this and other con-
flicts that may appear is to make the identifiers more complex, showing the structural/dominant
tones of the scale. Another possible improvement might be the extension of the syntax to be able
to map modulation regions where the tonality is not clear and more than one tonality indicators
are required. At the moment, using pieces from a variety of idioms, the current representation is
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Figure 2: Tonality change annotations for Bach Chorale B.230, BWV 273. mm. 1-2
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Figure 3: Examples of tonality indicators: a) G Major, b) C Minor, c) D Dorian, d) A minor
pentatonic.
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Figure 4: Phrasing indicators. (a-d) phrase level from higher to lower. The cardinality of the
indicator chord indicates the level. e) cadence extension f) monophonic content.

adequate.

Grouping staff annotations This part contains annotations about melodically coherent temporal
regions of the music surface. The current grouping dictionary contains three different classes
of grouping indicators: a) phrasing levels of the musical surface b) monophonic phrases and c)
cadence extensions. At the beginning of each phrase, a group identifier is placed indicating the
level of the phrase hierarchy. One note on the lowest line indicates the lowest level groupings (e.g.
phrase); two notes on the lowest two lines indicate an immediately higher-level of grouping (e.g.
period); three notes indicate even higher level of grouping and so on. We added an indicator for
monophonic passages so that we can exclude them from harmonic content extraction. The cadence
extension indicator was used to isolate parts that succeed a cadence, but are not part of it.

Table 3: Analysis of the grouping indicators, dictionary and syntax.

Indicators
phrase levels {E=lowest level, EG, EGB, EGBD= highest level}

monophonic content {F=77}
cadence extension {F=65}

Dictionary

the cardinality of the chord indicates the level of the phrase
MIDI note descriptor
64 tsr1

64 67 tsr2

64 67 71 tsr3

64 67 71 74 tsr4

76 mono

65 cadExt

Syntax
all possible orders of group indicators are valid

the indicators cannot be combined
at least one indicator must be present
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In general, this part can be used to label temporal regions based on any aspect of their content.
While the examination of the order of the phrases can reveal morphological aspects, the grouping
dictionary can be easily extended to include morphological description (e.g. verses) and any other
information that needs to be taken into consideration. Even more, the development of a more
complex syntax could enable the combination of overlapping temporal descriptions of different
classes and perform more accurate temporal references.

The meta-data of the documents In the current version of the dataset the meta-data of the
pieces are stored in separate text files and are processed separately. The fields stored within the
musicXML file are the following:

1. file, the filename of the piece follows a naming convention that also indicates the piece
information level e.g. “BC 030 036300B a1.xml”

2. genre(s)

3. piece name

4. catalogue(s)

5. segment

6. measures

7. composer

8. date of composition

9. original resource

10. annotator

3.4 Computational usage of the harmonic dataset

A purpose-oriented computational interface has been developed to access the aforementioned rep-
resentation of the musicXML dataset. The xml format of the dataset files can be utilized using
any xml parser, however we chose to interface with the musicXML documents through the mu-
sic21 toolkit, for the reasons elaborated in Section 3.2, as well as for the fact this toolkit provides
the essential music ontology to operate score documents computationally in a flexible way using
Python programming language. On top of music21, we created a simple framework to manage the
musicXML template of the dataset, perform musicological queries and export structured informa-
tion.

The main usage of this tool is to extract structured descriptions of harmonic content from
score selections following a specific workflow. This workflow contains the following steps (see
the example it Table 4): a) the conversion of the musicXML files within a folder into docu-
ment objects (<musicXMLfilesfolderPath>), b) the selection and grouping of musical sur-
face elements (<selectionFunction>) and c) the extraction of their content in various formats
(<formatFunction>). To support the above operations we created a simple set of classes and
modules.
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Table 4: Pseudocode for selecting specific chords from musicXML files. Lines of code
that represent comments begin with the symbol “#”, variables are represented in inequality
signs (e.g. “<variable>”), while the function len([list]) returns the length of a list.

Example 1: Selection of the chords from <ms1> that appear in <strong> metric positions.

output = []

doc = htd_document(<musicXML file>)

# getChords returns a stream with music21.Chord objects

# use of music21.Stream.chordify()

stream = doc.getChords(<ms>)

FOR chord IN stream

# use of Music21Object.beatStrength

IF chord.beatStrength == <strong>

output.append(chord)

RETURN output

Example 2. Selection of all the chords from <ms1> that appear in phrases with specific <group level>.

Input : a musicXML file,

Output : a list with music21.Chord objects

output = []

doc = htd_document(<musicXML file>)

# get all the chords in a stream. use of music21.Stream.chordify()

stream = doc.getChords(<ms1>)

FOR chord IN stream

# getGroupLevel() returns the grouping context of the chord

IF chord.getGroupLevel() == <group level>

output.append(chord)

RETURN output

Example 3. Selection of the last 3 chords of each phrase with no tonality modulation.

Input : a musicXML file

Output : a list with music21.Stream objects

output = []

doc = htd_document(<musicXML file>)

phrases = doc.getPhrases(<ms1>) # returns a list with streams

FOR phrase IN phrases

# the number of tonalities

IF len(phrase.getTonalities)== 1

phraseChords = phrase.getChords()

# last 3 elements of the list

output.append(phraseChords[:-3])

RETURN output

Example 4. Selection of all the chords and that have extensions (including 7th and above).

Input : a musicXML file

Output : a list with music21.Chord objects

output = []

doc = htd_document(<musicXML file>)

# returns a music21.Stream with music21.Chords

chords = doc.getChords(<ms1>)

FOR chord IN chords

# use of music21.Chord.isTriad()

IF not (chord.isTriad())

output.append(chord)

RETURN output
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Example 5. Get tonal deviation (only relations V7 / <>).

Input : a musicXML file

Output : a list with music21.Stream objects. Each stream contains the

two chords that partain to the V7 / <> relation.

output = []

doc = htd_document(<musicXML file>)

chords = doc.getChords(<ms1>)

FOR index IN range(len(chords)-1)

deviationChord = chords[index]

baseChord = chords[index+1]

# use of music21.Chord.isDominantSeventh()

IF deviationChord.isDominantSeventh()

# use of music21.Chord.findRoot ()

baseRoot = baseChord.findRoot()

deviationRoot = deviationChord.findRoot()

if (((deviationRoot.midi+12) - (baseRoot.midi)) % 12) == 7

stream = []

stream.append(deviationChord)

stream.append(baseChord)

output.append(stream)

RETURN output

4 An Idiom-independent Representation of Chords for Computa-
tional Music Analysis and Generation

In this section we focus on issues of harmonic representation and computational analysis. A
new idiom-independent representation is proposed of chord types that is appropriate for encoding
tone simultaneities in any harmonic context (such as tonal, modal, jazz, octatonic, atonal). The
General Chord Type (GCT) representation, allows the re-arrangement of the notes of a harmonic
simultaneity such that abstract idiom-specific types of chords may be derived; this encoding is in-
spired by the standard roman numeral chord type labeling, but is more general and flexible. Given
a consonance-dissonance classification of intervals (that reflects culturally-dependent notions of
consonance/dissonance), and a scale, the GCT algorithm finds the maximal subset of notes of a
given note simultaneity that contains only consonant intervals; this maximal subset forms the base
upon which the chord type is built. The proposed representation is ideal for hierarchic harmonic
systems such as the tonal system and its many variations, but adjusts to any other harmonic system
such as post-tonal, atonal music, or traditional polyphonic systems. The GCT representation is
applied to a small set of examples from diverse musical idioms, and its output is illustrated and
analysed showing its potential, especially, for computational music analysis and music information
retrieval.

There exist different typologies for encoding note simultaneities that embody different levels
of harmonic information/abstraction and cover different harmonic idioms. For instance, for tonal
musics, chord notations such as the following are commonly used: figured bass (pitch classes
denoted above a bass note – no concept of “chord”), popular music guitar style notation or jazz
notation (absolute chord), roman numeral encoding (relative to a key) [22]. For atonal and other
non-tonal systems, pc-set theoretic encodings [7] may be employed.
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A question arises: is it possible to devise a “universal” chord representation that adapts to
different harmonic idioms? Is it possible to determine a mechanism that, given some fundamental
idiom features, such as pitch hierarchy and consonance/dissonance classification, can automati-
cally encode pitch simultaneities in a pertinent manner for the idiom at hand? Before attempting
to answer the above question one could ask: What might such a “universal” encoding system
be useful for? Apart from music–theoretic interest and cognitive considerations/implications, a
general chord encoding representation may allow developing generic harmonic systems that may
be adaptable to diverse harmonic idioms, rather than designing ad hoc systems for individual
harmonic spaces. This was the primary aim for devising the General Chord Type (GCT) repre-
sentation. In the case of the project COINVENT [30], a creative melodic harmonisation system
is required that relies on conceptual blending between diverse harmonic spaces in order to gener-
ate novel harmonic constructions; mapping between such different spaces is facilitated when the
shared generic space is defined with clarity, its generic concepts are expressed in a general and
idiom-independent manner, and a common general representation is available.

In recent years, many melodic harmonisation systems have been developed, some rule-based
([6, 24]) or evolutionary approaches that utilize rule based fitness evaluation ([27, 5]), others rely-
ing on machine learning techniques like probabilistic approaches ([25, 32]) and neural networks
([16]) , grammars ([11]) or hybrid systems (e.g. [2]). Almost all of these systems model aspects
of tonal harmony: from “standard” Bach–like chorale harmonisation ([6, 16] among many others)
to tonal systems such as “classic” jazz or pop ([32, 11] among others). Aim of these systems is
to produce harmonizations of melodies that reflect the style of the discussed idiom, which is pur-
sued by utilising chords and chord annotations that are characteristic of the idiom. For instance,
the chord representation for studies in the Bach chorales include standard Roman numeral sym-
bols while jazz approaches encompass additional information about extensions in the guitar style
encoding.

For tonal computational models, Harte’s representation [13] provides a systematic, context-
independent syntax for representing chord symbols which can easily be written and understood by
musicians, and, at the same time, is simple and unambiguous to parse with computer programs.
This chord representation is very useful for annotating manually tonal music – mostly genres such
as pop, rock, jazz that use guitar-style notation. However, it cannot be automatically extracted
from chord reductions and is not designed to be used in non-tonal musics.

In this section, firstly, we present the main concepts behind the General Chord Type repre-
sentation and give an overall description, then, we describe the GCT algorithm that automatically
computes chord types for each chord, then, we present examples form diverse music idioms that
show the potential of the representation and give some examples of applying statistical learning
on such a representation, and, finally, we will discuss problems and future improvements.

4.1 Representing Chords

Harmonic analysis focuses on describing the harmonic content of pitch collections/patterns within
a given music context in terms of harmonic labels, classes, functions and so on. Harmonic analysis
is a rather complex musical task that involves not only finding roots and labeling chords within a
key, but also segmentation (points of harmonic change), identification of non-chord notes, metric
information and more generally musical context [14]. In this section, we focus on the core problem
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of labeling chords within a given pitch hierarchy (e.g. key); thus we assume that a full harmonic
reduction is available as input to the model (manually constructed harmonic reductions).

Our intention is to create an analytic system that may label any pitch collection, based on a set
of user-defined criteria rather than on standard tonal music theoretic models or fixed psychoacous-
tic properties of harmonic tones. We intend our representation to be able to cope with chords not
only in the tonal system, but any harmonic system (e.g. octatonic, whole-tone, atonal, traditional
harmonic systems, etc.).

Root–finding is a core harmonic problem addressed primarily following two approaches: the
standard stack-of-thirds approach and the virtual pitch approach. The first attempts to re-order
chord notes such that they are separated by (major or minor) third intervals preserving the most
compact ordering of the chord; these stacks of thirds can then be used to identify the possible root
of a chord (see, for instance, recent advanced proposal by [29]). The second approach, is based
on Terhard’s virtual pitch theory [33] and Parncutt’s psychoacoustic model of harmony [26]; it
maintains that the root of a chord is the pitch most strongly implied by the combined harmonics
of all its constituent notes (intervals derived from the first members of the harmonic series are
considered as “root supporting intervals”).

Both of these approaches rely on a fixed theory of consonance and a fixed set of intervals that
are considered as building blocks of chords. In the culture-sensitive stack-of-thirds approach, the
smallest consonant intervals in tonal music, i.e. the major and minor thirds, are the basis of the
system. In the second “universal” psychoacoustic approach, the following intervals, in decreasing
order of importance, are employed: unison, perfect fifth, major third, minor seventh, and major
second. Both of these approaches are geared towards tonal harmony, each with its strengths and
weaknesses (for instance, the second approach has an inherent difficulty with minor harmonies).
Neither of them can be readily extended to other idiosyncratic harmonic systems.

Harmonic consonance/dissonance has two major components: Sensory-based dissonance (psy-
choacoustic component) and music-idiom-based dissonance (cultural component) [23]. Due to
the music-idiom dependency component, it is not possible to have a fixed universal model of har-
monic consonance/dissonance. A classification of intervals into categories across the dissonance-
consonance continuum can be made only for a specific idiom. The most elementary classification
is into two basic categories: consonant and dissonant. For instance, in the common-practice tonal
system, unisons, octaves, perfect fifths/fourths (perfect consonances) and thirds and sixths (im-
perfect consonances) are considered to be consonances, whereas the rest of the intervals (seconds,
sevenths, tritone) are considered to be dissonances; in polyphonic singing from Epirus, major sec-
onds and minor sevenths may additionally be considered “consonant” as they appear in metrically
strong positions and require no resolution; in atonal music, all intervals may be considered equally
“consonant”.

Let’s examine the case of tonal and atonal harmony; these are probably as different as two
harmonic spaces may be. In the case of tonal and atonal harmony, some basic concepts are shared;
however, actual systematic descriptions of chord-types and categories are drastically different (if
not incompatible), rendering any attempt to “align” two input spaces challenging and possibly
misleading (Figure 5). On one hand, tonal harmony uses a limited set of basic chord types (major,
minor, diminished, augmented) with extensions (7ths, 9ths etc.) that have roots positioned in
relation to scale degrees and the tonic, reflecting the hierarchic nature of tonal harmony; on the
other hand, atonal harmony employs a flat mathematical formalism that encodes pitches as pitch-
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Harm Generic Space
- 12-tone eq. temp.
- Tone Hierarchy
- Consonance-
dissonance
- Intervals
- Octave equivalence

Tonal Chord Type
- Min/Maj scale
- Tonal Hierarchy
- Consonance order
- Inversion distinction
- Scale Degree
- Chord Root
- Chord similarity

Atonal "Chord" Type
- Chromatic scale
- No tone hierarchy
- No interval hierarchy
- Interv. inversion equiv.
- Pitch class
- No root
- Chord similarity

?

Figure 5: Is mapping between “opposing” harmonic spaces possible?

class sets leaving aside any notion of pitch hierarchy, tone centres or more abstract chord categories
and functions. It seems as if it is two worlds apart having as the only meeting point the fact that
tones sound together (physically sound-ing together or sounding close to one another allowing
implied harmony to emerge).

Pc-set theory of course, being a general mathematical formalism, can be applied to tonal mu-
sic, but, then its descriptive potential is mutilated and most interesting tonal harmonic relations and
functions are lost. For instance, the distinction between major and minor chords is lost if Forte’s
prime form is used (037 for both – these two chord have identical interval content), or a dominant
seventh chord is confused with half-diminished seventh (prime form 0258); even, if normal order
is used, that is less general, for the dominant seventh (0368), the root of the chord is not the 0 on
the left of this ordering (pc 8 is the root). Pitch-class set theory is not adequate for tonal music.
At the same time, the roman-numeral formalism is inadequate for atonal music as major/minor
chords and tonal hierarchies are hardly relevant for atonal music.

In trying to tackle issues of tonal hierarchy, we have devised a novel chord type represen-
tation, namely the General Chord Type (GCT) representation, that takes as its starting point the
common-practice tonal chord representation (for a tonal context, it is equivalent to the standard
roman-numeral harmonic encoding), but is more general as it can be applied to other non-standard
tonal systems such as modal harmony and, even, atonal harmony. This representation draws on
knowledge from the domain of psychoacoustics and music cognition, and, at the same time, “ad-
justs” to any context of scales, tonal hierarchies and categories of consonance/dissonance.

At the heart of the GCT representation is the idea that the “base” of a note simultaneity should
be consonant. The GCT algorithm tries to find a maximal subset that is consonant; the rest of the
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notes that create dissonant intervals to one or notes of the chord “base” form the chord “exten-
sion”. The GCT representation has common characteristics with the stack-of-thirds and the virtual
pitch root finding methods for tonal music, but has differences as well (see section 4.3). More-
over, the user can define which intervals are considered “consonant” giving thus rise to different
encodings. As will be shown in the next sections, the GCT representation encapsulates naturally
the structure of tonal chords and at the same time is very flexible and can readily be adapted to
different harmonic systems.

4.2 The General Chord Type representation

4.2.1 Description of the GCT algorithm

Given a classification of intervals into consonant/dissonant (binary values) and an appropriate
scale background (i.e. scale with tonic), the GCT algorithm computes, for a given multi-tone
simultaneity, the “optimal” ordering of pitches such that a maximal subset of consonant intervals
appears at the “base” of the ordering (left-hand side) in the most compact form. Since a tonal
centre (key) is given, the position within the given scale is automatically calculated.

Input to the algorithm is the following:

• Consonance vector: The user defines which intervals are consonant/dissonant through a 12-
point Boolean vector of consonant (1) or dissonant (0) intervals. For instance, the vector
[1,0,0,1,1,1,0,1,1,1,0,0] means that the unison, minor and major third, perfect fourth and
fifth, minor and major sixth intervals are consonant – dissonant intervals are the seconds,
sevenths and the tritone; this specific vector is referred to in this text as the common-practice
consonance vector.

• Pitch Scale Hierarchy: The pitch hierarchy (if any) is given in the form of scale tones and a
tonic (e.g. a D maj scale is given as: 2, [0,2,4,5,7,9,11], or an A minor pentatonic scale as:
9, [0,3,5,7,10]).

• Input chord: list of MIDI pitch numbers (converted to pc-set).
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Algorithm 1 GCT algorithm (core) – computational pseudocode
Input: (i) the pitch scale (tonality), (ii) a vector of the intervals considered consonant, (iii) the
pitch class set (pc–set) of a note simultaneity
Output: The roots and types of the possible chords describing the simultaneity

1: find all maximal subsets of pairwise consonant tones
2: for all selected maximal subsets do
3: order the pitch classes of each maximal subset in the most compact form (chord “base”)
4: add the remaining pitch classes (chord extensions) above the highest of the chosen maximal

subset’s (if necessary, add octave – pitches may exceed the octave range)
5: the lowest tone of the chord is the “root”
6: transpose the tones of the chord so that the lowest becomes 0
7: the lowest tone of the chord is the “root”
8: transpose the tones of the chord so that the lowest becomes 0
9: find position of the “root” in regards to the given tonal centre (pitch scale)

10: end for

The GCT algorithm encodes most chord types “correctly” in the standard tonal system. In
example 1, Table 5 the note simultaneity [C,D,F],A] or [0,2,6,9] in a G major key is interpreted
as [7, [0,4,7,10]], i.e. as a dominant seventh chord (see similar example in Section 4.2.3).

However, the algorithm is undecided in some cases, and even makes “mistakes” in other cases.
In most instances of multiple encodings, it is suggested that these ideally should be resolved by
taking into account other harmonic factors (e.g., bass line, harmonic functions, tonal context,
etc.). For instance, the algorithm gives two possible encodings for a [0,2,5,9] pc-set, namely
minor seventh chord or major chord with sixth (see Table 5, example 2); such ambiguity may be
resolved if tonal context is taken into account. For the [0,3,4,7] pc-set with root 0, the algorithm
produces two answers, namely, a major chord with extension [0, [0,4,7,15]] and a minor chord
with extension [0, [0,3,7,16]]; this ambiguity may be resolved if key context is taken into account:
for in-stance, [0,4,7,15] would be selected in a C major or G major context and [0,3,7,16] in a
C minor or F minor context. Symmetric chords, such as the augmented chord or the diminished
seventh chord, are inherently ambiguous; the algorithm suggests multiple encodings which can
be resolved only by taking into account the broader harmonic context (see Table 5, example 3).
Since the aim of this algorithm is not to perform sophisticated harmonic analysis, but rather to
find a practical and efficient encoding for tone simultaneities (to be used, for instance, in statistical
learning and automatic harmonic generation – see end of Section 4), we decided to extend the
algorithm so as to reach in every case a single chord type for each simultaneity (no ambiguity).
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Algorithm 2 GCT algorithm (additional steps) – for unique encoding
Input: Multiple maximal subsets-encodings
Output: Unique chord encoding

1: if more than one maximal subsets exist: then
2: Overlapping of maximal subsets: create a sequence of maximal subsets by ordering them

so as to have maximal overlapping between them and keep the maximal subset that appears
first in the sequence (chord’s base)

3: Chord base notes are scale notes: prefer maximal subset that contains only pcs that appear
in the given scale (tonal context) – i.e. avoid non-scale notes in the chord base (this rule is
rather arbitrary and is under consideration)

4: if neither of the above give a unique solution, chose one encoding at random
5: end if
6: Additional adjustment: for dyads, in a tonal context, prefer perfect fifth over perfect fourth,

and prefer seventh to second intervals

The additional steps select chord type [2, [0,3,7,10]] in example 2, Table 5 (maximal overlap-
ping between two maximal subsets), and [11, [0,3,6,9]] in example 3, Table 5 (last pitch-class is
A[ that is a non-scale degree in C major).

4.2.2 Formal description of the Core GCT Algorithm

The proposed algorithm for computing the GCT, receives a simultaneity of pitches that are trans-
formed into pitch classes and produces chord elements, namely the root, the type and the extension,
which specify qualitative information about the chord that more precisely describes this simul-
taneity. A detailed description of the algorithm follows, based on an example input simultaneity.
Suppose that the input set of notes results in the pc-set [0,2,6,9], which could be described as a D
major chord with flat seventh regarding the tonal music consonance environment – described by
the ~v = (1,0,0,1,1,1,0,1,1,1,0,0) consonance vector. Therefore, the algorithm should produce
and output in the form: [R, [T], [E]] = [2, [0,4,7], [10]]. For the rest of the paper, the i–th element
of a vector~v will be denoted as~vi.

By utilising the input pc-set and given a consonance vector that represents a selected music
idiom (in this example the consonance vector is~v = (1,0,0,1,1,1,0,1,1,1,0,0)), a binary matrix
is constructed that is denoted as B. Each row and column of B represents a pitch class of the
input chord, while a matrix entry is 1 or 0, signifying whether the pair of row and column pcs are
consonant or dissonant respectively – according to the current consonance vector. Strictly, if the
consonance vector is denoted as~v and the input pcset as ~p, then ∀i, j ∈ {1,2, . . . , length(~p)}

Bi j = c|pi−p j|, (1)

where the function length(~x) return the length of vector~x. The B matrix in the discussed example,
where ~p = [0,2,6,9], is the following: 

1 0 0 1
0 1 1 1
0 1 1 1
1 1 1 1

 (2)

611553 October 1, 2014 25



D7.1 Harmonic training dataset

Afterwards, a tree is constructed for each of the rows of B. The root node of these trees is
the pitch class that corresponds to the respective row, while their branches from leaves to nodes
include pitch classes that are pairwise consonant (according to~v). The construction of the tree that
corresponds to the i–th element of ~p, is implemented by recursively traversing B in a depth–first–
search (DFS) fashion, beginning from the i–th row and following the paths “circumscribed” by
the occurrences of units. Such a traversal is exhibited in Table 6 for the second row of the current
example’s B matrix. This step’s outcome is a collection of trees, each of which corresponds to a
row of B. The trees of the current example are shown in Table 7.

Table 6: The steps of the algorithm when scanning the path of the second row.
line 2 to column 3 evaluating to top line 3 to column 4 evaluating to top

1 0 0 1
0 1 1 1
0 1 1 1
1 1 1 1




1 0 0 1
0 1 1 1
0 1 1 1
1 1 1 1




1 0 0 1
0 1 1 1
0 1 1 1
1 1 1 1




1 0 0 1
0 1 1 1
0 1 1 1
1 1 1 1


2

6

2

6

2

6

9

2

6

9
...
2

96

9

Table 7: All the trees for the current example. The maximal path is highlighted with boldface
typesetting.

line 1 line 2 line 3 line 4

0

9

2

96

9

6

9
9

After the application of the above procedure, the paths from root to leaves with maximal length
are kept either as the output chord candidates, or for further processing in the steps described in
the remaining of this section. In the current example there is a single maximal path ([2,6,9]),
which is highlighted with boldface typesetting. After the longest path has been extracted, the
pitch classes that constitute it are recombined in their most compact form, which in the current
example is [2,6,9] (unaltered). The pitch class 0 of the initial [2,6,9] pc-set is considered as an
extension. Thereby, the simultaneity [0,2,6,9] is circularly shifted to [2,6,9,12], disregarding the
fact that pitch classes can take integer values between 0 and 11. In turn, [2,6,9,12] is transformed
to the following [r, [t], [e]] denotation: [2, [0,4,7], [10]]. This denotation clarifies that the simul-
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Figure 6: Chord analysis of a Bach Chorale phrase by means of traditional roman numeral analysis,
pc-sets and two versions of the GCT algorithm.

taneity [0,2,6,9] is actually a major chord (type [0,4,7]) with a flat seventh (extension [10]) and
fundamental pitch class 2, (i.e. D7). As the tonal context is given as input, for instance G major
key, the absolute chord type [2, [0,4,7,10]] (i.e. D7 chord) is converted to relative chord type, i.e.,
[7, [0,4,7,10]] which means dominant seventh in G major. This is equivalent to the roman numeral
analytic types.

4.2.3 An example analysis with GCT

An example harmonic analysis of a Bach Chorale phrase illustrates the proposed GCT chord rep-
resentation (Figure 6). For a tonal context, chord types are optimised such that pcs at the left hand
side of chords contain only consonant intervals (i.e. 3rds and 6ths, and Perfect 4ths and 5ths).
For instance, the major 7th chord is written as [0,4,7,10] since set [0,4,7] contains only conso-
nant intervals whereas 10 that introduces dissonances is placed on the right-hand side – this way
the relationship between major chords and major seventh chords remains rather transparent and is
easily detectable. Within the given D major key context it is simple to determine the position of a
chord type in respect to the tonic – e.g. [7, [0,4,7,10]] means a major seventh chord whose root is
7 semitones above the tonic, amounting to a dominant seventh. This way we have an encoding that
is analogous to the standard roman numeral encoding (Figure 6, top row). If the tonal context is
changed, and we have a chromatic scale context (arbitrary “tonic” is 0, i.e. note C) and we consider
all intervals equally “consonant”, we get the second GCT analysis in Figure 6 which amounts to
normal orders (not prime forms) in a standard pc-set analysis – for tonal music this pc-set analysis
is weak as it misses out important tonal hierarchical relationships (notice that the relation of the
dominant seventh chord type to the plain dominant chord is obscured). Note that relative “roots”
to the “tonic” 0 are preserved as they can be used in harmonic generation tasks.

For practical reasons of space in the musical illustrations, the form [r, [b], [e]] is not preserved:
the base and extension is concatenated and brackets are omitted. For instance: [7, [0,4,7], [10]]
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Figure 7: Beethoven, Sonata 14, op.27-2 (reduction of first five measures). Top row: roman
numeral harmonic analysis; bottom row: GCT analysis. GCT successfully encodes all chords,
including the Neapolitan sixth chord (fourth chord).

may be depicted as 7, [0,4,7,10] or even as 7.04710.

4.3 Harmonic encoding and analysis with the GCT

The GCT algorithm has been applied to tonal extracts from standard tonal pieces, such as Bach
Chorales, but additionally it has been tested out on harmonic structures from diverse harmonic
idioms. Some examples are presented below to give an idea of the potential of the GCT repre-
sentation. Strong points of the encoding are given along with weaknesses. Some aspects of the
analysis are difficult to judge in some idioms and further study in required.

4.3.1 GCT Encoding Examples

In common-practice tonal music, GCT works very well. Mistakes are sometimes made in case
of symmetric chords such as the diminished seventh chord or the augmented triad. In the case
of the half diminished seventh chord GCT “prefers” to label it as a minor chord with added sixth
instead of a diminished chord with minor seventh. Chords that include chromatic notes such as the
German sixth, Italian sixth, Neapolitan sixth are encoded consistently even though not necessarily
coinciding with analytic interpretations by theorists (the French sixth is more tricky as it is a
symmetric chord and GCT finds two equally prominent “roots”).

Below, a number of examples are presented that illustrate the application of the GCT algo-
rithm on diverse harmonic textures. The first example (Figure 7) is taken from the first measures
of Beethoven’s Moonlight Sonata. In this example, GCT encodes classical harmony in a straight-
forward manner. All instances of the tonic chord inverted or not (i.e. C]minor) are tagged as
[0, [0,3,7]] and [10] is added when the 7th is present; the dominant seventh is [7, [0,4,7,10]] and
once it appears once without the fifth [7]; the fourth chord is a Neapolitan sixth and it is encoded
as [1, [0,4,7]] which means major chord on lowered second degree (D major chord in the C] minor
key).

In the example of Figure 8 a tonal chord progression by G. Gershwin is presented. More
chromaticism is apparent in this passage. The GCT “agrees” with the roman numeral analysis of
the excerpt including the Italian sixth chord that is labelled as [8, [0,4,10]], and it even labels the
chord that was left without a roman numeral tag by the analyst (see question mark) encoding it as
a minor chord with sixth on the flattened sixth degree (G[-B[[-D[-E[) (Note: actually it could be
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Figure 8: G. Gershwin, Rhapsody in Blue (reduction of first five measures). Top row: roman
numeral harmonic analysis; bottom row: GCT analysis. GCT successfully identifies all chords,
including the third secondary dominant and the second-to-last augmented sixth (Italian) chord.
Additionally it labels the second chord as a minor chord with added sixth on the flat VI degree
(G[-B[[-D[-E[).

Figure 9: G. Dufay’s Kyrie (reduction) – first phrase in A phrygian mode that exemplifies parallel
motion in fauxbourdon and a phrygian cadence (early Renaissance) . GCT correctly identifies and
labels the open fifths as well as the triadic chords.

even encoded as a half-diminished 7th on the fourth degree E[-G[-B[[-D[).

Figure 9 illustrates an Early Renaissance example of fauxbourdon by G. Dufay. Parallel mo-
tion of voices is typical in this idiom. The GCT labels correctly all dyads and triads, taking into
account musica ficta that produces rather unusual chord progressions in regards to standard tonal
harmony.

In Figure 10 an example from the polyphonic singing tradition of Epirus is presented. This
very old 2-voice to 4-voice polyphonic singing tradition is based on the anhemitonic pentatonic
pitch collection and more specifically the pentatonic minor scale that functions as source for both
the melodic and harmonic content of the music. A unique harmonic aspect of these songs is the
unresolved dissonances (major second and minor seventh intervals) at structurally stable positions
of the pieces (e.g. cadences). In the example two GCT version are presented: the first (top row)
depicts the encoding for the standard consonance vector and the second (bottom row) presents the
GCT labelling that considers additionally major seconds and minor sevenths as “consonant” (it is
the same as for the “atonal” consonance vector as no minor seconds and major sevenths exist in
the idiom). It is interesting to note that for the standard consonance vector almost all chords have
the drone tone as their root. On the other hand, in the second encoding different relations between
chords become apparent (e.g. [10, [0,2,5]] and [10, [0,2,5,7]]) and also an oscillation of the chord
“root” between the tonic and a note a tone lower is highlighted. Polyphonic songs from Epirus are
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Figure 10: Excerpt from a traditional polyphonic song from Epirus. Top row: GCT encoding for
standard common-practice consonance vector; bottom row: GCT encoding for atonal harmony –
all intervals “consonant” (this amounts to pc-set “normal orders”).

Figure 11: Automatically generated GCTs for a Bach Chorale melody employing a HMM for
fixed boundaries (first and last chords are given). Voice leading has been arranged manually.

studied more extensively in a different study (REFERENCE for FMA2014 – forthcoming).

4.3.2 Learning and generation with GCT

In a current study, the GCT representation has been utilised in automatically analysing and encod-
ing scores (actually, harmonic reductions of scores) from diverse idioms, and then employing this
extracted information for melodic harmonisation. In [19] the authors discuss the utilization of a
well-studied probabilistic methodology, namely, the hidden Markov model (HMM) methodology,
in combination with constraints that incorporate fixed beginning, ending and/or intermediate an-
chor chords. To this end, a constrained HMM (CHMM) is developed, which allows the manual or
deterministic insertion of intermediate chords, providing alternative harmonisations that comply
with specific constraints.

The reported results indicate that the CHMM method, harnessed with the novel General Chord
Type (GCT) algorithm, functions effectively towards convincing melodic harmonisations in di-
verse idioms. In Figures 7 and 8, two examples of melodic harmonisation are illustrated for a
Bach chorale melody and for a traditional melody from Epirus. In both cases, the system has been
trained on a corpus of harmonic reductions of pieces in the idiom, and, then, used to generate new
melodic harmonisations. The results are very good: the Bach chorale harmonisation is typical of
the style and at the same time not trivial (uses secondary dominants that enrich the harmonisation);
the Epirus melody harmonisation is close to the style of polyphonic singing (if additional melodic
and rhythmic elements were added the phrase would become rather typical of the idiom).
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Figure 12: Automatically generated GCTs for an Epirus melody (reduced version) employing a
HMM for fixed boundaries. Voice leading has been arranged manually.

4.3.3 Discussion and future development

The current version of GCT encodes only the chord type and the relative position of its “root”
to the local tonic of a given scale. However, it can readily be extended to in-corporate explicit
information on chord inversions (i.e. bass note position), on scale degrees (chromatic notes that do
not belong to the current scale can be tagged so that indirectly scale degrees are indicated), and,
even, on voice-leading (for instance, motion of bass, or even for note extensions that may require
resolution by down-wards step-wise motion). A rich chord representation should embody such
information.

The organisation of tones by GCT for the “standard” consonance vector gives results quite
close to those produced by the stack-of-thirds technique, as implicit in the latter is consonance of
thirds and fifths (as two thirds sum up to a fifth). Some difference are:

• the stack-of-thirds approach usually requires traditional note names (that allow enharmonic
spellings) whereas the GCT is based on pitch classes (no direct explicit link to a scale). For
instance, GCT considers the chord CEG] or CEA[ ([0,4,8]) as consonant since its intervals
are pairwise consonant7, i.e. two 4 semitone intervals (major thirds) and one 8 semitone
interval (minor sixth or augmented fifth) with root any one of the three tones; stack-of-thirds
determines C as the root in the first case and A[ in the second case. The GCT algorithm
misses out on sophisticated tonal scale information but is still informative at the same time
being simpler, and easier to implement.

• in the standard consonance vector version of GCT, diminished fifths are not allowed whereas
in the stack-of-thirds approach all fifths are allowed. For instance, the root of the half-
diminished chord BDFA is B according to the stack-of-thirds whereas GCT considers D as
the root and B as a sixth above the root (DFAB), i.e. diminished triads are not consonant
chords according to CGT. Of course, the consonance vector in GCT may be altered so that
the tritone is also consonant in which case the two approaches are closer.

• the stack-of-thirds method allows empty third positions in the lower part of the stack whereas
GCT always prefers to have a compact consonant set of pitches at the bottom. For instance,
a chord comprising of notes: CEFG ([0,4,5,7]) will be arranged as FCEG by the stack-of-
thirds technique and CEGF ([0,4,7,17]) by GCT.

In relation to the virtual pitch root finding method, the proposed approach differs in that minor
thirds are equally consonant to major thirds allowing equal treatment of major and minor chord

7Question: why is the augmented triad considered dissonant when all its tones are pairwise consonant?
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(as opposed to the virtual pitch approach that is biased towards major thirds due to the structure of
the harmonic series).

It is also possible to redesign the GCT algorithm altogether so as to make use of non-binary
consonance/dissonance values allowing thus a more refined consonance vector. Instead of filling
in the consonance vector with 0s and 1s, it can be filled with fractional values that reflect degrees
of consonance derived from perceptual experiments (e.g., [21]) or values that reflect culturally-
specific preferences. Such may improve the algorithm’s performance and resolve ambiguities in
certain cases (future work).

4.4 Concluding remarks for the GCT

In this paper a new representation of chord types has been presented that adapts to diverse har-
monic idioms allowing the analysis and labeling of tone simultaneities in any harmonic context.
The General Chord Type (GCT) representation, allows the rearrangement of the notes of a har-
monic simultaneity such that idiom-specific types of chords may be derived. Given a conso-
nance/dissonance classification of intervals (that reflects culturally-dependent notions of conso-
nance/dissonance), and a (set of) scales, the GCT algorithm finds the maximal subset of notes of a
given note simultaneity that contains only consonant intervals; this maximal subset forms the basis
up-on which the chord type is built. The proposed representation is ideal for hierarchic harmonic
systems such as the tonal system and its many variations, but adjusts to any other harmonic system
such as post-tonal, atonal music, or traditional polyphonic systems.

The GCT representation was applied to a small set of examples from diverse musical idioms,
and its output was presented and analysed showing its potential use, especially, for computational
music analysis and music in-formation retrieval tasks. The encoding provided by GCT is not
always correct according to the interpretation given by music theorists, but, at least, it is consistent
(i.e. a certain chord will always be encoded the same way) rendering it adequate for machine
learning and generation (e.g. melodic harmonisation) where music theoretical correctness is not
so important. Sometimes GCT “uncovers” chordal relations that are obscured by notation and
en-harmonic spellings, and may assist a musician in harmonic analysis. Overall, the proposed
encoding seems to be promising and potentially useful in computational music applications.

5 Future perspectives

This section discusses the future perspectives on two different domains: a) the utilization of the
dataset’s extracted components towards achieving conceptual blending on various levels of har-
mony and b) the tools to operate the harmonic training dataset – given the requirements for ex-
tracting concepts towards blending. Inevitably, the discussion reaches the borders of algorithmic
design for conceptual blending in harmony, deviating from the main subject that is the training
dataset and its operation. However, the target of the following paragraphs is to further justify
the selection of the dataset material and the decision to develop a custom-made music encoding
scheme.
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Figure 13: Overview illustration of the COINVENT melodic harmonizer. Conceptual blending
takes part in the ontologies that describe harmony, creating blended harmonizations that constitute
the descriptive guidelines for the composition module.

5.1 Dataset components and conceptual blending

The development of the melodic harmonizer is designed to encompass two main parts: the blend-
ing and the harmonization modules. This scheme is roughly illustrated in Figure 13. The blending
module incorporates all the background knowledge in the form of harmonic ontologies that rep-
resent different idioms, as extracted form the pieces comprising the harmonic training dataset.
Harmonic blending concerns the information included in this module, while the richness of back-
ground information is provided by the diversity of idioms in the dataset, as well as by the ex-
tracted components of the dataset pieces. The harmonization module receives information from
the blending module, thereby building a harmonization framework of deterministically produced
chord constraints. Given the chord constraints, the cHMM [19] methodology is employed to fill-
in the remaining chords, while the harmonization is completed with the determination the voice
leading however, composition and blending specifics are beyond the scope of this report.

Manual annotations concern the extraction of key-elements in harmony, from a harmonically
reduced version of the examined pieces’ phrases. These elements include the required information
to describe harmonic concepts on many levels, with a parallel goal to achieve a balance between
human-friendly interpretation of data and computationally accessible encoding. Specifically, the
harmonic levels that are currently isolated and represented are the following (the first two of which
are also described in Section 3.3):
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1. Tonality and tonality changes, which are important for tracking the tonality constitution of
phrases within idioms (e.g. modal or tonal harmony), while also determining the harmonic
changes that occur and how often they occur.

2. Grouping of phrases for tracing the sub-phrases that include harmonically and melodically
coherent parts.

3. Determination of harmonic devices, for demarcating areas of specific harmonic mechanisms
or concepts.

More specifically, the harmonic devices are unique or distinctive harmonic areas within pieces or
idioms, that can be described by themselves as musical concepts. For instance, the perfect cadence
can be considered as a harmonic device, which is a characteristic harmonic element of tonal music.
Other examples of harmonic devices are parts where chords in specific tonal environments are
used (e.g. in the whole-tone or other symmetric scales), or parts with specific chord movement
(e.g. parallel diatonic or chromatic movement) among others.

Before analyzing the utilization of harmonic devices in conceptual blending, a rough descrip-
tion of the levels that blending takes place is required:

1. Meta-level of harmony: This level discusses blending on some aspects of harmony that
are described either as general properties of harmony (e.g. the mood) or even high-level
harmonic features as harmonic parts that adhere to specific conceptual characteristics (e.g.
chromatic voice leading of a particular voice in a chord sequence).

2. Phrase structure: Phrase structure refers to the harmonic blocks that succeed one another,
including cadences or the ordering of parts that belong to harmonic devices (or harmonic
device combinations).

3. Chord level: Blending in the chord level yields on the one hand novel chords that preserve
some crucial harmonic elements, regarding the relations between notes of successive chords.
On the other hand, chord blending allows the invention of intermediate chords for consec-
utive harmonic parts that belong to different conceptual spaces, providing common-ground
solutions for “incompatible” consecutive parts between different cHMMs.

Additionally, there is a key algorithmic process that has been developed in the context of COIN-
VENT that allows the idiom–dependent probabilistic harmonization of different parts, preserving
the harmonic characteristics of a selected idiom. This technique is based on the well-known hidden
Markov models (HMMs), with the vital difference that they allow the deterministic insertion of
intermediate chords, thus allowing the functionality of the hitherto described blending framework.

In the level of phrase structure, probabilistic grammars provide intermediate chords that sig-
nify important structural part, like phrase endings (cadences) on different levels of phrase group-
ing. Previous work on grammars for harmony indicate that harmony in an idiom is a highly
specialized characteristic and, therefore, the development of an idiom’s grammar requires a deep
musicological analysis of this idiom. For instance, a highly specialized grammars for harmony
was presented in [10], which discussed the employment of combinatory categorial grammars to
describe the harmony in jazz standards. This grammar allowed to either automatically parse, or
generate harmonic parts of the jazz idiom. A large number of rules was included in this grammar,
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describing highly specialized harmonic devices of the jazz idiom, e.g. special types of cadences
like tritone substitution and backdoor cadence. Additionally, the highly specialized nature of har-
mony is further amplified by the of the vast complexity of the rules that are employed in works
that examine the development of grammars for the probably deepest studied musical idiom: the
tonal music(e.g. [28, 20]).

Grammars constitute an effective methodological approach to represent information that is
layered in a hierarchical manner. The structure of a grammar employes rules that describe symbol
substitutions from upper to lower hierarchical levels, reaching the lowest level of terminal symbols
that represent the grammar’s output string. However, the development of harmonic grammars
that are accurate enough to capture the basic characteristics of a musical idiom, is a task that
requires deep knowledge and ready-made musicological analysis of the harmonic elements and
their relation in this idiom. Therefore, the development of musical grammars incorporates on the
one hand a process of identifying the main components that will be represented (e.g. phrase body,
phrase endings and tonality modulations among others) and on the other hand the construction
of a probabilistic set of rewrite rules that describe the successions of these components. To this
end, the annotation of grouping structure and tonality are vitally important for the construction of
the phrase grammars, allowing conceptual blending to foster novel combinations of phrasing parts
from different idioms, on different levels of phrase grouping.

5.2 Dataset operation framework perspectives

The previous discussion (in Section 5.1) exposed some additional requirements that the data oper-
ation processes (annotation and extraction) must fulfill. Among the first additional requirements is
that the annotation process of novel concepts – as isolated parts on score – should become expand-
able: a musician/musicologist should be allowed to easily annotate the positions where a special
concept (or harmonic device) begins and ends. Afterwards, it should also be easy to retrieve the
parts related to some additional annotations, with a query-search process.

For instance, in Section 3.3, the process of interpreting annotations to their harmonic meaning
is described, where the entries of a dictionary translate musical parts into harmonic entities. In the
aforementioned section, examples are given for the interpretation of tonality (and tonality changes)
and grouping structure through the addition of extra staves in the score of the examined musical
phrase. In the current development stage of the dataset management software, the annotation of
tonality and grouping are hard-coded, in a sense that the incorporated dictionaries (for tonality
and grouping) are unmodifiable. To this end, the first-in-priority goal for the future development
of the dataset operation framework, is to allow the creation of custom made dictionaries but in an
efficient and user-friendly manner.

To picture the potential utilization of the dictionaries framework under development, some
examples are given that refer to specific harmonic devices, delineating the employment of dictio-
naries for retrieving harmonic information:

• Special chord passages: employment of chords in specific tonal environments (e.g. whole-
tone, octatonic). An extra staff could be included to the piece’s staves, where different notes
in this staff would indicate a predefined – from the dictionary – special tonal environment
(e.g. C could indicate the whole-tone scale, while G the octatonic).
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• Special voice leading device: employment of chords that adhere to specific voice leading
constraints. For instance, the extra staff that describes voice leading would be followed by
a dictionary where the notes, e.g., C could indicate the existence of a bass-note drone, D the
existence of a middle voice drone, E chromatic ascending movement on the bass, etc.

The above mentioned examples are just indicative of the potentials that the proposed frame-
work offers. It should be noticed that the utilization of more advanced dictionaries, with “poly-
phonic” indications (instead of single-note translations) should offer a greater variety of annotation
possibilities, allowing the description of harmonic elements in any considerable detail. Thereby,
searching for phrase parts with “composite” harmonic characteristics is enabled, allowing the
isolation and examination of harmonic parts that satisfy more detailed constraints. Examples of
queries that would return such parts are the following:

• all chord in strong metric positions

• get all chords from surface reduction in phrases with specific tonality

• find the extension position (from 7th and above)

• find all the descending harmonic voice movements that consist of at least 3 chords in the
metric span of a measure

• get all tonal deviations

• get all the cadences from phrases with specific tonality

• find all the pieces where there is a modulation between relative scales (I-vi, i-III)

6 Conclusions

The collection of a diverse and extensive harmonic training dataset, along with the implementation
of effective and extendable computational tools for deriving information from it, are of vital im-
portance towards the development of the COINVENT melodic harmonization assistant. Thereby,
a large availability of harmonic concepts is achieved from many musical idioms, while the blend-
ing of these concepts yields hybrid harmonic concepts with diverse characteristics, leading to a
“computationally creative” – capable of generating novel concepts – melodic harmonizer. This re-
port describes the collection of dataset and the development of an accompanying data management
framework that are oriented towards the aforementioned directions, which lead to the construction
of a rich harmonic knowledge background, where music primitives together with manually anno-
tated analytical descriptions are encoded and extracted to compose concept descriptions. These
concepts are subsequently utilized for statistical learning and rule induction, building the artificial
intelligence context that will foster conceptual blending.

The annotations of harmonic concepts are encoded on musical staves, with the utilization of
a dictionary that is constructed by the annotator, thus allowing the custom demarcation of areas
on-score that incorporate harmonic concepts. The resulting score, with the music surface and the
annotation staves, is stored in a musicXML file, a fact that facilitates musical annotations through
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well-known computational environments (like music21) or music software (like Finale), allow-
ing musicians/musicologists to annotate musical files. Additionally, the musicXML file format is
already a data management “standard” for several programming languages, facilitating the extrac-
tion of the annotations for computational use.

An additional concern that is discussed in this report is the representation of harmony. The
dataset includes diverse idioms with chords (note simultaneities) that can hardly be represented
within a common symbolization context, e.g. while alphabetic chord symbols are adequate to rep-
resent chords in the chorales of Bach, they cannot describe the pitch simultaneities that appear
in atonal music. To this end, the General Chord type has been developed, which is an encod-
ing that is inspired by the standard roman numeral chord type labeling, but is more general and
flexible, allowing abstract idiom-specific types of chords may be derived. The development of this
chord representation systems is crucial for the construction of the generic spaces that will facilitate
conceptual blending between diverse harmonic spaces.

The long-term goals for developing the COINVENT melodic harmonization methodology are
shortly presented, justifying the choices made for the compilation of sets and subsets that com-
prise the dataset, as well as the computation framework for data annotations. Additionally, future
insights are given for the enhancement and the inclusion of more features for the data management
framework, transforming the data annotation tool to a query-based harmonic concept retrieval en-
gine. Thereby, the extraction of musical parts that include specific harmonic concepts will be
available, allowing the system to perform statistical learning and rule induction.
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