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Abstract
This deliverable describes the research work for completing the Task 3 and Task 4 in the work package 7 of the COINVENT project.
Task 3 involved the development of a melodic harmonisation assistant that learns harmonies of diverse idioms from expert-annotated
data and constructs new harmonic spaces through blending. Task 4 focused on evaluating the products of this harmonisation assistant
through subjective tests. The attached papers published in the context of this deliverable examined a wide range of harmonic
blending aspects, including theoretic studies on blending in music, algorithmic approaches on blending and generating harmonies
and experimental techniques for evaluating harmonic blending.
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1 Executive Summary

Deliverable 7.3 incorporates creative approaches to harmonic generation through conceptual blend-
ing, focusing on the computational methodology created in the COINVENT project. With regards
to music, conceptual blending has been predominantly theorised as the cross-domain integration of
musical and extra-musical domains such as text or image and primarily discussed from a musico-
analytical perspective focusing on structural and semantic integration. ‘Intra-musical’ conceptual
blending in music is often conflated with the notion of structural blending and Fauconnier and
Turner’s theory is primarily applied to the integration of different or conflicting structural ele-
ments, such as chords, harmonic spaces, or even melodic-harmonic material from different idioms.
The first task of this deliverable was to construct a melodic harmonisation assistant that generates
harmonies that feature blended characteristics, using the COINVENT core model of conceptual
blending; the second task was to evaluate its products.

Under this deliverable, several aspects of creative music blending were investigated in order
to provide an extensive understanding of the tasks to be tackled. These aspects are divided in the
following four research parts:

1. Theoretic considerations of conceptual blending in music: this part incorporated analytical
research under the scope of conceptual blending in existing musical material, on the social
dimension of creativity and further theoretical considerations on the nature of blending in
music.

2. Harmonic learning from data: following-up the work of Deliverable 7.2, new learning com-
ponents were proposed in order to enable statistical learning on several levels of harmony.

3. Harmonic blending in a melodic harmonisation assistant: in this part, the core model of
conceptual blending, as developed in the COINVENT project, was employed for the au-
tomated generation of blends. Initial applications included chord blending, with interest-
ing findings regarding cadences, while afterwards transition blending was integrated in a
melodic harmonisation assistant that is capable of blending harmonic styles.

4. Evaluating blending in harmony: the interesting cadence results obtained by chord blend-
ing were further examined under an empirical setting, allowing perceptual evaluation of
the blending results. Empirical evaluation on the products of the harmonisation assistant
indicated that the intended purposes of blending were met, since the system produced per-
ceivable blends that were equally preferred, compared to non-blends.

An additional outcome of the work under this deliverable is a forthcoming (3 September 2017)
special issue in the ‘Musicae Scientiae’ journal, entitled ‘Creative Conceptual Blending in Music’,
edited by Emilios Cambouropoulos, Danae Stefanou, Costas Tsougras (School of Music Studies,
Aristotle University of Thessaloniki). This special issue will include contributions that cover
a wide range of approaches on the utilisation of conceptual blending in music, expanding the
discussion of generative conceptual blending and increasing the overall impact of the COINVENT
project to the field of musical creativity. For matters of space, some representative publications
related to the four aforementioned research parts are attached in this deliverable. For the full texts
of all the publications related to this deliverable, as given in the list of references in this text, the
interested reader is referred to the COINVENT website1.

1
http://www.coinvent-project.eu/en/publicationsmedia/publications_by_type.html
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The theory of conceptual blending is based on a solid cognitive basis. Therefore, the appli-
cations and the extensions that conceptual blending has in music, were first studied under a theo-
retical point of view. In [14] a structural and hermeneutical analysis of ‘Il vecchio castello’ from
Modest Musorgsky’s ‘Pictures at an Exhibition’ in an attempt to disclose both the intra-musical
(combination of modal, tonal and coloristic harmonic spaces) and the extra-musical (contextual,
symbolic and programmatic aspects) conceptual blending that the work incorporates. The pro-
posed analysis shows how musical structure promotes meaning construction through cross-domain
mapping. This research suggests that conceptual blending theory as an analytical tool can promote
a richer structural interpretation and experience of Musorgsky’s work. The social aspect of social
creativity, which is a crucial part of the COINVENT project, was examined in [12], where the
theoretical and methodological developments in the study of social creativity in music were out-
lined, focusing on collaborative and improvised music-making. Particular reference was made to
FolioHarmonies, a short qualitative study carried out as part of COINVENT project, and docu-
menting collaborative, open-ended problem-solving processes in the creation of original musical
pieces. Finally, a critical investigation of the application of Fauconnier and Turner’s conceptual
blending theory in music was presented in [13]. This study aimed to expose a series of questions
and aporias highlighted by current and recent theoretical work in the field, related to the common
distinction between intra- and extra-musical blending as well as the usually retrospective and ex-
plicative application of conceptual blending. It was thereby argued that more emphasis could be
given to bottom-up, contextual, creative and collaborative perspectives of conceptual blending in
music.

The creative melodic harmonisation assistant developed in the context of this deliverable, is
able to learn harmonies from musical data of diverse harmonic idioms. Before presenting the
blending methodology followed for harmonic blending and building on the developments pre-
sented in the Deliverable 7.2 of the COINVENT project, the methodologies used for learning
harmonies were further examined and refined in the context of this deliverable. In [1] the Gen-
eral Chord Type (GCT) representation, which is the idiom-independent representation used by
the creative melodic harmonisation assistant to learn and compose harmonies, was further inves-
tigated according to musicological, perceptual and computational aspects of the harmonic musi-
cal surface. The first step towards transforming abstract GCTs to actual notes incorporates an
idiom-independent methodology for learning and composing the bass voice leading. In [10], a
probabilistic approach was proposed for the automatic generation of voice leading for the bass
note on a set of given chords from different musical idioms, according to a given set of GCT
chord sequences. This methodology was based on the hidden Markov model (HMM) and the bass
voice contour was determined by observing the contour of the melodic line. This approach was
further refined in [11], by introducing additional statistical parameters for the motion of the bass
voice except from the aforementioned HMM, namely: bass-to-melody distances as well as statis-
tics regarding inversions and note doublings in chords. These parameters were incorporated in
a modular approach, while the experimental results presented therein indicated that the proposed
methodology captures rather effectively the voice layout characteristics of diverse idioms, whilst
additional analyses on separate statistically trained modules revealed distinctive aspects of each
idiom. The complete system for learning different harmonic aspects in diverse music idioms was
presented in [5]. This system is adaptive (learns from data), general (can cope with any tonal or
non-tonal harmonic idiom) and modular (learns different aspects of harmonic structure such as
chord types, chord transitions, cadences and voice-leading) and can be used, not only to mimic
given harmonic styles, but, to generate novel harmonisations for diverse melodies by exploring the
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harmonic possibilities provided by the implied harmonies of input melodies, or by allowing the
imposition of user-defined chord constraints leading thus to new unforeseen harmonic realisations.

The creative applications of conceptual blending on many levels of harmony, were examined
in [2] under the scope of structural, intra-musical blending. Specifically, the following aspects
of structure were examined: chord-level blending, chord sequence blending, scale blending, har-
monic structure level blending, melody-harmony level blending. Focussing on chord-level blend-
ing, the work presented in [3] used the COINVENT core model of conceptual blending based on
amalgams to automatically find transitions between chord progressions of different keys or idioms
and substitute chords in a chord progression by other chords of a similar function, as a means to
create novel variations. The approach was the first evidence that demonstrated interesting creative
blending examples, where jazz cadences are invented by blending chords in cadences from earlier
idioms, and where novel chord progressions are generated by inventing transition chords. The
chord blending paradigm was expanded to transition blending, which involved the introduction of
many harmonic properties for describing transition ontologies. Deciding about the importance of
such properties in the input spaces and evaluating the results of conceptual blending is a nontrivial
task, specifically in the case of musical harmony where deep musicological background knowl-
edge is required. In [4] a system was presented that allows a music expert to specify arguments
over given transition properties, in a process that makes the system capable of defining combi-
nations of features in an idiom-blending process. A music expert can assess whether the new
harmonic idiom makes musicological sense and re-adjust the arguments (selection of features)
to explore alternative blends that can potentially produce better harmonic spaces. The refined
blending methodology that was developed in [4], was combined with the learning methodology
presented in the previous paragraph and expanded in blending Markov transition matrices in the
system presented in [6] and [7]. The melodic harmonisation assistant presented therein, features
creative conceptual blending between two initial harmonic idioms, enabling various interesting
music applications, ranging from problem solving, e.g. harmonising melodies that include key
transpositions, to generative harmonic exploration, e.g. combining major-minor harmonic pro-
gressions or more extreme idiosyncratic harmonies.

The first step of evaluating the creative harmonic blending systems included the evaluation
of the way it represents chords, namely through the GCT. In [8] the descriptive potential of the
GCT was assessed in the tonal idiom by comparing GCT harmonic labels with human expert
annotations (in the Kostka & Payne harmonic dataset) and the results indicated that the GCT
representation constitutes a suitable scheme for representing effectively harmony in computational
systems. Based on the interesting cadences that came out of the chord blending system, its ability
to make fair predictions of the human-perceived dissimilarities between the blended cadences it
produces was evaluated in [15]. This work was further expanded in [9], where the behavioural data
were used as a ‘ground-truth’ human-based perceptual space of cadences, allowing an evolutionary
algorithm to adjust the salience of each cadence feature to providing a system-perceived space
of cadences that optimally matched the ground-truth space. This work was further expanded
in [16], where a verbal attribute magnitude estimation method on six descriptive axes (preference,
originality, tension, closure, expectancy and fit) is used to associate the dimensions of this space
with descriptive qualities (closure and tension emerged as most prominent qualities). The novel
cadences generated by the computational blending system were mainly perceived as one-sided
blends (i.e. blends where one input space is dominant), since categorical perception seems to
play a significant role (especially in relation to the upward leading note movement). The creative
harmonisation assistant described in the previous paragraph was shown to be able to express the
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harmonic character of diverse idioms in a creative manner, while the blended harmonies often
extrapolated the two input idioms, creating novel harmonic concepts. The nature of the perceptual
impact of the blended harmonisation products generated by the system was examined in [17]. In
this work, the behavioural assessment of system-generated blended harmonisations revealed that
the system has succeeded in producing perceivable blends – both across idioms, modes and types
of chromaticism – that were equally preferred, compared to non-blends.

This deliverable consists of the above cited papers, which are given in the following pages.
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ABSTRACT 
Conceptual blending is a cognitive theory proposing the combination 
of diverse conceptual spaces for the creation of novel blended spaces. 
Musical conceptual blending can be intra-musical, pertaining to the 
combination of diverse structural elements for the creation of new 
melodies, harmonies or textures, as well as cross-domain, involving 
the integration of musical and non-musical spaces for the creation of 
novel analogies or metaphors. The present paper presents a structural 
and hermeneutical analysis of ‘Il vecchio castello’ from Modest 
Musorgsky's ‘Pictures at an Exhibition’ in an attempt to disclose both 
the intra-musical (combination of modal, tonal and coloristic 
harmonic spaces) and the extra-musical (contextual, symbolic and 
programmatic aspects) conceptual blending that the work incorporates. 
The analysis reveals that the piece comprises seven strophes of a song 
form that emerge from a common melodic core, through the dynamic 
evolution of harmonic spaces from diatonic modality to 
impressionistic/coloristic chromaticism and with the combinatorial 
use of ten harmonization concepts. The reductional/prolongational 
analysis provides input for two distinct Conceptual Integration 
Networks, the first describing the intra-musical blending of melodic 
harmonization and the second proposing the cross-domain blending of 
the musical and pictorial input spaces into a blended hermeneutical 
space that projects the work's narrative/programmatic/emotional 
potential. The proposed analysis shows how musical structure 
promotes meaning construction through cross-domain mapping. This 
research suggests that conceptual blending theory as an analytical tool 
can promote a richer structural interpretation and experience of 
Musorgsky’s work. 

I. Introduction 
From a traditional musico-analytical perspective, 

Musorgsky’s ‘Pictures at an Exhibition’ is a typical example of 
programme music. It refers to a series of paintings, and the 
imaginary affective exploration of their features. This 
programme, in keeping with 19th-century formalist distinctions 
between intrinsically musical features and extra-musical 
interpretations attached to them, is seen as somehow secondary 
and ‘parallel’ to the music.   

In this paper we argue for a somewhat different interpretation, 
drawing on the theory of conceptual blending (Fauconnier & 
Turner 2003) and related work on metaphor & cross-domain 
mapping (e.g. Zbikowski 2002 & 2008, Spitzer 2003). Through 
a case-study analysis of the ‘Old Castle’, we explore instances 
of conceptual blending which go beyond the idea of a 
programme that is merely applied onto the musical work, and 
re-cast Musorgsky’s composition as a dynamic, multiple-level 
integration of incongruous temporal, spatial and affective 
modalities. 

A fundamental assumption for this investigation is the idea of 
a scored composition as an emergent structure, which can also 
be studied retrospectively. The ensuing analysis is therefore 
intended to provide a possible interpretation of how we listen to 
the ‘Old Castle’, how this process generates meaning that is 
neither purely musical nor exclusively pictorial or verbal, and 
how the elements that are central to this blended understanding 
of the work, are arguably themselves a result of structural 
blending. 

A. Perspectives from Cognition and Philosophy of Mind: 
Conceptual Blending and Qualia 
Fauconnier & Turner’s Conceptual Blending theory (2003) 

is a step further from unidirectional theories of metaphor, most 
notably Lakoff & Johnson’s (1980) Conceptual Metaphor 
Theory (CMT). CMT suggests that we map concepts across 
different domains, borrowing features from one source (e.g. 
painting) and applying them to a target (e.g. music), so that the 
attributes of the source domain are mapped onto those of the 
target (e.g. ‘nuanced dynamics’ or ‘a dark tonality’). Blending, 
on the other hand, presupposes an equilateral, multi-directional 
relationship not only between different domains, but between 
conceptual spaces. These spaces may be contrastive or 
qualitatively different, and may only share some structural 
features between them. In that sense, we may also identify 
blends situated exclusively within the domain of music, e.g. 
between clashing chords or contrasting tonalities (Ox 2014, 
Kaliakatsos-Papakostas et al 2014), as well as blends 
combining properties of text, image and sound, e.g. in cinema 
or advertising (Cook 2001) or in recorded pop songs (Moore 
2012). 

Applications of conceptual blending in music analysis are 
still relatively few and rather general in nature. Cook (2001, see 
also an earlier attempt in Cook 1998) makes one of the first 
attempts to represent a music and moving image blend in his 
analysis of a Citroen car commercial, while Zbikowski (2002) 
provides one of the more detailed analyses to date of how text 
painting and programme music operate together on the basis of 
conceptual blending. While more recent authors (e.g. Schmidt 
2012) have also proposed critical re-examinations of these 
analytical approaches, for the purposes of this paper, we will 
primarily rely on Zbikowski’s  paradigm, not only because it is 
the most analytically inclined example of current literature on 
blending in music, but also because of its closeness to the 
material under study (a complex programmatic work involving 
several layers of visualisation and meaning construction).  

As ‘the work’ in this case is not merely a musical text, and the 
composer’s relationship to the source material is more complex 
than the kind of one-directional representation or ekphrasis 
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suggested e.g. by Bruhn (2000), we also refer to the 
qualitatively different, contrastive states that account for the 
piece’s multiple dimensions as qualia. Though the properties of 
qualia have been the subject of extended criticism among 
consciousness theorists (most notably Dennett 1991), the idea 
of otherwise indescribable differences in consciousness 
between past and present, reality and dream, depiction and 
interpretation etc. is a useful way to conceptualize the 
deeper-level structures that permeate the composition.  

B. Musorgsky's ‘Pictures’ and the ‘Old Castle’ 
Musorgsky's ‘Pictures at an Exhibition’ is a well-known 

piano suite, inspired from paintings and architectural drawings 
by Viktor Alexandrovich Hartmann (1834-1873), a close friend 
of the composer, put on display during a posthumous exhibition 
of 400 of his works in February and March 1874 in St. 
Petersburg. The suite comprises 10 pieces and 5 promenades 
that function as preludes and/or bridges. It was written in one 
creative burst in June 1874 (Russ 1992; Oldani; Brown 2002: 
229-241). 

The suite, according to Russ (1992: ch. 1; see also Taruskin 
2010: vol. 3, ch. 12) incorporates Musorgsky's key stylistic 
elements: nationalism, populism, anti-romantic realism and 
conscious distance from mainstream (Germanic) concepts of 
musical form, motivic development and harmonic structure. A 
narrative dimension has been identified and commented upon in 
all of Musorgsky’s ‘musical pictures’ (Russ 1992: 31, Tarasti 
1994: ch. 8), as if  the composer focuses on someone or 
something within the picture and creates a story about it through 
music, thus forging an indivisible duality of psychological 
state/musical structure for each piece. 

The ‘Old Castle’ is the second piece of the suite, entitled by 
the composer in Italian as ‘Il vecchio castello’. The original 
watercolor painting has been lost or sold during the exhibition 
(Brown 2002: 230), but according to Stasov's description 
(Frankenstein 1939: 282), it was a depiction of "a medieval 
castle, before which stands a singing troubadour". 
Bibliographic references to the piece (Russ 1992: 37-38; 
Tarasti 1994: 214, 227-229; Brown 2002: 235) stress its modal 
Russian character, its siciliana rhythmic pattern and its 
melancholic mood, but do not include full or partial musical 
analysis. We cite two of these references, since they indirectly 
reflect the present analytical approach (italics by the authors): 
Eero Tarasti, in his semiotic analysis (1994: 214), refers to the 
piece as Italian pastiche, where "the ‘old castle’ alludes to the 
past, a heterotopic place, ‘elsewhere’ with respect to the 
musical narration", and David Brown mentions (2002: 235) that 
"the melody that runs throughout the piece is his [the minstrel's] 
song, a blend of Italian siciliana with Russian melancholy".  

C. Research Aims 
In Conceptual Blending Theory (Fauconnier and Turner, 

2003), elements from diverse, but structurally related, mental 
spaces are ‘blended’, giving rise to new conceptual spaces that 
often possess new powerful interpretative properties, allowing 
better understanding of known concepts or the emergence of 
novel concepts. Conceptual blending allows the construction of 

meaning by correlating elements and structures from diverse 
conceptual spaces.  

The present research's aim is the exploration of conceptual 
blending between the musical and pictorial spaces embedded in 
the ‘Old Castle’. The inquiry was triggered by the piece's 
implicit heterogeneity regarding its modal/tonal content, a 
feature that seems to grow and expand while the music evolves 
from beginning to end, while constantly revolving around a 
stable rhythmic pattern and a common melodic core. The 
analysis will therefore pursue an explication of the 
multi-directional metaphoric relation between music and 
picture through structural music analysis and cross-domain 
mapping, as well as a description of its dynamic evolution. For 
this purpose, multi-level ontologies in music will be employed 
in multi-level blending through the basic operations of 
composition, completion and elaboration (Zbikowski 2002: 
80). 

II. Music Analysis 
The piece can be considered, in accordance with Russ's 

description (1992: 37), an Italian "serenade ... [that] turns into a 
Russian song without words", where a diatonic modal melodic 
core unfolds differently in each stanza, evoking different 
harmonizations. The analysis that follows focuses on harmonic 
and prolongational structure, making references to rhythmic 
and textural aspects. Our choice for using prolongational 
analysis and revealing quasi-Ursatz schemas may seem at first 
inappropriate for music that consciously avoided mainstream 
harmonic and developmental theories and practices (Russ 
1992: 9). However, the specific piece affords the application of 
such a methodology, albeit in an idiomatic way, due to its linear 
texture (see also Puffett 1990 and Russ 1990 for prolongational 
analyses of ‘Catacombs’ and ‘Nursery’). 

A. Form and compositional concepts 
The piece is in strophic song form, with a short introduction 

and seven stanzas of unequal length, as shown below:  
Introduction (b. 1-8) 
Stanza 1 (b. 9-18) 
Stanza 2 (b. 19-28) 
Stanza 3 (b. 29-37) 
Stanza 4 (b. 38-50) 
Stanza 5 (b. 51-69) 
Stanza 6 (b. 70-95) 
Stanza 7 (b. 96-107) 
 
Ten main compositional concepts can be identified, 

employed in various combinations by Musorgsky for the 
composition of the seven stanzas: 

1. Drone of tonic in the lower voice (omnipresent and 
constant throughout the whole piece) 

2. Siciliana rhythmic pattern and subpatterns: 
, etc (the main pattern for the 

tonic drone and related subpatterns for the melody) 
3. Diatonic modal harmony (diatonic voice-leading, free 

non-functional use of triads for melodic harmonisation in the 
context of the diatonic modes) 
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4. Diatonic tonal harmony (functional use of chords for 

melodic harmonisation in the context of major-minor tonality, 
diatonic voice-leading, tonal cadence schema: iv-V7-i) 

5. Chromatic tonal harmony (use of more dissonant chords, 
chromatic mixture, tonicizations, chromatic voice leading) 

6. Chromatic coloristic/impressionistic harmony (free use of 
chromatic sonorities without tonal harmonic function) 

7. Modal interchange (change of mode while keeping the 
same pitch center) and hyper-modulation (change of pitch tonal 
space) 

8. Parallel harmony (diatonic or chromatic/real chord 
planing) 

9. Scale of sensory dissonance (conscious use of intrinsic 
dissonance level for the choice of chords) 

10. Fragmentation of musical texture (use of unconnected 
snippets / mosaic texture) 

These concepts can be categorized –with categorical 
overlapping– as rhythmic (1, 2, 10), harmonic (1, 3, 4, 5, 6, 7, 8), 
textural (8, 10) and cognitive/schematic (9, 10). 

B. Analysis of the seven stanzas 
In this subsection an analysis of each stanza is presented, 

focusing on the compositional concepts employed and 
illustrated with two-level prolongational graphs. 

Introduction and Stanza 1 (b. 1-18). The left-hand 
introduction and the first melodic stanza are purely diatonic, 
with their pitch content coming from the G# Aeolian mode, and 
with characteristic descending voice-leading (5-4-3-2-1 for the 
intro and 8-7-6-5-4-3 for the melody). The intro segment is also 
repeated as a codetta (fig. 1).  

The concepts employed are: tonic drone, siciliana rhythm, 
modal harmony (G# Aeolian, descending diatonic voice 
leading). 

 

 
Figure 1.  Score & prolongational analysis of Intro and Stanza 1. 

Stanza 2 (b. 19-29). The second stanza starts similarly in the 
G# Aeolian mode, but 3 bars later the use of A natural denotes a 
modal interchange towards the G# Phrygian. The parallel 6

3 
chords that introduced the modal interchange continue, creating 
a tonicization of the C# minor chord. This is subsequently used 
as a iv harmonic degree in G# minor tonality, leading to a V7-i 
(fig. 2). Thus, although the main melodic line is the same 
(8-7-6-5-4-3), a hyper-modulation from the modal to the tonal 
system occurs (fig. 2).  

Concepts employed: tonic drone, siciliana rhythm, modal 
harmony (G# Aeolian – G# Phrygian, descending voice-leading 
8-7-6-5-4-3), tonal harmony (G# minor, cadence iv-V7-i), 
modal interchange, hyper-modulation, parallel harmony 
(diatonic 63 chords). 

 

 
Figure 2.  Score & prolongational analysis of Stanza 2. 

Stanzas 3, 4. (b. 29-37 & 38-50). The exploration of diatonic 
modes based on G# continues in these two almost identical 
stanzas (their only difference is that the fourth stanza includes 
the intro segment as a codetta). The stanza begins in G# 
Phrygian (A natural), interchanges to G# Locrian (A, D natural), 
returns to G# Aeolian and concludes in G# minor tonality. The 
expanded modal interchange concept introduces a mode not 
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used in the Middle Ages, the Locrian, conveying a more 
Russian/19th-century profile to the stanza's modality (fig. 3). 

Concepts employed: tonic drone, siciliana rhythm, modal 
harmony (G# Phrygian – G# Locrian – G# Aeolian, descending 
voice-leading 6-5-4-3), tonal harmony (G# minor, cadence 
iv-V7-i), modal interchange, hyper-modulation. 

 

 
 

 
Figure 3.  Score & prolongational analysis of Stanzas 3 and 4. 

Stanzas 5, 6 (b. 51-69 & 70-95). Stanza 5 begins in G# 
Aeolian, but then, when the melody ascends chromatically from 
G# to D#, chromatic harmony is employed for its 
harmonization. Initially, two tonicizations take place in A# 
major and C# major (through secondary diminished 7th chords). 
Subsequently, the two last melodic steps (Cx-D#) are 
harmonized with intrinsically dissonant non-functional 
chromatic sonorities (D#-F#-A#-Cx, E#-G#-D#), before 
reaching C# minor through an embellishing non-functional 
chord (E-G#-Cx), and finally arriving at a functional stable 
harmonization of D# (D# major chord). These non-functional 
coloristic/impressionistic chords have diminishing sensory 
dissonance levels, a parameter exploited by the composer in the 
transition from tension to relaxation: [D#-F#-A#-Cx] - 
[E#-G#-D#] - [E-G#-D] - [E-G#-C#]. The stanza closes with a 
cadence to G# minor tonality (iv-V7-i), that also completes the 
background melodic voice-leading (5-4-3). This stanza greatly 
expands the concept of hyper-modulation, incorporating four 
distinct harmonic systems (modal, diatonic tonal, chromatic 
tonal, impressionistic), each pertaining to a different tonal pitch 
space / historical era (fig. 4). 

 

 
 

 
Figure 4.  Score & prolongational analysis of Stanzas 5 and 6. 

Stanza 6 is almost identical, but with an extra element: the 
fragmentation of the musical texture by employing snippets of 
the previous stanzas (b. 87-95), having as a result the absence of 
the cadential pattern V7-i at its end: the unresolved V7 of b. 86 is 
prolonged until b. 95 (fig. 5). 

 

 
Figure 5.  Reductional analysis of Stanza 6. 

Stanzas 5 and 6 incorporate almost all the compositional 
concepts: tonic drone, siciliana rhythm, modal harmony (G# 
Aeolian), chromatic tonal harmony (viio7-I, chromatic 
ascending voice leading, brief tonicizations), coloristic 
harmony (D#m7M-E#m7/-5), diatonic tonal harmony (G# minor, 
cadence iv-V7-i), hyper-modulation, sensory dissonance scale, 
fragmentation. 

 
Stanza 7 (b. 96-107). The last stanza returns to the initial 

melodic material, albeit with more chromaticism (chromatic 
voice-leading, altered diminished 7th chord for the tonicization 
of iv). Michael Russ (1992: 38) argues that this is a coda, but we 
will disagree, because this part contains the structural ending of 
the work, the only complete iteration of the piece's melodic 
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core: the descending voice-leading schema (8-7-6-5-4-3-2-1) 
(fig. 6). 

Concepts employed: tonic drone, siciliana rhythm, modal 
harmony (G# Aeolian), chromatic tonal harmony (descending 
chromatic voice-leading, altered chords), diatonic tonal 
harmony (G# minor, iv-V7-i), perfect cadence with structural 
closure, hyper-modulation.  

 

 

 
Figure 6.  Score & prolongational analysis of Stanza 7. 

C. Summary of compositional features 
 The preceding musical analysis has revealed that the ‘Old 

Castle’ is essentially the result of seven different evolutions of  
a common modal melodic core –namely a descending 
voice-leading linear structure–, through the dynamic evolution 
of harmonic spaces from diatonic modality to 
diatonic/chromatic tonality and impressionistic/coloristic 
chromaticism, with the combinatorial use of ten compositional 
concepts. The harmonic evolution is supported by the 
omni-present common element of the siciliana tonic drone, and 
occurs linearly, starting with diatonic modality in the 1st stanza, 
culminating with the use of all four spaces in the 6th stanza 
(through hyper-modulations) and closing with the tonal cadence 
in the 7th stanza and the completion of the melodic schema. 

III. Conceptual Integration Networks 
This section attempts to put the analysis results in context, 

drawing on Zbikowski's representation of conceptual blending 
in music. So, two different Conceptual Integration Networks 
(CINs) will be constructed, each with its own generic, input and 
blended spaces, and with reference to Fauconnier & Turner’s 
(2003) typology of single-scope and double-scope blending 
networks. 

A. “Intra-musical” structural blending 
CIN 1 (Conceptual Integration Network 1) proposes that the 

piece's evolutionary musical structure is a result of the  
intra-musical blending of harmonic spaces through the concept 
of hyper-modulation. So, the Generic Space, to which both 
input spaces relate, is Music-Song; it is defined by  parameters 
of melody, rhythm, harmony, hierarchy and musical texture. 

Input Space 1 is Melody (properties: modes/scales, structural 
pitches, melodic/linear cadences, interval 
succession/voice-leading, implied harmony, rhythm) and Input 
Space 2 is Harmony (properties: diatonic modality, diatonic 
tonality, chromatic tonality, coloristic harmony, 
hyper-modulation, parallel harmony, pedal notes/drones, 
harmonic rhythm). The combinations that the two input spaces 
afford yield the Blended Space, i.e. the musical structure of ‘Il 
vecchio castello’, as an evolutionary succession of seven 
different melody/harmony amalgams produced by the 
combination of four harmonic spaces (fig. 7). 

 

 
Figure 7.  CIN 1: “Intra-musical” structural blending. 

B.  Cross-domain conceptual blending (meaning 
construction) 
CIN 1 could be seen along the lines of Fauconnier and 

Turner’s (2003) single-scope blending, where the re-framing of 
a concept (melody) through a different set of relations 
(harmony) results in changing instantiations of the concept. 
CIN 2 (Conceptual Integration Network 2) proposes a 
double-scope blending of the musical and pictorial input spaces 
into an integrated conceptual space, which projects the work's 
narrative and emotional potential and further promotes novel 
meaning construction. As Turner (2003) notes, double-scope 
blending is one of the most creative cognitive features 
associated not only with the conceptualization of everyday 
reality, but particularly with the formulation of artistic and 
scientific concepts. Double-scope networks involve the 
simultaneous elaboration of two contrasting input spaces, and 
the running of two previously unrelated scripts as one blend. 
Being in one place, in one time, and fully perceiving and 
interacting with the features of this place and time, while also 
simultaneously recollecting and exploring another place, at 
another time, is a typical example of double-scope blending.  
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The Generic Space for CIN 2 involves Contrasting 

Ontological States, and it can be split into four contrasting 
generic sub-spaces: Temporality, Spatiality, Affect and Qualia, 
each producing a separate sub-CIN. Input Space 1 is the 
Pictorial Space, Input Space 2 is the Musical Space (or one of 
its constituents), and the Blended Space is ‘Il vecchio castello’ 
as a perceived programmatic musical work. 

 
CIN 2a: Contrasting Temporality (fig. 8). This CIN 

describes the contrasting temporality embedded in the piece, as 
a result of the contrasting harmonic spaces employed and the 
contrasting epochs they correspond to in the pictorial space 
(contrast between the depiction of the medieval castle in the 
past and its reception in a 19th-century ‘present’).  

 

 
Figure 8.  CIN 2a: Cross-domain blending - Temporality. 

 
CIN 2b: Contrasting Spatiality (Geographic/national 

marker). This CIN (fig. 9) describes the embedded contrasting 
spatiality, expressed at the pictorial space by the depiction of an 
Italian castle observed in a Russian gallery and at the 
musical/melodic space by an Italian siciliana melody/rhythm 
implanted with Russian folk character and corresponding 
modality. Moreover, the Italian element is declared in 
Musorgsky's original Italian title, and the Russian vernacular 
element has been associated with a type of melismatic peasant 
song known as protyazhnaya (Russ 1992: 51). 

 

 
Figure 9.  CIN 2b: Cross-domain blending - Spatiality. 

CIN 2c: Contrasting Affective States (emotion). This CIN 
(fig. 10) describes the contrasting affects (emotions) that may 
be evoked by the blending of the pictorial and musical input 
spaces. ‘Love’ (expressed in pictorial space by the singing 
troubadour) can be experienced as ‘Nostalgia for love’, under 
the influence of the musical space, where a serenade gradually 
turns into a melancholic folk song.  

 

 
Figure 10.  CIN 2c: Cross-domain blending - Affect. 

CIN 2d: Contrasting Qualia. This CIN describes the 
different instances of subjective, conscious experience 
(formulated as qualia, after Goguen 2004) embedded in the 
music in latent form. The contrasting qualia, in this case, refer 
to two different kinds of psychological/consciousness states, 
which can be inferred in input Space 1 (pictorial). They are the 
state of real-time conciousness, and the state of dream/fading 
recollection, corresponding to the idealized “real” past and the 
imaginary “dreamy” present. These states are reflected in Input 
Space 2 (musical) as the juxtaposition of normal rhythmic flow 
of melody/form and fragmentary array of snippets or the 
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contrast of simple strophic and dynamically evolving song 
form.  

 

 
Figure 11.  CIN 2d: Cross-domain blending - Qualia. 

Overall, CIN 2 (Conceptual Integration Network 2) proposes 
meaning construction through double-scope conceptual 
blending and emerges as the union of its four constituent 
sub-CINs described above. This collective, multiple-scope, 
multiple-level CIN suggests that the contrasting ontologies 
embedded in the musical structure trigger contrasting 
ontologies in the projected “perceived/imagined” pictorial 
space, and that this cross-domain integration elicits a richer 
aesthetic experience for the listener. 

 

 
C. Figure 12.  CIN 2: Cross-domain blending. 

 

 

D. Dynamic evolution 
Moreover, a dynamic evolution of conceptual blending takes 

place as the piece progresses from the first stanza to the last, as 
if following a narrative path, through which the “real”, 
representational drawing of the Italian castle with the 
love-singing troubador gradually becomes a “dreamy” 
abstraction of an old castle, vaguely remembered and evoked in 
another time and place. This occurs due to the blending 
operation of elaboration, which denotes an 
imagination-triggering process that stems from musical 
structure and constructs emergent emotions and meaning (fig. 
13). 

 

"Real" castle in the past

diatonic modality

"Dreamy" castle in the present

functional or free chromatic tonality

 
Figure 13.  Dynamic evolution of conceptual blending. 

IV. Meaning Construction - Conclusions 
Conceptual blending in this case involves the use of 

harmonic, melodic, formal, textural and schematic elements 
that are not compatible with a simple depiction of a medieval 
castle. Through blending and cross-domain mapping, music 
precipitates the listener to “see” or imagine the castle gradually 
lost into the vortex of time, misty, dreamy, in an obscure place, 
and with the feeling of chivalrous love gradually transformed 
into melancholic nostalgia as the music unfolds. 

Consequently, the old castle that one might see in the 
painting is very different from the ‘old castle’ that our 
imagination creates while experiencing Musorgsky's piece, and 
this transcendence to a much richer aesthetic experience is 
feasible through the blending of the pictorial and musical 
conceptual spaces. 

In effect, as we move from simple cross-domain mapping 
between music and image, onto the single-scope binding of 
melody and harmony (CIN1) and higher-level, double-scope 
blending functions (CIN2), it is possible even to explore the 
work as a process of cognitive integration (between melodic 
and harmonic elements, visual and auditory references) and 
dis-integration between contrastive, qualitatively different 
temporal, spatial and affective states. According to Bache 
(2005) dis-integration is one of the most important features of 
higher-level blending. We elaborate and “make sense of” 
blends only by consciously focusing on the differences between 
input spaces and thus acknowledging the terms on which a 
metaphor operates.  
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A present-day listener is thus able to conceive of 

Mussorgsky’s ‘Old Castle’ as an imaginary castle, a wordless 
song, a nostalgic reverie, a musical landscape, or all of these at 
once. This begs a bigger question regarding the levels of 
mediation (Stefanou 2004) involved in this metaphorical 
concept construction, from Hartmann’s sketches up to 
Mussorgsky’s score, and even more so, a performance of it. 
Further extensions of the present research could engage with the 
dimension of performance, and its role in the complex blending 
procedures suggested here. While it has not been possible to do 
so within the limited confines of this research, a focus on 
performance and listening would probably significantly enrich 
the Conceptual Integration Networks proposed above, and also 
help situate the analysis in terms of embodied meaning. 

Finally, a broader issue could be raised by the very 
conceptualization of the work’s features and the choice to 
represent them in two distinct types of networks. By 
distinguishing intra-musical from cross-domain conceptual 
blends, we do not wish to imply that meaning and structure are 
exclusively associated with one space or other. Quite on the 
contrary, we think that CIN1 and CIN2 could themselves 
become part of a multiple-scope blend, exposed by this 
categorization, and involving so-called intra-musical and 
extra-musical features. This separation is in itself the result of a 
conceptual metaphor (Spitzer 2003), by which “music” is 
equated with structure, and seen as a central locus, outside of 
which various other domains are tangentially involved in the 
production of secondary meaning. Hopefully, in this research 
we have also opened up a space for further problematization 
and relativization of the conceptual metaphor of intra- and 
extra-musicality, and further research can elucidate the 
particular terms on which it operates.  
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Abstract

Melodic harmonisation is a sophisticated creative process that involves deep music under-
standing and specialised music knowledge relating to melodic structure, harmony, rhythm,
texture, form. In this paper a new melodic harmonisation assistant is presented that is
adaptive (learns from data), general (can cope with any tonal or non-tonal harmonic id-
iom) and modular (learns different aspects of harmonic structure such as chord types,
chord transitions, cadences and voice-leading). This melodic harmonisation system can
be used, not only to mimic given harmonic styles, but, to generate novel harmonisations for
diverse melodies by exploring the harmonic possibilities provided by the implied harmonies
of input melodies, or by allowing the imposition of user-defined chord constraints leading
thus to new unforeseen harmonic realisations. The various components of the proposed
model are explained, and, then, a number of creative harmonisations of different melodies
are presented, along with an intuitive statistical analysis, to illustrate the potential of the
system.
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1 Introduction

Creative music systems are often criticised as not ‘really’ being creative per se; underlying
this criticism is the belief that the actual human programmer is the true source of creativity.
However, machine learning has made such criticisms more difficult to maintain, as a ma-
chine may acquire knowledge from data, construct a new conceptual space (new structural
relations or even new elements) or explore an existing one without human intervention and,
then, create new unforeseen output (Wiggins et al. 2009). Adaptability, flexibility, indepen-
dence, autonomy are features associated with creativity (see key components of creativity
in Jordanous (2013)); general representations and machine learning techniques allow cre-
ative systems to be open to new environments, to evolve, to transform existing or construct
new concepts, to create new unexpected results.

A model of creativity has been proposed by Boden (2009) whereby a conceptual
space may be explored by an agent in order to generate new creative instances (ex-
ploratory creativity) or the rules of the conceptual space are transformed changing the
conceptual space itself (transformational creativity) or different conceptual spaces that
share structural similarities are combined to create new blended spaces (combinational
creativity). In the current study, the conceptual spaces are learned in a bottom-up fashion
from data and are structured in a modular way, so as to allow (at a later stage) to com-
bine different modules from different spaces creating thus new blended spaces. At this
stage, the system is indicated to exhibit exploratory creativity, by composing harmonies
that potentially excess the harmonic borders of a corpus.

This paper focuses on melodic harmonisation seen as a creative musical act. Some
researchers follow the knowledge-engineering approach whereby experts encode the es-
sential rules for harmonisation in a certain tonal style (from the Bach chorale expert system
by Ebcioglu (1988) to the explicitly structured knowledge paradigm by Phon-Amnuaisuk
and Wiggins (1999); Phon-Amnuaisuk et al. (2006)). In recent years, more attention has
been given to probabilistic approaches that learn harmony from music data, using tech-
niques such as Hidden Markov Models, N-grams, probabilistic grammars, inductive logic
programming (Steedman (1996); Rohrmeier (2011); Conklin (2002); Scholz et al. (2009);
Pérez-Sancho et al. (2009); Raphael and Stoddard (2004); Whorley et al. (2013); Dixon
et al. (2010); Granroth-Wilding and Steedman (2014)). Such models automatically derive
harmonic structure from training data and are thus more flexible than rule-based systems;
however, they are applied usually to very narrow well-circumscribed tonal styles (e.g. Bach
chorales or hymns or blues harmonies) and they generate acceptable harmonic progres-
sions only within the corresponding learned harmony (cannot create new harmonies be-
yond the learned space).

This paper describes a creative melodic harmonisation system that can assist a user
in generating new conventional or unconventional sequences of chords for a given melody.
The creative melodic harmonisation assistant is based on a novel General Chord Type
representation (Cambouropoulos et al. 2014) that allows the system to extract appropri-
ate chord types from diverse harmonic idioms that comply with the traditional Western
well tempered scale. For any harmonic idiom, the system learns from a set of pieces (har-
monic reductions) the chord types that are relevant for the specific style, extracts probabilis-
tic information on the most likely chord transitions (first-order transition tables), examines
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phrase endings with a view to establishing common endings/cadences, and learns basic
features of voice leading (bass movement in relation to melodic motion, chord inversions
and omission/duplication of chord notes). This information constitutes a conceptual space
that characterises a specific harmonic idiom and is used to create original harmonisations
for new previously unseen melodies.

Apart from learning harmony from a particular harmonic style and producing new har-
monisations in this style, the current paper explores other creative aspects of the proposed
melodic harmonisation assistant that diverge from a learned harmonic style (not auto-
mated in this phase). Firstly, a user may assign particular chords to specific melodic notes
of a given melody, thus ‘forcing’ the system to explore harmonic regions of the learned
harmonic space that are less common (or even alien) thus giving rise to potentially un-
expected harmonisations, expressed as chord sequence paths that accommodate the se-
lected chords. Secondly, a user may choose to harmonise a melody with different poten-
tially incompatible learned harmonic styles (e.g. traditional folk melody with tonal harmony
or octatonic harmony etc); potential inconsistencies are dealt with manually at this stage
(automation of such processes is under development). The ultimate goal of this research is
to enable a system to create original harmonisations by combining harmonic components
of different harmonic spaces; such creative blending aspects are explored in Zacharakis
et al. (2015); Cambouropoulos et al. (2015) and is part of ongoing research.

The proposed melodic harmonisation assistant is original in the following ways:

1. harmony is learned in an idiom-independent manner (i.e., harmonic features are ac-
quired via machine learning for various tonal and non-tonal systems);

2. the system allows the exploration of a learned harmonic space by user-defined inter-
mediate chords that may lead the system outside its expected course;

3. the creative system can use existing harmonic styles to harmonise melodies with
‘incompatible’ harmonic outlook.

In the following sections the proposed modular probabilistic melodic harmonisation
system is presented; this system is able to learn different harmonic aspects (chord types,
chord progressions, cadences, voice-leading) from practically any musical idiom and can
use the acquired harmonic knowledge to harmonise novel melodies in innovative ways.
The next section provides a short discussion of previous approaches to melodic harmon-
isation and an overview of the proposed system. Then, Section 4 analyses the module
for constructing chord sequences by automatically employing cadences and allowing user-
defined chord constraints. The module for fixing the voicing layout of chords is presented
in Section 5 and finally several examples of melodic harmonisations in diverse harmonic
idioms are given, along with an intuitive statistically-based analysis in Section 6.
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2 Melodic harmonisation: related work and overview of the
proposed system

Among the first approaches for capturing the characteristics of harmony in automated
melodic harmonisation were ones that incorporated human expert knowledge (e.g. Ebcioglu
(1988)) encoded in the form of rules, leading to systems that could harmonise melodies
according to explicit stylistic directives. For a review of rule–based systems the reader
is referred to Pachet and Roy (2001). A similar approach to rule–based methodologies
is the one followed by systems that utilize genetic algorithms (GA), like the ones briefly
reviewed by Donnelly and Sheppard (2011) and, also, in Phon-Amnuaisuk and Wiggins
(1999). The similarity between these two approaches is that both rely on a set of harmonic
rules intended for a specific musical idiom; in the case of the GAs, the employed fitness
function quantifies such rules. The advantage of rule–based systems is that they can cap-
ture the hierarchical structure of complex musical idioms, e.g., by using grammar-related
structures for tonal (Rohrmeier 2011; Koops et al. 2013) or especially focussed on jazz
(Granroth-Wilding and Steedman 2014) music.

However, the melodic harmonisation methodologies that utilise rule-based techniques
have a major drawback when dealing with melodic harmonisation in many diverse idioms:
the encoding of rules that describe even a simple musical idiom is not always a realizable
task, since idioms abound in complex and often contradicting interrelations between har-
monic elements. In order to overcome such shortcomings, the formulation of probabilistic
techniques and statistical learning has been proposed. Probabilistic techniques can, on
the one hand, be trained on any musical idiom, given a set of harmonically annotated
pieces, while on the other hand they encompass the possibility to take ‘unusual’ decisions
if necessary – e.g. if the melody’s implied harmony diverges from the learned harmony.
Among many proposed methodologies, Bayesian networks (Suzuki 2013) and prediction
by partial matching (Whorley et al. 2013) have been utilised to construct the bass, tenor
and alto voices below a given soprano voice; hidden Markov models (HMMs) for construct-
ing chord sequences for a given melody (Raczyński et al. 2013); and probabilistic graphical
models for similar chord-assignment tasks (Paiement et al. 2006).

The main drawback of probabilistic methodologies, especially HMMs, is that they
do not capture larger scale dependencies between remote harmonic parts (Pachet et al.
2011). For instance, phrase endings, indicated by cadences, are very distinctive parts
of higher-level harmonic structure that are not captured by methodologies that concern
chord-to-chord harmonic progressions. Cadences have been studied under different con-
texts in the computational harmonisation literature. For instance, in Borrel-Jensen and
Hjortgaard Danielsen (2010), a methodology based on cadences was utilised to evaluate
the outcomes of an automatic melodic harmonisation system. The methodologies pre-
sented in Allan and Williams (2004) and Hanlon and Ledlie (2002) utilise a backwards
propagation of the hidden Markov model (HMM) methodology, starting from the end and
constructing the chord progression in a backwards fashion, highlighting the role of the
cadence in reflecting structure. In Yi and Goldsmith (2007) a probabilistic system was
presented that rewarded those chord sequences that ended with a perfect cadence, while
in Yogev and Lerch (2008) a probabilistic methodology that identifies the probable positions
of cadences was introduced. Special consideration of cadences has also been employed
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in HMM-based methodologies, either by assigning an additional layer of probabilities for
the final chords of sequences (Simon et al. 2008) or by fixing the ending or intermediate
chords in probabilistically produced chord sequences (Kaliakatsos-Papakostas and Cam-
bouropoulos 2014).

The architecture of the proposed system incorporates a simple statistical approach
for preserving structural relations between remote harmonic parts, while at the same time
diverse harmonies can be learned from data. Therefore, the merits of rule-based systems
are preserved by learning and automatically employing intermediate and final cadences,
leading to harmonisations that are structurally consistent. Additionally, the probabilistic
nature of the incorporated algorithms allows for radically diverse harmonic idioms to be
learned, while the generated harmonisations reflect the characteristics of learned idioms
in terms of chord transitions and voicing layout. An additional advantage of the presented
system is the fact that the output is a harmonic realisation with actual chord notes (not only
chord symbols).

The presented harmonic learning system is trained independently on several har-
monic aspects that are divided in two groups: chord generation and the voicing layout.
Figure 1 illustrates this setting, where ‘GCT generation’ on the left block refers to the gen-
eration of chords symbols in the General Chord Type (GCT) representation (Cambouropou-
los et al. (2014); Cambouropoulos (2015); see brief description in the next section), while
the right block refers to the translation of GCT chords to actual music by assigning proper
voicing layouts, converting the final output to MIDI notes. The oval blocks refer to modules
that have been trained from data. The arrow leading from the ‘GCT generation’ to the ‘GCT
to MIDI pitches’ block indicates the current generative process workflow of the melodic har-
moniser: first, chord sequences in GCT form are produced and, afterwards, voicing layout
is applied to the composed GCT sequences, providing the finalised output in MIDI format.
In turn, the bass voice motion is first defined for the given GCT sequence and the given
melody and, afterwards, the intermediate chord notes between bass and melody are fixed.

Both the ‘GCT generation’ and the ‘GCT to MIDI pitches’ blocks include modules that
learn from data, giving the system the ability to express the characteristics of each learned
idiom on several harmonic aspects. The GCT generation block incorporates three learning
modules: (a) the ‘Chord types’ module which learns chord types by converting the pitches
of the training harmonies to GCTs and organising them into chord type categories; (b) the
‘Cadence constraints’ module that learns and assigns cadences to user-defined positions
of phrase endings (giving an essence of high-level structure); and (c) the constraint hidden
Markov Model (cHMM) (Kaliakatsos-Papakostas and Cambouropoulos 2014) that learns
first-order GCT chord transitions and performs probabilistic harmonisation given the afore-
mentioned cadence constraints as well as user-defined chord constraints. The ‘GCT to
MIDI pitches’ block includes the following learning modules: (a) the ‘Bass Voice Leading’
module that defines the motion of the bass in relation to the melody; (b) the ‘bass-to-melody
distances’ that learns statistics about the distances between the bass and the melody for
each idiom; and (c) the ‘Chord inversions’ module that learns statistics about the inversions
of the learned GCT chords. The aforementioned voice-related modules contribute to the
definition of the bass voice and afterwards, a simple algorithmic process, namely the ‘GCT
voicing layout’ module, defines the chord notes between the bass and the melody.
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Figure 1: Overview of the Modular Melodic Harmonisation system. Oval blocks indicate
modules that learn from data.

3 Chord representation and data input for training and gener-
ating

The system learns a given harmonic content given through annotated training data, while
it produces new harmonisations according to guidelines provided in the melody input file.
Since the processes of training and composing incorporate many diverse musical idioms,
the system learns the available chord types therein (according to their root notes) based on
the General Chord Type (GCT) (Cambouropoulos et al. 2014) representation. The training
data include the notes on a level of harmonic reduction (manually annotated reductions),
where only the most important harmonic notes are included, while additional layers of infor-
mation are given regarding the tonality and the metric structure of each piece. Accordingly,
the format of the user melody input file includes indications of several desired attributes that
the resulting harmonisation should have. The chord representation scheme, the format of
the training data and the user melodic input file are analysed in the following subsections.

3.1 Representation of harmony in diverse idiom with the General Chord
Type encoding

The General Chord Type GCT provides accurate harmonic representation in the sense
that it encompasses all the pitch-class-related information about chords. At the same time,
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for every pitch class simultaneity the GCT algorithm rearranges pitch classes so that it
identifies a root pitch class and a chord ‘base’ (which can be considered as a basic type,
e.g. major or minor) and ‘extension’ (which give information about chord extensions, e.g.
seventh or sixth, etc.), leading to chord representations that convey musical meaning for
diverse music idioms. The GCT representation has common characteristics with the stack-
of-thirds and the virtual-pitch-root-finding methods for tonal music, but has differences as
well (see Cambouropoulos et al. (2014)). This encoding is inspired by the standard Roman
numeral chord type labelling, but is more general and flexible. A recent study (Kaliakatsos-
Papakostas et al. 2015) on the GCT representation indicated that it can be used both
as a means to represent harmonic chords and to describe musically meaningful relations
between different harmonic labels in diverse and not necessarily tonal music idioms (Cam-
bouropoulos et al. 2014; Kaliakatsos-Papakostas et al. 2014b; Cambouropoulos 2015).

The GCT algorithm computes, for a given multi-tone simultaneity, the ‘optimal’ order-
ing of pitches such that a maximal subset of consonant intervals appears at the ‘base’ of
the ordering (left-hand side) in the most compact form; the rest of the notes that create dis-
sonant intervals to one or more notes of the chord ‘base’ form the chord ‘extension’. Since
a tonal centre (key) is given, the position within the given scale is automatically calculated.
Input to the algorithm is the following:

• Consonance vector: a Boolean 12-dimensional vector is employed indicating the
consonance of pitch-class intervals (from 0 to 11). E.g., the vector [1, 0, 0, 1, 1, 1, 0,
1, 1, 1, 0, 0] means that the unison, minor and major third, perfect fourth and fifth,
minor and major sixth intervals are consonant; dissonant intervals are the seconds,
sevenths and the tritone; this specific vector is referred to in this article as the ‘tonal
consonance vector’.

• Pitch Scale Hierarchy: is given in the form of scale tones and a tonic. E.g., a D

major scale is given as: 2, [0, 2, 4, 5, 7, 9, 11], or an A minor pentatonic scale as:
9, [0, 3, 5, 7, 10]

• Input chord: list of pitch classes (MIDI pitch numbers modulo 12).

For instance, the tonic chord is labeled as [0, [0, 4, 7]], where the first occurence of 0
denotes the root of the chord in relation with the scale’s tonic and the base, [0, 4, 7], de-
notes the maximally consonant setup of the included pitch classes. In relation to the tonal
naming of chords, type [0, 4, 7] is a major chord. Similarly the dominant seventh (inverted
or not) is labeled as [7, [0, 4, 7], [10]], where there is a third element, [10], which is an ex-
tension, i.e. an existing pitch class that cannot be inserted in the maximally consonant set.
The compressed GCT form will be sometimes used in this paper, where no intermediate
brackets are used, e.g. [7, [0, 4, 7], [10]] will be denoted as [7 0 4 7 10]. An example taken
from Beethoven’s Sonata no. 14, op.27-2 (Figure 2) illustrates the application of the GCT
algorithm for different consonance vectors. For the tonal vector, GCT encodes classical
harmony in a straightforward manner. This way we have an encoding that is analogous to
the standard Roman numeral encoding (Figure 2, ‘tonal’). If the tonal context is changed
to a chromatic scale context and all intervals are considered equally ‘consonant’, i.e., all
entries in consonance vector are 1s, we get the second ‘atonal’ GCT analysis (Figure 2,
‘atonal’) which amounts to normal orders (not prime forms) in standard pc-set analysis. In
pitch class set theory normal orders do not have ‘roots’ – however, they have transposi-
tion values (T0-T11) in relation to a reference pc (normally pc 0); the GCT for the ‘atonal’
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consonance vector is equivalent to the normal orders with transposition values of pc-set
theory.

Figure 2: Beethoven, Sonata no. 14, op.27-2 (reduction of first five measures). Top row:
Roman numeral harmonic analysis; middle row: tonal GCT analysis; bottom row: atonal
GCT analysis. The tonal GCT successfully encodes all chords, including the Neapolitan
sixth chord (fourth chord).

An additional fundamental concern of the harmonic representation in the presented
harmoniser is the grouping of chords according to their GCT representation with a method-
ology described in Kaliakatsos-Papakostas et al. (2015). For example, the V chord in a
scale can be expressed either as [7, [0, 4, 7]] or in a ‘reduced’ ([7, [0, 4]]) or an ‘expanded’
([7, [0, 4, 7, 10]]) forms, that actually represent the same chord label. Each GCT group
includes the GCT types that satisfy the following three criteria:

1. they have the same scale-degree root;
2. their GCT bases are subset-related; and
3. they both contain notes that either belong or not to the given scale (see Table 1 for

details).

Regarding criterion 2, two bases B1 and B2 are considered subset-related if B1 ✓ B2

or B2 ✓ B1, e.g. [0, 4] ✓ [0, 4, 7] while [0, 4] 6⇢ [0, 3, 7]. Criterion 3 is utilised to identify
and group together chords that belong to secondary tonalities within the primary tonality
of the piece. For instance, in a diatonic major context, while c1 = [0, [0, 4, 7]] and c2 =

[0, [0, 4, 7, 10]] fulfil criteria 1 and 2, according to criterion 3 they are not grouped together
since c2 includes value 10, which is mapped to the non-diatonic 10 pitch class value. In a
major context [0, [0, 4, 7, 10]] is secondary dominant to the IV (V/IV) and is differentiated
from the I major chord.

Furthermore, each group is represented by an ‘exemplar’ GCT type, which is the one
that is more often met in the datasets under study. Some common chord groups in the
major scale Bach chorales are illustrated in Table 1. This table also includes the functional
naming of each group in order to assist the comparison of the derived GCT types with the
standard Roman-numeral labelling. Testing this simple algorithm on sets of both major and
minor Bach chorales gives a reasonable first classification of the ‘raw’ GCTs. Groups of
GCT chords are extracted from datasets as explained in Section 3.2 and their exemplars
are used to train the system.
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Table 1: Four tonal chord groups and their exemplar GCTs. The group [0, [0, 4, 7]] has
been separated from the group [0, [0, 4, 7], [10]], due to the non-diatonic pitch class 10 of
the latter.

functional name exemplar Group members
tonic [0, [0, 4, 7]] [0, [0, 4, 7]] [0, [0, 4]] [0, [0, 4, 7], [11]]

dominant [7, [0, 4, 7]] [7, [0, 4, 7]] [7, [0, 4, 7], [10]] [7, [0, 4], [10]] [7, [0, 4]]

subdominant [5, [0, 4, 7]] [5, [0, 4, 7]] [5, [0, 4]] [5, [0, 4, 7], [11]]

V / IV [0, [0, 4, 7], [10]] [0, [0, 4, 7], [10]] [0, [0, 4], [10]]

3.2 Training data and harmony annotations

The development of the presented melodic harmoniser incorporates statistical learning on
different harmonic levels (chord transitions, cadences and voice leading) from a data pool
with ‘real-world’ representations of historical traditions of music creation. By employing rich
multi-level structural descriptions of harmony in different idioms, the harmoniser is able to
create new music that accurately reflects the characteristics of these idioms. A diverse
collection of musical pieces drawn from different historic eras and from different harmonic
styles has been assembled by music experts. Each idiom/style is internally as coherent
as possible such that regularities of the specific harmonic space can be extracted; the
collected idioms are as different as possible on all the examined harmonic levels. Addi-
tionally, the musical pieces are manually annotated such that structural harmonic features
may be extracted at various hierarchic levels. Specifically, the following structural aspects
are manually annotated: (a) harmonic reduction(s) of each musical work/excerpt so that
structural harmonic/non-harmonic notes are explicitly marked; (b) local scale/key changes
are determined so that harmonic concepts relating to modulations can be learnt; and (c)
grouping structure is given so that cadential patterns at various hierarchic levels can be
inferred.

An example of the required types of information from a music piece for training the
system are illustrated in Figure 3; annotated music files include: a) the original musical
data the actual musical surface and b) expert annotations that are provided as manually
entered analytical information about the contents. At the lowest level of the musical surface
(denoted as ms 0), which is the actual notes of a musical piece and the lowest level of rep-
resentation that has musical significance (Jackendoff 1987), a custom text-based encoding
is used. Expert annotations in a music piece describe musicological aspects that refer to
specific analytic concepts (e.g., the use of harmonic symbols to describe note simultane-
ities, modulations, phrasing etc.). Specifically, the expert annotations are given in musical
form and include time-span reduction of the original content (ms 1) and annotations con-
cerning tonality (and tonality changes) and grouping information.

On the chord transitions level the system is trained according to the chord progres-
sions on the harmonic reduction (ms 1), with chords being encoded in the General Chord
Type (GCT) (Cambouropoulos et al. 2014) representation. Since the GCT requires tonality
information, the GCT forms of the extracted chords are computed by using the tonality an-
notations. Annotations of grouping indicate the positions of cadences, where the system
learns the final pairs of chords before any group ending. Even though a cadential form may
incorporate more or fewer than two chords, considering the last two chords of a phrase as
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a cadence was decided as a rational compromise.

The indicators of the tonality – and the tonality changes – include accidentals in
chordal form, with all the included notes indicating an octave of the utilised scale (lowest
note is the tonality’s fundamental), while the time instance of a tonality activation/change
is defined by the indication’s onset. Additionally, it has to be noted that at least one tonality
indicator at the beginning of the piece is required otherwise the tonality annotations of the
piece are considered absent (repetitions of the same indicator are ignored). The group-
ing part contains annotations about melodically coherent temporal regions of the music
surface. At the beginning of each phrase, a group identifier is placed indicating the level
of the phrase hierarchy. One note on any line indicates the lowest level groupings (e.g.
phrase); two notes on the lowest two lines indicate an immediately higher-level of grouping
(e.g. related phrases in a row); three notes indicate even higher level of grouping and so
on. The cadences of each grouping level, i.e. the final pair of chords at the end of each
grouping part, are learned separately.
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Figure 3: Annotated file containing original song transcription (ms 0), time-span reduction
of the original content (ms 1), as well as tonality and grouping information.

The dataset consists of over 430 manually annotated musicXML documents cate-
gorised in 7 categories and various subcategories. The separation of pieces in sets pri-
marily focuses on genre categorisation, while subcategories are created within genres that
present notable differences in their harmonic structure. The diversity in harmonic features
among different sets and subcategories allows the inclusion of a wider spectrum of op-
tions, enabling the melodic harmoniser to produce harmonisations with strong references
to diverse idioms. On the other hand, there is intra-idiom consistency in each subcategory
of pieces, which is expressed by ‘patterns’ in harmonic features that are characteristic to
this subcategory, in a sense that these features are often encountered in several pieces
within this idiom.

The dataset comprises seven broad categories of musical idioms, further divided into
sub-categories, and presented in the following list1:

1Categories 4, 5 and 6 may seem to overlap, but they are essentially different: category 4 includes har-
monisations of initially monophonic folk melodies made by art music composers of European National Schools,
category 5 comprises 20th-century original compositions (not based on folk songs) and category 6 contains
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1. Modal harmonisation in the Middle Ages (11th – 14th centuries): includes subcate-
gorys of medieval pieces in the Organum and Fauxbourdon styles.

2. Modal harmonisation in the Renaissance (15th – 17th centuries): includes modal
music from the 16th – 17th centuries along with modal chorales.

3. Tonal harmonisation (17th – 19th centuries): includes a set of the Bach Chorales, the
Kostka-Payne corpus2 and tonal harmonisation sets from the 18th – 19th centuries.

4. Harmonisation in National Schools (19th – 20th centuries): includes 19th – 20th
century harmonisation of folk songs from Norway, Hungary and Greece.

5. Harmonisation in the 20th century: includes harmonisations of Debussy, Hindemith,
Whitacre, Stravinsky and Schnittke among others.

6. Harmonisation in folk traditions: includes Tango (classical and nuevo styles), Epirus
polyphonic songs and Rebetiko songs.

7. Harmonisation in 20th-century popular music and jazz: includes mainstream jazz,
pieces from Bill Evans and a collections of songs from The Beatles.

For the harmonisation examples incorporated in the present paper, a subset of eight
harmonic idioms was used from the dataset, presented in the following list:

1. The 15th-century Fauxbourdon style, based on parallel 63 chords.

2. The homophonic tonal harmonic idiom of J. S. Bach chorales.

3. The Kostka-Payne corpus, describing mainstream tonal harmony of the 18th/19th-
centuries (Kostka and Payne 2004).

4. Edvard Grieg’s 19th-century chromatic harmonic idiom, as expressed in his folk
songs harmonisations op. 17 & 63.

5. The Epirus polyphonic singing style, based on the minor pentatonic scale (Lolis 2006;
Kaliakatsos-Papakostas et al. 2014b).

6. Yannis Constantinidis’s 20th-century modal style, as encountered in his ‘44 Greek
miniatures for piano’ (Tsougras 2010).

7. Paul Hindemith’s 20th-century harmonic idiom, as expressed in his ‘Six Chansons’.

8. Mainstream jazz harmony, as encountered in selected jazz standards (tonal or modal)
from the Real Book.

original harmonisations embedded in the folk idioms.
2This dataset consists of the 46 excerpts that are longer than 8 measures from the workbook accompanying

Kostka and Payne’s theory textbook Tonal Harmony, 3rd edition (Kostka and Payne 2004) and is available in
machine readable format at http://theory.esm.rochester.edu/temperley/kp-stats/index.html.
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3.3 Melodic input

After the system is trained, it is able to harmonise a given melody. Figure 4 illustrates
an instance of the input protocol for the system, which includes the melody to be har-
monised and information regarding some harmonic attributes that are not inferred by the
system at this stage. The input melody, in this stage, is manually annotated as to harmonic
rhythm, harmonically important notes, key and phrase structure. The file that produced
this figure is used as input for harmonising the example in Figure 7 (b). Initially, the user
provides the positions where chords should occur (harmonic rhythm), as well as the impor-
tant notes (harmonic notes) that should be considered with higher weight when selecting
chords for each segment. If the user provides no information for these attributes, the sys-
tem produces default harmonic rhythm and important note selection schemes that might
lead to ‘unwanted’ harmonic results. Additionally, the user has the freedom to choose
specific chords at desired locations (constraint chords), forcing the system creatively to
produce chord sequences that comply with the user-provided constraints, therefore allow-
ing the user to ‘manually’ increase the interestingness of the produced output. Finally, the
user should accompany the melody with higher level harmonic information concerning the
tonality or tonalities of the piece, as well as with its phrase grouping boundaries. Tonality
is indicated by a cluster of all notes included in the scale, with the lowest note indicating
the tonality’s tonic. Grouping is annotated by arbitrary notes at the metric position where
grouping changes occur, while the number of notes in these positions indicate the grouping
level of the phrase.
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Figure 4: Example of a user melodic input file. This melodic part is from L. v. Beethoven,
(b. 1-8), second movement in A[ major of the Piano Sonata no. 8. This input file is used for
the harmonised example in Figure 7 (b).

Why is tonality among the features that are specified by the user along with the
melody? Although the local tonality of a melody could be automatically deduced algo-
rithmically (Chai 2005; Kaliakatsos-Papakostas et al. 2013), manual annotation of tonality
and changes has been decided for the following reasons:

1. Utilisation of non-standard (major/minor) tonalities: The collected dataset include
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pieces that do not conform to the standard Western music tonalities, e.g., there are
pentatonic or octatonic modes. Additionally, the user is allowed to specify any de-
sirable tonality, which will lead the system to select the proper set of chords to har-
monise the given melody.

2. Accuracy in tonality-change boundaries: Algorithms that perform melodic segmen-
tation according to tonality (Chai 2005; Kaliakatsos-Papakostas et al. 2013) are not
able to identify the exact location of tonality boundaries. For the presented melodic
harmoniser, it is important that the tonality (and phrase level) change locations stay
aligned with the melody segments that a human user indicates.

3. The ability to insert ‘subtle’ tonalities: The user is able to introduce tonality changes
in places where an algorithm might not identify any change. This ability introduces
additional agility and potential of variety to the system.

In the training data, tonality changes are treated differently in different idioms, while,
additionally, some idioms do not include (or include very specific) modulations between
certain – neighbouring in the circle-of-fifths – tonalities. Since modulations are dependent
on the melody, and a user input melody might incorporate arbitrary modulations, it is clear
that no learning strategy on every idiom could cover the entire spectrum of modulations
that are possible for input melodies. For instance, in the idiom of modal music there are
no modulations, since entire pieces are composed in a single mode. Therefore, it would
be impossible to harmonise a melody that incorporates modulations using the harmony of
a modal idiom, since no training paradigms would be available for such a task. For the
purposes of the ‘idiom independent learning’ that is required for the presented system,
modulations are not tackled: a cadence in the first tonality is assigned before the modu-
lation occurs and the material after the modulation is treated as a new phrase in the new
tonality.

4 Chord progressions, intermediate constraints and cadences

The core of the generative process is the production of GCT chord progressions with a
probabilistic methodology that is a simple extension of the hidden Markov model (HMM)
method that allows the inclusion of fixed ‘anchor’ chords. Harmonisation with fixed anchor
chords is considered a crucial component of the presented work, since it enables the prior
definition of important chords in intermediate positions of the melody to be harmonised.
Two types of important chords (or pairs of chords in the case of cadences) are considered:
(a) intermediate or final cadences at positions where phrases end and (b) user-defined
fixed chords that the system is forced to use. For the pieces used to train the system,
the format of which is described in Section 3.2, annotations about phrase boundaries are
also included. During training, the final pair of chords (penultimate and final chord) in each
phrase is independently stored in the cadence module of the system, wherein the probabili-
ties of intermediate and final cadences are calculated. In addition to the indicated positions
of phrase endings, the user is also able to assign specific desired chords at any desired
position, directly allowing the involvement of the user’s creativity in the harmonisation pro-
cess. Both the phrase ending positions and the user-defined chords are included in the
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directions provided by the user in the melody input file, as described in Section 3.3. These
chords act as ‘anchors’ that remain fixed for the constrained HMM (cHMM) (Kaliakatsos-
Papakostas and Cambouropoulos 2014) algorithm that selects ‘proper’ chord sequences
connecting the intermediate parts between the fixed chords, under the conditions intro-
duced by the melodic material to be harmonised. The results presented in Kaliakatsos-
Papakostas and Cambouropoulos (2014) indicate that cHMMs produce harmonisations
that are potentially completely different to the ones produced by HMMs, depending on the
imposed constraints.

4.1 Probabilistic generation of chord progressions with intermediate con-
straints

The proposed harmoniser uses the cHMM (Kaliakatsos-Papakostas and Cambouropoulos
2014) algorithm for generating chord progressions. The aim of this algorithm is to preserve
the merits of probabilistic harmonisation, i.e., ability to train on different idioms and flexibility
in generation, while allowing prior determination of intermediate chords (also named as
checkpoints in the literature; see Chuan and Chew (2007)). Such constraints in the context
of Markov chains (with no demands imposed by observations) are also know as ‘unary’
constraints (Pachet et al. 2011), however the cHMM algorithm works under the assumption
sequences of states (chords) are composed given a set of observations (melody). Allowing
fixed intermediate chords introduces two advantages for the presented harmoniser: (a) the
preservation of higher level harmonic structure by the imposition of intermediate and final
cadences and (b) the interactivity with the user by allowing any desired chord to be placed
at any position. In the case of the cadences, the intermediate chords that comprise the
cadence are specified by a probabilistic algorithmic process described later, that captures
statistics about cadence occurrences either in intermediate phrase endings or at the end
of the piece, allowing the learning of music structure on a higher hierarchical level. Direct
human intervention on selecting desired chord constraints in the cHMM algorithm allows
the presented harmoniser to function as a melodic harmonisation assistant that allows its
user to specify a harmonic ‘spinal chord’ of anchor chords that are afterwards connected
by chord sequences that give stylistic reference to a learned idiom.

The cHMM methodology divides the problem of finding intermediate constraints (i.e.
fixed chords specified by the user or by the cadence module) into several consecutive
problems of finding boundary constraints, i.e. fixed beginning and ending chords. Table 2
illustrates this process, where the intermediate chord constraints (I

j

) are preserved while
new chords (Cj

i

) are generated, given the melody notes (m
i

). The problem of assigning
intermediate chord constraints is transformed into the problem of finding consecutive be-
ginning and ending chords for each intermediate segment. In Simon et al. (2008), the
HMM variation that was presented included an additional layer of probability distributions
for beginning and ending chords for harmonising a part. In the cHMM methodology, used
in the presented harmoniser, the probability values in the distributions for beginning and
ending chords in each intermediate segment are actually binary: the chord that is selected
as constraint has probability value 1, while all the others have 0.

During the cHMM training phase, an initial set of music phrases is considered which
provides the system with the required statistical background, constituting the training set.
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Table 2: The melody notes (m
i

) need to be harmonised according to the intermediate chord
constraints (I

j

). The cHMM algorithm breaks the problem into two boundary constraints
problems and composes the most probable sequence of chords (Cj

i

) according to the
observed melody, transition probabilities and given constraints.

melody notes m1 m2 m3 m4 m5 m6 m7 m8

intermediate constraints I1 I2 I3

C

1
1 C

1
2 C

1
3 C

2
1 C

2
2

| {z }| {z }
boundary constraints 1 boundary constraints 2

| {z }
cHMM

For the reminder of this section, the set of possible states–chords will be denoted by S,
while the letters C and c will be used for denoting chords. The set of all possible notes
(playing the role of ‘observations’ in the HMM methodology) will be denoted as Y, while
Y and y denote melody notes. There are four factors the the cHMM algorithm needs to
generate a chord sequence, given a melody. Four factors are induced by the statistics from
the training set.

1. The probability that each state (chord) is a beginning chord. This distribution is com-
puted by examining the beginning chord for each phrase in the dataset and is denoted
as ⇡(C1 = c), c 2 S.

2. The probability that each state (chord) is an ending chord. This distribution is com-
puted by examining the ending chord for each phrase in the dataset and is denoted
as ⌧(C

T

= c), c 2 S.

3. The probability that each state follows another state, denoted as P (C

i

= c

i

|C
i�1 =

c

i�1), ci, ci�1 2 S. One additional ‘pseudo-distribution’ is included, except from the
beginning and ending chords and transition probabilities learned from data.

4. A vector assigning ‘pseudo-probability’ values to chords that include the melody’s im-
portant notes for each chord segment, denoted by P (C

i

= c

i

|Y
i

= y

i

). As discussed
in further detail in Section 3.3, a chord might be harmonising a phrase segment that
includes more than one melody notes, while the user is able to select which among
the melody notes are important. For assigning a proper chord over a melody seg-
ment, the harmoniser tries to find chords that include as many of the important notes
as possible. Thereby, for each melody segment to be harmonised by a chord, each
chord is assigned with a ‘pseudo-probability’ value according to how many of the
segment’s important notes it includes. Therefore, for a melody segment, chords that
include more important melody notes are more probable.

The overall probability for selecting a chord in a segment of T chords is computed by

P (C

i

= c

i

|Y
i

= y

i

) = P

⇡

P

µ

P

⌧

, (1)
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where

P

⇡

= ⇡(C1 = c1) P (C1 = c1|Y1 = y1), (2)

P

µ

=

TY

i=2

P (C

i

= c

i

|C
i�1 = c

i�1)

P (C

i

= c

i

|Y
i

= y

i

), (3)
P

⌧

= ⌧(C

T

= c

T

) P (C

T

= c

T

|Y
T

= y

T

). (4)

The generated sequence of chords is statistically optimal, in a sense that it presents a
maximal combination for the probabilities in all the counterparts (P

⇡

, P
µ

and P

⌧

), typically
through the Viterbi Forney (1973) algorithm. The probabilities in P

⇡

promote some chords
as better solutions to begin the path of chords: the ones that are more often used in the
beginning of pieces in the dataset. Similarly, the probabilities in P

⌧

advance solutions that
are more often met as concluding chords. However, if the beginning and/or ending chord is
a constrained chord, the P

⇡

and/or P
⌧

distributions respectively become ‘binary’, promoting
only the chord that has been selected as constraint (with probability value 1). Specifically,
if the beginning and ending chords are selected to be ↵1 and ↵

T

respectively, the new
probabilities that substitute the ones expressed by Equations 2 and 4 are the respective
following:

P

0
⇡

=

(
1, if C1 = ↵1

0, otherwise
(5)

P

0
⌧

=

(
1, if C

T

= ↵

T

0, otherwise.
(6)

By allowing the imposition of final or intermediate chord constraints, the system is allowed
to explore new harmonic paths that are suboptimal, but potentially more interesting. The
relations between statistical optimality and musical interestingness is an interesting subject
of research, that is left for future work.

4.2 Learning and assigning intermediate and final cadences

The limited memory according to the order of the Markov-based methods Pachet et al.
(2011) does not allow them to consider longer time dependencies, a fact that is necessary
for reflecting hierarchical structure of harmony. The intermediate chord constraints, as well
as allowing direct user intervention in the generative process, offer the possibility to assign
harmonic information in distant events, by employing intermediate and final cadences ac-
cording to the phrase boundaries indicated by the user in the melodic input. Statistics for
these cadences are learned during the training process (see Section 3.2), where expert
annotated files including annotations for phrase endings are given as training material to
the system.

Cadences are considered to be the final two chords of a phrase; during the cadence
training process the two final chords in every phrase of every piece in the training data
are captured. Statistics for unique cadences/pairs of chords are collected for two types of
cadences:
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1. Final cadences that are taken from the end of each piece’s final phrase and

2. Intermediate cadences that are taken from the ending of every non-final phrase in
each piece.

The final cadences collected from a set of 31 Bach chorales, which is a well-know idiom,
are demonstrated in Table 3, along with the number of times they have been used. The set
of final cadences collected from this set of Bach chorales reveals the specificity of cadential
patterns in this idiom, including only variations of the perfect (and the use of the Tierce de
Picardie for the minor). The number of different intermediate cadences is not overwhelm-
ingly large: except for the perfect and half cadences, there are also some occurrences
of the plagal and deceptive cadences along with some isolated cadential schemes that
appear rarely.

Table 3: Number of occurrences of cadences induced from a set of Bach Chorales.
Final cadences

Penultimate chord Major scale final chord Minor scale final chord
[0 0 4 7] [0 0 3 7] [0 0 4 7]

[7 0 4 7] 8 1 2
[7 0 4 7 10] 13 1 6

After collecting the statistics about cadences from all idioms, the system, before em-
ploying the cHMM algorithm, assigns cadences as fixed chords to the locations indicated
by user input (see Section 3.3). The cadence to be imported is selected based on three
criteria: (a) whether it is a final or an intermediate cadence; (b) the cadence likelihood (how
often it occurs in the training pieces); and (c) how well it fits with the melody notes that are
harmonised by the cadence’s chords. Specifically, for an intermediate or a final cadence,
cadence likelihoods are taken from the probability distributions of each cadence in an id-
iom, i.e., how many times a cadence occurred over the total number of cadences. The
appropriateness of a cadence according to the melody notes that the cadence’s chords
harmonise, is measured for each chord separately with the same method used in the
cHMM algorithm, however, if a cadence chord lacks at least one important melody note in
the segment it harmonises, then the cadence is disregarded as a whole (pair of chords). If
for a given phrase ending no complete cadence (as a pair of chords) is found, then only the
final chord is determined. If the utilisation of solely the final chord fails again, then no con-
straint is assigned for the cHMM. The motivation behind this cadence rejection mechanism
was the reflection of the notion that the selected harmonisation idiom does not include a
phrase closure toolset for the notes of the melody in the location that the user indicated a
phrase ending – or at the end of the piece.

5 Bass voice leading and voicing layout of chords

Experimental evaluation of methodologies that utilise statistical machine learning tech-
niques demonstrated that an efficient way to harmonise a melody is to add the bass
line first (Whorley et al. 2013). This conclusion was made through the information the-
oretic measure cross-entropy, when the soprano, alto, tenor and bass voice were pairwise
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compared regarding their statistical relations. The proposed harmoniser uses a modular
methodology for determining the bass voice leading presented in Makris et al. (2015b),
which includes independently trained modules that function on the previously defined GCT
chords that constitute the harmonisation. These modules include (a) a hidden Markov
model (HMM) deciding for the bass contour (hidden states), given the melody contour
(observations), (b) distributions on the distance between the bass and the melody voice
and (c) statistics regarding the inversions of the chords in the given chord sequence. The
generation of chords (in GCT form) is performed by the cadence and cHMM probabilistic
modules thus the selection of the proper voice layout scenarios for each GCT chord de-
pends on the chords’ inversion probabilities. After the bass voice is defined, the voicing
layout of the internal chord notes is fixed.

5.1 Defining Bass Voice Motion

For constructing the bass voice leading, it is assumed that the bass voice is both a melody
itself and it also depends on the piece’s melody, a fact that motivates the utilisation of
HMM. The primary module for defining bass motion plays the role of the hidden states
under the first-order Markov assumption for bass contour (a bass motion depends on its
previous one), in combination with the observations of the melody’s contour (a bass mo-
tion depends on the underlying melody motion). Both the bass and the melody voice steps
are represented by abstract notions that describe general quantitative information on pitch
direction, also called ‘direction descriptors’. In Makris et al. (2015a) several scenarios for
voice contour refinement were examined, providing different levels of accuracy for describ-
ing the bass motion in different datasets. The proposed harmoniser the melody and bass
note changes are divided in seven steps, as demonstrated in Table 4. The selected sce-
nario of seven steps is based on the assumption that the perfect fourth is a small leap while
the perfect fifth is a big leap.

refinement short name range (semitones)
steady voice st v x = 0

step up s up 1 6 x 6 2

step down s down �2 6 x 6 �1

small leap up sl up 3 6 x 6 5

small leap down sl down �5 6 x 6 �3

big leap up bl up 5 < x

big leap down bl down x < �5

Table 4: The pitch step and direction refinement scale considered for the development of
the utilised bass voice leading system.

The level of refinement for representing the bass and melody voice movement give
us the number of states and observations. According to the HMM methodology, the train-
ing process incorporates the extraction of statistics about the probabilities that a certain
state (bass direction descriptor) follows another state, given the current observation ele-
ment (melody direction descriptor), independently of the chord labels. These statistics are
extracted from the training pieces of each idiom and incorporate four aspects:

1. The probability for each bass motion to begin the sequence.
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2. The probability for each bass motion to end the sequence.
3. The probability that each bass motion follows another (transition probabilities).
4. The probability of a bass motion to be present, given a melody step.

The sequence of states that is generated by an HMM system, is produced according to
the maximum probability described by the product of the aforementioned statistics, given
a sequence of melody contour observations. The extracted probabilities for each possible
next bass motion are stored in a vector of probabilities ~p

m

, which is afterwards utilised in
the product of probabilities from all modules in Equation 7.

The bass voice motion provides abstract information about the motion of the bass,
however, assigning actual pitches for a given set of chords requires additional information.
Additionally, it might be the case that the best bass motion selected from the HMM module
does not match other criteria concerning the chords that have already been selected by
the cHMM, or the limits of permitted bass note pitch height. What if the best bass motion
cannot be implemented for a chord, because it requires a rather improbably inversion of
this chord (e.g., a V in second inversion)? What if the best bass motion drives the bass
voice too high and close to the melody or too low? In order to assign a bass voice to
a chord, additional information are required in the voice layout modules of the presented
methodology, namely about inversions and the melody-to-bass distance. The inversions of
a chord play an important role in determining how eligible is each chord’s pitch class to be
a bass note, while the melody-to-bass distance captures statistics about the pitch height
region that the bass voice is allowed to move according to the melody.

All the inversions of a chord are obtained by assigning each of its pitch classes as
a bass note. For instance, the chord with pitch classes [0, 4, 7] has three inversions, with
each one having a bass note that corresponds to a different pitch class. The voicing layout
module of the harmonic learning system regarding chord inversions, is trained through
extracting relevant information from every (GCT) chord every piece from each music idiom.
For mapping pitch-class-related inversion information directly to GCT chords, a GCT chord
is considered in the form g = [r,

~

t], where ~

t is the vector describing the type of the chord,
i.e. its GCT base and extension in one array. For instance, the V chord in a key is expressed
as g = [7, [0, 4, 7, 10]] in the GCT representation, where 4 denotes the major third and 7
the perfect fifth and 10 the minor seventh. In this context, the GCT type is a set of integers,
~

t = [t1, t2, . . . , tn], where n is the number of type elements, that can be directly mapped
to relative pitch classes (PCs). The statistics concerning chord inversion are expressed as
the probability (pi) that each type element in g is the bass note of the chord, or

pi = (v1, v2, . . . , vn),

where v

i

, i 2 {1, 2, . . . , n}, is the probability that the element t
i

is the bass note. Table 5
demonstrates the extracted statistics for inversions for the most often met chords of the
major mode Bach chorales. Therein it can be observed that the these chords are more
often met in root position, while they are rarely played in the second inversion (fifth as bass
note). Therefore, by integrating the inversion probabilities (pi) within the voice layout mod-
ules as described in Equation 7, for instance the second inversion of the [7, [0, 4, 7]] chord
would be avoided when harmonising the style of the Bach chorales, since the probability
related to its fifth being the bass note is zero.
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GCT chord relative PC inversions
[0, [0, 4, 7]] [0, 4, 7] [0.74, 0.23, 0.02]

[7, [0, 4, 7]] [7, 11, 2] [0.78, 0.22, 0.00]

[5, [0, 4, 7]] [5, 9, 0] [0.65, 0.34, 0.01]

Table 5: Probabilities for chord inversion (pi) in the three most frequently used chords in
the major-mode Chorales of Bach.

An additional important aspect of voice layout concerns the absolute range of chords
in the chord sequences of an idiom, i.e. the absolute difference between the bass voice and
the melody. Different idioms encompass different constraints and characteristics concern-
ing this voicing layout aspect, according to several factors, e.g., the utilised instruments’
ranges. For capturing the distances between melody and bass pitch height in an idiom,
interval-related information is extracted as approximate indicators about the expected pitch
height of the bass voice through histograms of all melody-to-bass intervals found in the id-
iom’s training pieces. Since exact intervals are scale-sensitive, e.g. different scales poten-
tially produce different distributions of melody-to-bass intervals, the ‘expected’ bass pitch
height is approximated by a normal distribution (denoted by p

h

x

) that is adjusted to fit the
distribution of the melody-to-bass intervals observed in the dataset.

For defining the pitch value of the bass in every step, the probabilities gathered from
all the modules described hitherto are combined into a single value, computed as the
product of all the probabilities from all the incorporated modules. To this end, for each
GCT chord (C) in the sequence composed by the cHMM and cadence modules, every
possible scenario of chord inversions and bass note pitch height, denoted by an index x,
is generated. For each scenario (x), the product (b

x

(C)) of all the modules discussed so
far is computed, i.e. the bass motion (p

m

x

(C)), the inversions (p
i

x

(C)) and melody-to-bass
interval p

h

x

(C):
b

x

(C) = p

m

x

(C) p

i

x

(C) p

h

x

(C). (7)

Therefore, the best scenario (xbest) for the bass voice of chord C is found by: xbest =

argmax

x

(b

x

(C)).

It has to be noted that the bass note motion probability (p
m

x

(C)) of all examined
inversions and pitch heights is obtained by the HMM module and takes a value given by the
vector ~p

m

according to the bass step it leads to. Therefore, the HMM probabilities are not
utilised to compute the best sequence of all bass motions throughout the harmonisation,
i.e., using the Viterbi algorithm. Contrarily, for the bass motion that is currently examined,
all seven probabilities are calculated and stored in ~p

m

, while all possible pitch heights of the
current chord (indexed by x) are assigned with a probability value accordingly. It should
also be noted that the exact pitch height of the first bass in the first chord is calculated
without information from the bass motion module (p

m

x

(C)) since there is no motion in the
bass before that.

An additional adjustment concerning the melody has to be made to avoid ‘abnormal’
for the idiom bass fluctuations in the selection of the optimal bass pitch height that are
caused by potential large skips in the melody. For instance, a given melody may at some
point move suddenly to very high pitches and then return to where it previously was. The
effect of the melody-to-bass distribution would be to ‘drag’ the bass notes and make them
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follow the melody, producing a bass motion that sounds unnatural to most tested idioms.
To this end, the melody line is ‘smoothened’ with a moving average of 10 positions, i.e.,
every pitch height in the melody is substituted by the mean value of its 10 previous pitch
heights (or fewer than 10, for melody notes before the 10th).

5.2 Defining the chord notes between the bass and the melody

Obtaining the best scenario for bass voice leading determines the exact pitch value of
the bass voice for each GCT chord according to the bass motion HMM, inversions of the
given GCT chord and the distance between the bass voice and the melody. Depending
on the number of notes in each GCT, the voicing layout, i.e. exact pitches for all chord
notes, for each chord is defined. To our knowledge, no study exists that focuses on ex-
amining the position of inner voices in a generated chord. To this end, a simple statistical
model is proposed that utilises a generic tree data structure to find the best combination of
the intermediate voices for every chord according to some simple criteria. Our proposed
methodology summarises as follow:

1. Find all the possible combinations of the intermediate notes and store them in a
generic tree structure.

2. Calculate the cost for every combination and select the best.

The total cost of every combination, in turn, is based on a weighted combination three
cost criteria:

C1 Proximity to a pitch-attractor : The combination that best matches this criterion is the
one that incorporates inner voice pitch values that are closest to a certain pitch value,
named the pitch-attractor. The pitch-attractor value is set to a fixed ratio between the
bass and the lowest melody note in the block of each chord.3

C2 Evenness of neighbouring notes distances: Evenness in inner voices of a chord is
measured by calculating the standard deviation of their pairwise distances.

C3 Inner voice movement distances between chords: The inner voice movement be-
tween the previous and the current chord is calculated as the mean value of dis-
tances between the highest and the lowest inner voices. The best chord according
to this criterion is the one with highest and lowest intermediate note pitches that are
closest to the respective ones of the previous chord.

After thorough examination of the results in many simulations, the weight of the cost criteria
are respectively: 0.5, 0.2 and 0.3. The voicing layout that is selected is the one that achieves
the lowest total score in the weighted cost combination value.

3In the current version of the harmoniser the attractor is placed a 1/3 distance between melody and bass
from the melody note. Additionally, for avoiding the ‘dragging’ effect of sudden melodic changes, the moving
average version of the melody is used.
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For example, consider that the GCT chord currently examined is [2 0 3 7 10] with
pitch classes [0, 2, 5, 9] (D minor seventh), while the previous chord was the GCT chord
[0 0 4 7] (C major). Consider also that the MIDI pitches of the chord that comes before
the aforementioned one are [48, 55, 64], where the melody note is not considered, i.e. 55
and 64 are the inner notes of this chord, while for the D minor seventh the bass note
value calculated by Equation 7 is 50 and the current melody note is 76. There are many
possibilities for arranging the current chord’s (D minor seventh) inner notes. To this end,
the generic tree structure illustrated in Figure 5 is generated that represents all the voicing
layout possibilities. All possible voicing layouts are taken by the tree interpretation by
descending each branch from the root and they are then evaluated according to the three
aforementioned criteria, the results of which are shown in Table 6.

50(D)

53(F)

57(A)

60(C)

76 (E)

72(C)

76 (E)

60(C)

69(A)

76 (E)

69(A)

72(C)

76 (E)

57(A)

60(C)

65(F)

76 (E)

65(F)

72(C)

76 (E)

60(C)

65(F)

69(A)

76 (E)

65(F)

69(A)

72(C)

76 (E)

Figure 5: Tree representing all possible voicing layout scenarios for a D minor seventh with
bass note 50 harmonising the melody note 76. The melody note is shown in italics since it
is not actually part of the chord; it is used to demarcate the upper pitch limit of the chord’s
inner pitches.

Table 6: Evaluating the voicing layout scenarios for a D minor seventh with bass note 50

harmonising the melody note 76, following the chord [48, 55, 64] (C major). The selected
voicing layout is the one with the lowest total weighted score, shown in bold.

Voicing layout C1 score C2 score C3 score Total score
[50, 53, 57, 60] 6.667 0.707 6 5.275

[50, 53, 57, 72] 6.667 7.778 10 7.889

[50, 53, 60, 69] 4.667 1.414 7 4.716

[50, 53, 69, 72] 4.667 9.192 10 7.172

[50,57,60,65] 2.000 1.414 3 2.182
[50, 57, 65, 72] 2.000 0.707 10 4.141

[50, 60, 65, 69] 0.000 0.707 10 3.141

[50, 65, 69, 72] 0.000 0.707 18 5.541

6 Experimental results

Evaluating computational or even human creativity is a difficult task, especially when the
assessment of aesthetic quality is also involved. Furthermore, there is not a well-established
and commonly accepted definition of creativity, as many authors approach it from different
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perspectives (e.g. Boden (2004); Wiggins (2006); for a comprehensive discussion see Jor-
danous (2013), chapter 3). The creative and structural characteristics of the system are
examined through presenting examples on different harmonisation tasks as well as through
statistical measures of similarities in harmonisations of melodies with different learned har-
monies. The melodic harmonisation examples concern five melodies as well as different
structural harmonisation attributes, e.g. intermediate phrase boundaries and user-selected
chord constraints. These examples demonstrate the system’s potential and indicate the in-
tegrity of harmonisations that, in some cases, reach human expert-standards with minor
adjustments.

The statistical experimental process (presented in Section 6.2) examines the similarity
between system-generated harmonisations of (11) different melodies and original training
harmonisations. This process reveals that the harmonisations produced by the system
when trained on an idiom may diverge from that idiom, depending on how its harmonic
characteristics align with the structural properties and implied harmony of input melodies.

6.1 Example Harmonisations

Five diverse short melodies were chosen, three from classical music (baroque, classical
and romantic periods), one from pop music and one folk song:

1. J. S. Bach: The fugue theme from the Well-Tempered Clavier I, fugue no. 8, trans-
posed in D minor. The melody is a 3-bar phrase that concludes with a perfect ca-
dence in D minor.

2. L. v. Beethoven: The melodic theme (b. 1-8) from the second movement in A[ major
of the Piano Sonata no. 8. The melody comprises two 4-bar phrases (half cadence –
full cadence) that form an 8-bar period.

3. The Beatles: The first melodic phrase of the song ‘Michelle’, transposed in C minor.
It is a 6-bar phrase, ending with a half cadence to the dominant.

4. Greek folk song: ‘Tou Kitsou ē mana’, taken from Yannis Constantinidis’s collection
‘44 miniatures for piano’ (no. 27). The melody is in A Dorian mode and comprises
two phrases (4-bar and 7-bar) of which the second consists of two sub-phrases (3-bar
and 4-bar).

5. Gabriel Fauré: The first three phrases (b. 2-21 without the repetitions) of the Sicili-
enne for cello and piano (op. 78). The melody is mainly in the Dorian mode; the
first two phrases form an eight-bar period (half cadence-full cadence), while the third
phrase exhibits tonal/modal mixture.

Eight different musical idioms (see Section 3.2) were used for the harmonisation of
the above five melodies, but for reasons of space only a small selection of the most in-
teresting 13 harmonisations is presented. The system produced raw midi files that were
processed by humans using the Finale 2014 musical notation software4. The process in-
volved the following: correction of musical notation issues and enharmonic spellings of

4
https://www.finalemusic.com
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pitches, separation of the bass line in a different layer or staff, preservation of constant
number of active voices in the musical texture through the use of octave doublings, manual
arrangement of the inner voices for smoother voice-leading where needed, and analysis
of harmonic progressions through the use of Latin Roman numeral notation in cases of
tonal harmonisation. The pitch content of the chords was always kept intact, and the bass
line was manually altered in very few cases (indicated by * in the scores) in order to avoid
stylistic inconsistencies or achieve better voice-leading.

Three selected harmonisations of the Bach fugue are illustrated in Figure 6. The first
harmonisation was based on the Kostka-Payne corpus (classical/romantic tonal harmony),
which is compatible with the style of the melody, and is characterised by frequent use of the
dominant and a chromatically embellished full cadence prepared by two chords with pre-
dominant function: ii65 and vii7

o

of V. The second harmonisation uses the Epirus polyphonic
singing style and is almost consistently based on the D minor pentatonic scale (D, F, G,
A, C) with the E of the last bar being the only exception. The chords are mildly dissonant
verticalisations of the pentatonic set instead of the D minor triad, which – typically in this
idiom – was avoided, and there is also a constant drone of the pitch center in the lower
voice. The third harmonisation was made in the Hindemith style and exhibits free mildly
dissonant chords, mostly free verticalisations of diatonic sets, except from the cadence
which is tonal (V2 - I6). Interestingly, pitches not included in the scale of the melody are
inserted for the creation of idiomatic harmony, such as B, F] and C].
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(a) Bach melody harmonised in the Kostka-Payne style.
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(b) Bach melody harmonised in the Epirus style.
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(c) Bach melody harmonised in the Hindemith style.

Figure 6: Bach Melody harmonised in several diverse styles: (a) Kostka-Payne, (b) Epirus
songs and (c) Hindemith.

For the theme by Beethoven the three harmonisations illustrated in Figure 7 were se-
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lected. The first one (without chord constraints) was based on the Kostka-Payne idiom and
is quite close to Beethoven’s own style, particularly in the second phrase, which incorpo-
rates progressions in the circle of fifths and a full tonal cadence. However, the proposed
harmony of the first phrase was considered static due to an insistent use of the V7-I pro-
gression, so a second harmonisation based on the same idiom was attempted, albeit with
two chord constraints in the first phrase (indicated by rectangular frames in the score). The
result is substantially different, and the harmonic effect caused by the injected chords expel
the tonic chord completely from the first phrase and create interesting chromatic tonicisa-
tions and a half-cadence in the phrase’s end. The theme’s third harmonisation used the
highly chromatic Grieg idiom and rendered even more daring and interesting chromatic
chords, such as the altered dominants with lowered 5ths (b. 2 and 4, French-type aug-
mented 6th chords), the borrowed viio7/V with the tonic pedal note in the 3rd voice (b. 3),
the tonal mixture chords [VI and [III (b. 5 and 6), of which the [VI is doubly altered (5[ = B[
and 5] = C), and the German-type augmented 6th chord preparing the ii7 chord (b. 6 and
7).

For the Beatles melodic phrase two harmonisations were selected (see Figure 8), both
without any chord constraints. The first harmonisation followed the Bach chorale idiom and
rendered typical diatonic or chromatic tonal progressions leading to an anticipated half ca-
dence to the dominant. The second harmonisation was based on Yannis Constantinidis’s
20th-century modal idiom, and featured almost exclusively freely used major triads with
major 7th and minor triads with minor 7th. In this rendering interesting parallel harmony
elements are observed (A[maj7-Gm7-Fm7-E[m), while the half cadence is avoided and sub-
stituted by a III chord with major 7th. Two bass notes were manually changed (indicated by
*) in order to create a complete stepwise descent from A[ to C in the bass line.

Three selected harmonisations of the Greek folk song are illustrated in Figure 9. The
first was based on the Fauxbourdon medieval idiom, characterised mainly by parallel 6

3

chords and cadences to open 8th-5th sonorities. The system proposed suitable chordal
content (major or minor triads, open 5ths and one diminished triad as penultimate cadential
chord), but the bass line had to be manually changed six times (annotated with * in the
score) in order to achieve stylistic compatibility. The second harmonisation is based on
Bach chorales. The result is tonal functional harmony, with diatonic and chromatic ele-
ments (tonicisations) and with tonal cadences at the end of the phrases and sub-phrases.
The proposed bass line was left intact, in spite of the awkward augmented 2nd in the first
bar. The last harmonisation is based on Hindemith’s harmonic idiom, and is characterised
by free use of chromaticism, mildly dissonant sonorities stemming from diatonic sets and
more stable sonorities (major or minor triads) at the end of the phrases (a notably interest-
ing progression is the transition from Em7 to Gm at b. 6-7).

Finally, two harmonisations of the Sicilienne melody are illustrated in Figure 10. The
first was based on the jazz harmonic idiom, characterised mainly by the free use of 7th
chords and other extended/chromatic chords. The proposed harmony is a mixture of tonal
and modal jazz harmony, with free chromatic or diatonic modal chords encountered dur-
ing the unfolding of the melody and more tonal/functional progressions at the cadences.
The second harmonisation was based on Hindemith’s neotonal, mildly dissonant, non-
functional harmony. The free chromaticism employed produced interesting enharmonic
phenomena (e.g. at b. 9 and 11).
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(a) Beethoven melody harmonised in the Kostka-Payne style without the user-defined
chord constraints.
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İ7 7 ο7 4
3

6 6
5

7 6
5

7 6 4
3

ο6 6 7
/vi /ii /V /vi /ii

ii

o

(b) Beethoven melody harmonised in the Kostka-Payne style with user-defined chord
constraints.
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(c) Beethoven melody harmonised in the Grieg style.

Figure 7: Beethoven melody harmonised in the Kostka-Payne style (a) without and (b) with
user-defined contraints and (c) in the style of Grieg.

Overall, the thirteen harmonisations of the five chosen melodies produced by the sys-
tem with some unobtrusive human manipulation incorporated a wide spectrum of musical
idioms – with a range of over eight centuries – and demonstrated the flexibility and creative
potential of the proposed harmonisation system.

6.2 Statistical similarities between original harmonies and new melodic har-
monisations

The system is trained on several statistical aspect of a specific idiom and it uses the learned
material in input melodies to produce novel harmonisations. How similar are the produced
harmonisations in relation to the original training harmonisations of an idiom? In other
words, is the system only able to mimic the training harmonisations or it is possible that
‘divergent’ harmonisations can be produced? This question is addressed by examining the
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(a) The melody of Michelle by the Beatles harmonised in the style of Bach Chorales.
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(b) The melody of Michelle by the Beatles harmonised in the style of Constantinidis.

Figure 8: The melody of Michelle by the Beatles harmonised in the style of: (a) Bach
Chorales and (b) Constantinidis.
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(a) Traditional melody harmonised in the style of fauxbourdon.
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(b) Traditional melody harmonised in the Bach Chorale style.
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Figure 9: Traditional melody harmonised in the style of: (a) fauxbourdon, (b) Bach Chorales
and (c) Hindemith.

statistical similarities between original harmonies of idioms and harmonisations produced
by the system for several melodies. The melodies used for producing harmonisations for
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(a) The Sicilienne melody harmonised in the style of Hindemith.
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(b) The Sicilienne melody harmonised in jazz style.

Figure 10: The Sicilienne melody harmonised in the style of: (a) Hindemith: and (b) jazz.

this study include the five of the ones presented previously in the examples (one major and
four minor melodies), with the addition of five major mode and one minor mode melodies,
to compile a total set of six major and five minor melodies. The set of major melodies
includes melodies from Haydn, Mozart, Beethoven, Jobim and two traditional ones, while
the selected minor melodies are by Bach, Michelle by the Beatles, Sicilienne by Fouré and
two traditional melodies.

The statistical similarity of harmonies in this experimental process is based on the
transitions of GCT chords. Voicing layout elements are disregarded for this study since
their complex statistical interdependence makes it hard to construct a unique statistical
model that can be used for statistical similarity. Instead, this study examines similarities of
GCT chord transition probabilities in original pieces (used for training the system) and novel
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harmonisations. The examination concerns one idiom at a time, I, where the available
training harmonies (pieces with more than 4 chord transitions) are considered to form a
set TI , while the harmonies produced by the system for new melodies form the set MI .
Each harmonic piece in both sets is represented by its first-order Markov transition matrix,
which represents its GCT chord transition probability distribution.

The distance between two transition probability distributions is quantified by the Hellinger
distance (Gibbs and Su 2002), which is a distance metric for two distributions. Using this
metric a pairwise distance matrix is constructed for both the original TI and the generated
MI harmonic pieces for each idiom (I). This matrix is mapped afterwards into a two-
dimensional space using multidimensional scaling (MDS), in order to obtain a Euclidean
approximation of the space of GCT chord transition distributions based on their pairwise
distances. Two major and two minor-mode examples of the two-dimensional spaces pro-
duced by this process are presented in Figure 11, where the sets TI (grey ⇥s) and MI
(red circles) for the Bach chorales and the Kostka-Payne sets are illustrated.

Beethoven

Jobim
HaydnMozart

majTrad1
majTrad2

Beethoven

Jobim
Haydn

Mozart

majTrad1majTrad2

(a) Major mode Bach chorales (b) Major mode Kostka-Payne

Bach

minTrad1 minTrad2

Michelle

Sicilienne

Bach

minTrad1minTrad2

Michelle

Sicilienne

(c) Minor mode Bach chorales (d) Minor mode Kostka-Payne

Figure 11: Examples of Bach chorales and Kostka-Payne harmonic pieces of original idiom
harmonisations (illustrated with grey ⇥s) and new system-generated harmonisations (red
circles) in the space produced by multidimensional scaling based on the Hellinger pairwise
distances.

The original idiom harmonisation (TI), as depicted in the examples in Figure 11, are
considered to form a cluster. To study the relative placement of the new harmonisations in
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every idiom’s cluster, the concept of cluster radius is used. Cluster radius is the maximum
distance of all cluster members (harmonies in TI) from the cluster centroid, which is the
placed at the centre of mass of TI . The radii of the clusters around their centroids are
depicted by the dashed line ellipsoids in Figure 11, while the ellipticity is due to different
axis scales. A harmonic sequence that is outside an idiom’s radius, presents transitions
in proportions that are not ‘usual’ (in a statistical sense) within the training idiom. The
novel system-generated harmonisations (MI) that are outside an idiom’s cluster radius,
are considered to constitute ‘uncommon’ new harmonisations that explore new harmonic
areas in an idiom.

The radius for each cluster and the distances of new harmonies from the cluster’s
centroid are demonstrated in Table 7. One can notice that for some corpora there are
more than one melodies that produce harmonisations outside the cluster’s radius, e.g. in
Constantinidis major and Grieg, Kostka-Payne (Figure 11 (d)), Hindemith and jazz minor.
The Hindemith and jazz example harmonisations in Figure 10 of the Sicilienne melody,
which are outside the respective clusters’ radii, suggest that the general characteristics of
the styles are locally preserved, even though the chord sequences as wholes are statis-
tically ‘divergent’ from the idiom. On the other hand, all the Kostka-Payne (Figure 11 (c))
and jazz major new harmonisations are inside the cluster’s radius. The music-theoretic
reasons for such differences, or the perceptual impact of harmonisations outside or inside
an idiom’s radius are important subjects that should be addressed in future research.

Table 7: Cluster radius of intra-idiom harmonisations (TI) and distances of system-
generated harmonisations (MI) in extra-idiom major and minor melodies from cluster
centroid. Numbers is bold indicate the cases where new harmonisations are outside the
radius.

Major harmonies and melodic harmonisations
TI radius Beethoven Jobim Haydn Mozart majTrad1 majTrad2

Fauxbourdon 0.4516 0.2249 0.3834 0.1341 0.2397 0.3393 0.4851
Bach Chorales 0.1430 0.1541 0.0796 0.0426 0.0462 0.0550 0.0560
Kostka-Payne 0.1398 0.0890 0.0539 0.0247 0.0192 0.0111 0.0190

Grieg 0.3350 0.2288 0.4180 0.1637 0.1708 0.1797 0.1728
Constantinides 0.1117 0.2280 0.2913 0.1922 0.1473 0.2531 0.2542

Jazz 0.3812 0.0449 0.1143 0.0674 0.0549 0.0852 0.0382
Minor harmonies and melodic harmonisations

Intra-idiom Bach Michelle Sicilienne minTrad1 minTrad2
Fauxbourdon 0.4333 0.2852 0.1768 0.2538 0.5492 0.1894

Bach Chorales 0.2645 0.0626 0.1028 0.3256 0.1572 0.2438
Kostka-Payne 0.1670 0.0506 0.0052 0.3413 0.2275 0.2155

Grieg 0.3015 0.1186 0.0363 0.3629 0.0844 0.1656
Epirus 0.4193 0.0830 0.2099 0.3202 0.2586 0.5280

Constantinides 0.1497 0.1306 0.1148 0.2892 0.0451 0.1327
Hindemith 0.3111 0.1143 0.1530 0.3850 0.3182 0.2287

Jazz 0.1098 0.0541 0.0714 0.2870 0.2181 0.0882

Depending on the melody, the system may either produce harmonisations that are
similar to the original training harmonies, or be forced to produce harmonisations that
are less similar. This fact is important in two respects: on one hand the system is able to
mimic hierarchically structured processes through a Markov-based process (using induced
constraints), while on the other hand new harmonic paths can be explored. For instance,
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harmonising the traditional or the Sicilienne melodies with the system trained with the
Kostka-Payne corpus (Figure 11 (d)), forces the system to ‘explore’ new harmonic areas
within the idiom and generate diverse novel harmonies, in contrast to the harmonisations
of the Beatles and Bach melodies. The harmonies that excess an idiom’s radius, on the
other hand, still reflect its learned characteristics, as indicated in the example of the Bach
chorale harmonisation of the minor traditional melody 2 in Figure 9 (c), even though it is
placed remotely in Figure 11 (c).

Interestingly, when the system is trained with the Bach chorales and the Kostka-Payne
corpus, the relative positions of composed melodic harmonisations may be different. For
instance, the harmonisations produced for the Mozart and Haydn melodies when trained
with the Bach chorales (Figure 11 (a)) are very similar (one is almost placed over the other),
while training the system with the Kostka-Payne corpus harmonises these melodies quite
differently (Figure 11 (b)) – a fact that is possible due to the probabilistic mechanics behind
the cHMM methodology. Furthermore, this is also a possible outcome in the proposed
system, where even similar melodies can be harmonised in completely different ways if, for
instance, different cadences are automatically selected, or, potentially, different intermedi-
ate chord constraints (or cadences) are selected by the user.

7 Concluding remarks

Melodic harmonisation with automated means is a task that requires algorithms exhibiting
both emergence of creativity and preservation of structure. The first approaches for auto-
mated melodic harmonisation included methodologies that were based on human-defined
rules. The strength of these approaches is that the rules they incorporate preserve the hier-
archical structure of harmony. Among their shortcomings, however, is the fact that different
sets of rules describe different idioms and it is impossible to come up with ‘one size fits
all’ harmonic rules for all idioms. On the other hand, methodologies that utilise statistical
learning can learn specific aspects of harmony from data, a fact that enables them to learn
and create harmonies in different musical idioms. The main disadvantage of probabilis-
tic methodologies is that they work in rather ‘linear’ chord-to-chord manner, disregarding
higher-level structural relations between remote harmonic parts. The first contribution of
the proposed melodic harmonisation system is the fact that it can learn from music data
from diverse idioms, while at the same time preserve relations at distant harmonic events
by assigning intermediate and final cadences at locations of phrase endings. Additionally,
the system output is a complete harmonic realisation with chords being described not only
as labels but as note simultaneities. To this end, different harmonic learning modules are
responsible for learning and composing different aspects of harmony, namely chord types,
chord transitions, cadences, bass voice movement, chord inversions and melody-to-bass
note distances. Furthermore, the user can choose to import any desired chord at any lo-
cation of the harmonisation, ‘derailing’ the system from its trained harmonic course forcing
it to take creative decisions and follow alternative harmonic paths.

The creative agility of the system is obvious when used to harmonise melodies in
a variety of learned idioms. Therein, the implied harmony incorporated in the melody is
blended with the learned harmony employed for the harmonisation, producing interesting
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harmonic output. An analysis on melodic harmonisation examples, where melodies were
harmonised with harmonically ‘incompatible’ learned idioms, indicated that some of these
harmonisations were inside and some outside the cluster of the original idiom harmonisa-
tions. It was therefore demonstrated that the system not only reflects the characteristics of
original harmonisations within an idiom, but also potentially invents new creative harmonic
routes that at some extent constitute a blend of the harmonising idiom’s and the melody’s
implied harmony. In other words, the system exhibits adaptivity in learning and agility in ex-
pressing learned harmonic idioms in different and potentially alien harmonic environments
– as imposed by a melody’s structure. Another important aspect of the system is its ability
to comply with specific user preferences in harmony, expressed as chord constraints. The
user is allowed to experiment by employing desired chords in any position of the melody,
forcing the system to follow potentially radically different harmonic paths in order to satisfy
the user-imposed constraints. The direct involvement of the user in the creativity loop, com-
bined with the numerous potential harmonisations using different learned idioms, make the
proposed system valuable not only as an autonomous creative tool, but also as a tool that
enhances the creativity of the user as a composer.

The system is developed in the context of a wider research project, where conceptual
blending (Fauconnier and Turner 2003; Goguen 2006) is studied as a generative means
to creating new conceptual spaces (features and relations between them) by combining
the elements of two input ones. Regarding the proposed system, learned probabilistic ele-
ments of different input idioms will be transformed in logic-related feature terms, while for-
mal computational blending processes (Schorlemmer et al. 2014; Kaliakatsos-Papakostas
et al. 2014a; Cambouropoulos et al. 2015) will create new elements and relations that
creatively combine and extend the input idioms by generating new probabilistic relations
between them. However, the system in its current form is still a valuable tool for potential
user groups. For instance, composers are able to get a ‘batch’ of creative ideas on har-
monisation alternatives for a given melody within a few seconds. The system is able to
provide very quickly several ideas on how a melody would be harmonised under different
learned conditions, enhancing the composers’ creativity by providing many new ideas on
the entire harmonisation or on parts of it. Additionally, the composers are able to keep
some parts of the harmonisation fixed (as chord constraints) and search for alternatives in
focused areas. Furthermore, the system can be used for educational purposes, indicat-
ing to students which harmonisation follows the most ‘usual’ harmonic paths for a given
melody in diverse idioms. Students have the chance to explore creative ideas in a style-
specific harmonic environment by imposing their desired chord constraints and studying
the alternative harmonic routes that the system proposes in the context of a specific idiom.
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Abstract

In computational creativity, new concepts can be invented through conceptual blending of

two independent conceptual spaces. In music, conceptual blending has been primarily used

for analysing relations between musical and extra-musical elements in composed music rather

than generating new music. This paper presents a probabilistic melodic harmonisation assis-

tant that employs conceptual blending to combine learned, potentially diverse, harmonic idioms

and generate new harmonic spaces that can be used to harmonise melodies given by the user.

The key feature of this system is the application of creative conceptual blending between the

most common chord transitions (pairs of consecutive chords) of two initial harmonic idioms,

while a proposed methodology integrates the blended transitions in a compound probabilistic

harmonic space that preserves combined characteristics from both initial idioms along with new

possible chords and transitions. This methodology enables various interesting music applica-

tions, ranging from problem solving, e.g. harmonising melodies that include key transpositions,

to generative harmonic exploration, e.g. combining major-minor harmonic progressions or more

extreme idiosyncratic harmonies.

1 Introduction

New concepts may be invented by traversing previously unexplored regions of a given conceptual
space (exploratory creativity), transforming established concepts (transformational creativity), or by
making associations between diverse conceptual spaces (combinational creativity); Boden maintains
that the latter, i.e., combinational creativity, has proved to be the hardest to describe formally (Bo-
den, 2009).

Conceptual blending is a cognitive theory developed by Fauconnier and Turner (Fauconnier and
Turner, 2003) whereby elements from diverse, but structurally-related, mental spaces are combined,
giving rise to new conceptual spaces: such spaces often possess new powerful interpretative properties
allowing better understanding of known concepts or the emergence of altogether novel concepts.
Conceptual blending is a process that allows the construction of meaning by correlating elements
and structures of diverse conceptual spaces. It relates directly to Boden’s notion of combinational
creativity.

With regards to music, conceptual blending has been predominantly theorised as the cross-domain
integration of musical and extra-musical domains such as text or image (e.g. Tsougras and Stefanou
(2015); Zbikowski (2002); Zbikowski (2008); Cook (2001); Moore (2013)), and primarily discussed
from a musico-analytical perspective focusing on structural and semantic integration. Blending as
a phenomenon involving ‘intra-musical’ elements (Spitzer (2004), Antovic (2011)) is less straightfor-
ward. In principle, one of the main di↵erences of blending theory from the theory of Conceptual
Metaphor (CMT) is that it may involve mappings between incongruous spaces within a domain (e.g.
conflicting tonalities in a musical composition). In this case, ‘intra-musical’ conceptual blending
in music is often conflated with the notion of structural blending (Goguen and Harrell, 2010), and
Fauconnier and Turner’s theory is primarily applied to the integration of di↵erent or conflicting
structural elements, such as chords, harmonic spaces, or even melodic-harmonic material from dif-
ferent idioms (e.g. Kaliakatsos-Papakostas et al. (2014); Ox (2014)). A more extended discussion
and critical examination of conceptual blending processes in music is presented in (Stefanou and
Cambouropoulos, 2015).
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Di↵erent musical styles/idioms establish independent harmonic spaces that involve a network of
inter-related constituent concepts such as chord, root, scale hierarchy, tonality, harmonic rhythm,
harmonic progression, voice-leading, implied harmony, reduction, prolongation, and so on. Concep-
tual blending is facilitated when a rich background (Schorlemmer et al., 2014) of concepts is available
and when these concepts are structured in such ways that creative mappings are supported. Thereby,
the existence of a rich background that includes formal descriptions of diverse harmonic elements
is required; the combination of concepts from di↵erent idioms injects novelty and creativity to the
melodic harmonisation process.

Tonal and jazz music have been e↵ectively modelled by grammar-related structures (Rohrmeier,
2011; Koops et al., 2013; Granroth-Wilding and Steedman, 2014), however, for the purposes of blend-
ing, more musical styles need to be represented that are substantially di↵erent from the aforemen-
tioned ones. An idiom-independent representation of harmonic concepts has been proposed: from the
‘primitive’ chord events (see General Chord Type representation (Cambouropoulos et al., 2014)1) to
a modular hierarchical representation of harmonic structure (Kaliakatsos-Papakostas et al., 2016b)
that allows ‘meaningful’ blends at various hierarchic levels of harmony for practically any musical
idiom. Knowledge extracted from a large dataset of more than 400 harmonically annotated pieces
(manually produced harmonic reductions) from various diverse musical idioms (from medieval to
20th century styles) comprise the rich background required for interesting and creative blends. More
specifically, from a set of harmonic reductions for a given idiom (e.g. Bach chorales, tango songs,
jazz standards, etc.) the following structural characteristics are learned/extracted: chord types,
chord transitions (probabilistic distributions), cadences (i.e. chord transitions on designated phrase
endings at di↵erent hierarchic levels), and voice-leading (i.e., bass line motion in relation to melody,
bass-melody distance, chord inversion). Such features from diverse idioms may be combined giving
rise to new harmonic blended styles; for instance, tonal cadences may be assigned to phrase end-
ings and modal chord transitions may be employed for filling in the rest of the phrase chords – see
example in Cambouropoulos et al. (2015).

This paper focuses on the following questions: Can chord transitions per se be blended? Can
two di↵erent chord transitions (e.g. cadences) from di↵erent idioms be combined to give rise to novel
transitions that do not appear in any of the input harmonic spaces? Additionally, can whole chord
transition matrices from di↵erent harmonic styles be amalgamated so as to generate new chord
transition spaces?

Chord transition blending in the special case of cadence blending, has been explored in previous
studies (Eppe et al., 2015a; Zacharakis et al., 2015). In these studies, two cadences (e.g. the tonal
Perfect cadence and the modal Phrygian cadence) that share the same final tonic chord are blended
giving rise to new cadences (e.g., the Tritone Substitution cadence that is commonly employed in
jazz); the generated new cadences feature important characteristics from both of the input cadence
spaces, namely ascending and descending leading notes to the tonic, preserving thus the closure
e↵ect of the resulting ‘new’ cadential formulae. In this paper, the cadence blending processes (which
is based on the COINVENT conceptual blending mechanism – see Section 2 for brief description)
is generalised to any two input chord transitions. This generalisation, in turn, makes possible the
sophisticated creative blending of entire chord transition matrices from di↵erent idioms.

Let us attempt to illustrate the above chord transition blending processes by employing a sim-
plistic harmonic blending example, whereby the blended spaces are merely di↵erent diatonic major
tonalities. Suppose one has available (manually constructed or learned) a purely diatonic hidden
Markov model on the C-major scale, with a chord (state) transition matrix complying with the first
order Markov assumption and diatonic observed melodies. If a new given C major melody contains
a harmonically structural F] note, then the Markov model reaches a dead-end as it does not know of
any diatonic C major chord that can harmonise this chromatic note. If two neighbouring tonalities,
however, are blended, i.e. C major and G major, then the resulting composite transition matrix
contains the D major chord that leads as the dominant to the tonic in G major or as secondary
dominant to the dominant in C major (see Section 3 below). For a major tonality, borrowed chords
from the relative or parallel minor keys and from neighbouring tonalities can be seen as one-sided

1
For instance, in a C major scale, the GCT representation of a C major chord is [0, 0 4 7], a G7 chord is [7, 0 4 7 10]

while a B full diminished is represented as [11, 0 3 6 9].
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Figure 1: Simple C major and F] major harmonic transition spaces with (b) no transition blends
involved and (b) incorporating some of the topmost blending transitions.

blends (following Fauconnier and Turner’s terminology (Fauconnier and Turner, 2003)), i.e., blends
in which one primary input space remains mostly intact and specific features are imported from the
secondary space.

A more extreme blend would occur between C major and F] major tonalities. These spaces have
no common diatonic chords. Therefore the two transition matrices for these tonalities do not ‘overlap’
at all, and there is no way to make the transition from one space to the other. In such a case, chord
transition blending may be employed to try to find new potential chord transition candidates that
may allow an ‘acceptable’ transition between the two spaces. Let us assume that only three basic
chords for each space are available, namely the tonic, subdominant and dominant seventh major
chords for each space; the transition matrices for these two ‘toy’ spaces do not communicate (see
top left and bottom right squares in Figure 1 (a)). Can the proposed chord transition methodology
‘invent’ new transitions that may connect the two spaces in a meaningful way?

The chord transition blending methodology is applied to all the chord transitions in the C ma-
jor and F] major tables, i.e. each chord transition in the first matrix is blended with each chord
transition in the second matrix producing a list of resulting blends. The resulting blends are ranked
according to certain criteria that take into account the number of common features preserved in
the blend that are shared by the input chord transitions. The features that are taken into account
include common pitch classes in the first and/or second chords of the blend in relation to the two
input transitions, common ascending and/or descending semitone movements in the transitions and
ascending and/or descending semitone movements to the root of the final chord of each transition
(see detailed description in Section 2). For instance, the transition G7 ! C and C]7 ! F] share the
same pitch classes (pcs) 5 and 11 in the first chord, have similar ascending and descending semitone
movements between the two chords and contain an ascending semitone movement to the root of the
final chord. Assuming that we have available a palette of basic chord types, namely, major, minor,
major seventh, diminished and diminished seventh chords, a chord transition blend that ranks high
is a transition in which the first chord is a diminished seventh (pcs: 2 5 8 11) and the second chord
is either of C or F] (among other things the diminished seventh share two common pcs with each of
the first chord of the input transitions). Another good blend is one where the first chord is a major
seventh chord a semitone above the tonic of each space (e.g. 1 5 8 11) – this is a kind of tritone
substitution transition. These invented transitions are illustrated in the new grey boxes added in
the matrix of Figure 1 (b).

As seen in the above example, chord transition blending can be employed to create new transitions
that preserve important features of the input transitions. When only the top ranking blends are

3



preserved, then the system has introduced a way to connect the two input chord spaces. If more
blends are selected then the composite transition matrix becomes more populated allowing more
connections between the spaces. If the probabilities of the new ‘invented’ transitions are low, then
the chord generation system creates chord sequences mostly within each of the constituent input
spaces occasionally allowing passage from one to the other. If the probabilities of the new blended
transitions are increased, then the whole space becomes unified and movement between most or all of
the chords of both spaces is enabled. This latter strong blending between input spaces can generate
new harmonic spaces that are radically di↵erent from the initial input spaces (e.g. blending two
diatonic major tonalities in di↵erent keys may give rise to a composite blended space that features
strong chromaticism reminiscent of music appearing centuries after diatonic tonality – see examples
in Section 4).

The proposed blending paradigm seems to introduce an intelligent way to address the tradi-
tional problem of zero probability transitions in Markov models (Cleary and Teahan, 1995). Rather
than assigning arbitrary non-zero ‘escape’ probability values (Chordia et al., 2010) or enforcing arc-
consistency (Pachet et al., 2011) to allow a Markov process to cope with cases it has not seen in the
training data, di↵erent transition matrices can be blended (or even a single matrix can be blended
with itself) in order to introduce transitions that preserve qualities of the already existing transi-
tions. At least for music, this seems to be a reasonable way to bypass the problem of sparse input
data (e.g. learning transitions of pitch or chords or rhythmic values from a single piece rather than
from a large homogeneous dataset).

In the sections below, the COINVENT blending core model will be first presented, in order to
show how it is applied to chord transition blending. Then, the chord transition matrix blending
methodology will be described. Finally, a number of interesting examples illustrating harmonic
blending in melodic harmonisation will be given, by presenting melodies harmonised in di↵erent
idioms and blends between these idioms. These results discuss di↵erent cases where harmonic blend-
ing can be useful, either as a problem solving or as a creative tool. The new possibilities o↵ered
in automated melodic harmonisation by the presented system indicate the overall usefulness of the
COINVENT framework for inventing new concepts through conceptual blending. Additionally, pi-
lot results, further investigated in a another work (Zacharakis et al., 2017), indicate that blending
two harmonic spaces results in melodic harmonisations that are either perceived as belonging to a
harmonic style between these two, or as belonging to a new yet intrinsically related harmonic style,
fulfilling the intended purposes of blending.

2 A computational framework specialised for blending chord
transitions

In computational creativity, conceptual blending has been modelled by Goguen (2006) as a generative
mechanism, by describing input spaces as algebraic specifications and computing the blended space
as their categorical colimit. A computational framework that extends Goguen’s approach has been
developed in the context of the COINVENT2 (Concept Invention Theory) project (Schorlemmer
et al., 2014). According to this framework, two input spaces are described as sets of features,
properties and relations and after their generic space is computed, an amalgamation process (Eppe
et al., 2015b; Confalonier et al., 2015) leads to the creation of several blends, which can be ranked
in terms of value according to some criteria that relate to the knowledge domain of the modelled
spaces.

In conceptual blending the properties of two input conceptual spaces are combined to create new
spaces. The input spaces share some common structure along with di↵erences. The intended goal of
conceptual blending is to achieve a ‘meaningful’ combination of the non-common structural parts so
that new structure emerges, giving novel properties to the generated blended space. An important
aspect of the blended space is to preserve the common parts of the input spaces. The generic space
is the conceptual space that keeps the common structure of the input spaces and guarantees that

2
http://www.coinvent-project.eu
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Figure 2: Conceptual blending based on amalgamation. The generic space is computed (1) and
the input spaces are successively generalised (2), creating successively new potential blends (3).
Some blends might be inconsistent or poorly evaluated according to blending optimality principles
or domain specific criteria.

this structure also exists in the blended space. In case-based reasoning the generic space is described
as ‘the most specific generalisation’ (Ontañón and Plaza, 2012) of the input spaces.

2.1 The COINVENT framework for conceptual blending

The COINVENT framework for generative conceptual blending is based on the notion of amalga-
mation and it is illustrated in Figure 2. An amalgam of two initial spaces is roughly a new space
that contains parts from the initial ones (Confalonier et al., 2015). The amalgam-based workflow
generalises input concepts until a generic space is found and “combines” generalised versions of the
input spaces to create blends that are consistent or satisfy certain properties that relate to the knowl-
edge domain. Figure 2 illustrates the amalgam-based COINVENT algorithmic model for conceptual
blending.3

Amalgam-based conceptual blending has been applied to invent chord cadences (Eppe et al.,
2015a; Zacharakis et al., 2015). In this setting, cadences are considered as special cases of chord
transitions – pairs of successive chords, occurring before a phrase/section boundary – that are
described by means of properties such as the roots or types of the chords, or specific voice motions.
When blending two transitions, the amalgam-based algorithm first finds a generic space between
them (point 1 in Figure 2). For instance, in the case of blending the tonal perfect cadence with the
renaissance Phrygian cadences (see Eppe et al. (2015a); Zacharakis et al. (2015)) — described by
the transitions I

1

: G7 ! C and I
2

: B[m ! C5 respectively — their generic space consists of any
transition that has a second chord with pitch class 0, a first chord with pitch class 5, where the
first chord has a pitch class a semitone higher or lower to the second chord’s root, along with other
properties that might arise during blending.

After a generic space is found, the amalgam-based process computes the amalgam of two in-
put spaces by unifying their content. If the resulting amalgam is inconsistent, then it iteratively
generalises (Ontañón and Plaza, 2012) the properties of the inputs (point 2 in Figure 2), until the

3
In the process of blending through amalgams, the notions of ‘amalgam’ and ‘blend’ are the same. Therefore, in

the following paragraphs they are used interchangeably.
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resulting unification is consistent (point 3 in Figure 2). For instance, trying to unify directly the
transitions I

1

: G7 ! C and I
2

: B[m ! C5 would yield an inconsistent amalgam, since a transition
cannot both include and not include an upward leading note to the second chord’s tonic (which is
a feature of I

1

and the I
2

respectively, as discussed later). Therefore, the amalgam-based process
generalises the clashing property in one of the inputs (e.g., the property describing the absence of
leading note would be left empty in I

2

) and tries to unify the generalised versions of the inputs
again. After a number of generalisation steps are applied (point 2 in Figure 2), the resulting blend
is consistent (point 3 in Figure 2). In this specific cadence blending example, one novel blend that
arises from the perfect and Phrygian cadences is the Tritone Substitution progression/cadence (that
is commonly used in jazz). However, it may be the case that the blend is not complete, in the sense
that this process may have generated an over-generalised term. For instance, the A[ note in the
tritone substitution invention example discussed in Eppe et al. (2015a) and Zacharakis et al. (2015),
is imported through completion since the C]7 chord is required to have a perfect fifth according to
their cadence formalisations, where both input chord types have a perfect fifth.

The methodology for transition blending described in the paper at hand uses an equivalent to the
aforementioned methodology that combines amalgamation and completion. Chords are represented
using the General Chord Type (GCT) representation (Cambouropoulos et al., 2014). The proposed
methodology is adjusted for the specific harmonic ontology (with the GCT representation), using a
dictionary of chord types that are allowed in the emerging blends. This dictionary depends on the
idioms that take part in the blending process and represent a part of the “background knowledge”
that these idioms incorporate. Therefore, based on the assumption that only certain chord types are
allowed, the search space of possible chords in blended transitions is not overwhelmingly large, thus
for the specific task of transition blending the importance of the amalgamation process is reduced
and can be omitted altogether. This modification is thoroughly presented in Section 2.2.

After several blends have been computed, an evaluation process ranks them according to criteria
that reflect the importance of the properties that blends inherit from the input spaces. In conceptual
blending, several blending optimality principles have been proposed that are discussed in Chapter 16
of Fauconnier and Turner (2003) for rating and ranking blends. Blending quality is a necessary aspect
of conceptual blending since it allows the identification of better blends among all the (potentially
too) many possible ones4. A complete description of optimality principles is outside the scope of
this paper and the reader is referred to Goguen and Harrell (2010) for applications of several such
principles in the Alloy algorithm. The proposed methodology for rating and ranking blends in this
paper is based on criteria concerning the salience of transition features within their idioms and is
described in Section 2.3.

2.2 Formal description and chord transition blending

A formal ontology of transitions is required for blending according to the COINVENT framework. A
chord transition (a sequence of two chords) is described as a set of properties that involve each chord
independently and the chord transition as a whole (relations between the two chords). In Kaliakatsos-
Papakostas et al. (2016a), an argument-based system was presented that allowed music experts to
define which transition properties should be considered, through observation of blending results
obtained in various harmonic setups. Using the aforementioned argument-based system and after
examination of several produced outcomes, a (non-conclusive) list of nine important properties was
maintained:

1. fromPCs: the pitch classes included in the first chord,

2. toPCs: the pitch classes included in the second chord,

3. DIChas0 : Boolean value indicating whether the Directed Interval Class (DIC) vector (Cam-
bouropoulos, 2012; Cambouropoulos et al., 2013) of the transition has 0 (i.e. that both chords
have at least one common pitch class),

4. DIChas1 : as above but for DIC value 1 (i.e., at least one ascending semitone),

4
The amalgamation process produces many blends by following alternative generalisation paths.
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5. DIChasMinus1 : as above but for DIC value �1 (i.e., at least one descending semitone),

6. ascSemNextRoot : Boolean value indicating whether the first chord has a pitch class with
ascending semitone relation to the pitch class of the second chord’s root,

7. descSemNextRoot : as above but with descending semitone, and

8. semNextRoot : as above but with either ascending or descending semitone.

9. 5thRootRelation: Boolean value indicating whether the first chord’s root note is a fifth above
the root of the second. Root notes of chords are computed with the General Chord Type
(GCT) (Cambouropoulos et al., 2014) algorithm.

Table 1 demonstrates the property values (also referred to as features) for the three transitions
(namely the perfect, phrygian and tritone substitution cadences) of the example discussed above.
In this example, the tritone substitution cadence has been produced as a result of blending between
the perfect and the phrygian cadences, with a process that is described below.

Table 1: Blending the chord transitions of the minor-mode perfect cadence (Input 1: [7, [0 4 7], 10]
! [0, [0 3 7]]) and the phrygian cadence (Input 2: [10, [0 3 7]] ! [0, [0 3 7]]). The common elements
of both input spaces that are included in the generic space are depicted in boxes, while the other
common elements in circles. Many blends are produced by blending these cadences; the tritone
substitution blend is shown in the last column of the table as an illustrative example.

Property name Input 1 (Perfect) Input 2 (Phrygian) Possible blend

fromPCs {7, 11, 2, 5 } {10, 1, 5 } {1, 5, 8, 11}
toPCs { 0 , 3 , 7 } { 0 , 3 , 7 } {0, 3, 7}
DIChas1 1 0 1
DIChasMinus1 0 1 1
DIChas0 1 0 0
ascSemNextRoot 1 0 1
descSemNextRoot 0 1 1

semNextRoot 1 1 1
5thRootRelation 1 0 0

In the COINVENT framework for computational conceptual blending, the role of the generic
space, which includes all the common elements of the input spaces, is to reject possible blends that
do not incorporate these common elements. After extensive experimentation during the development
of the presented transition blending methodology, it became obvious that a richer representation
of transitions that incorporates many properties potentially led to stricter generic space demands
(i.e. generic spaces with more properties), allowing a smaller number of ‘surprising’ blends to be
generated, thus reducing the creative power of the methodology. The generic space requirements
are necessary for discarding blends that do not capture the important common features from the
input spaces. To this end, two types of properties are distinguished: the necessary and the desired
properties of transition blending. Necessary properties are elements incorporated in the generic
space, i.e. if a necessary property is common in both inputs, then blends that don’t have it are
rejected. Desired properties are properties that characterise the input spaces and are preferred to
be part of a blend, but do not belong to the generic space (i.e. they are not necessarily included in
every blend). Both necessary and desired properties play an important role in rating and ranking
the blends as described in Section 2.3.

In the context of the current study, among the nine properties that describe transitions, only
two that concern the pitch classes of the involved chords are considered as necessary, namely the
fromPCs and toPCs. The example in Table 1 demonstrates the role of the necessary and desired
properties in transition blending. Therein, boxed items indicate the common elements in the input
transitions regarded as necessary properties. For instance, all the pitch classes of the second chord as
well as pitch class 5 in the first chord are present in both inputs and, therefore, are also included in
all possible blends. On the other hand, the desired property semNextRoot is common in both inputs
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(indicated by circled numbers in Table 1); blends that do not include this property are allowed, but
their rating will probably be low, depending on the salience value of this property in the inputs, to
be discussed later.

So far, the discussion revolved around describing transitions with necessary and desired proper-
ties, but how are blends actually created? According to the amalgamation process, features from
the input spaces should be successively generalised up to the point where no contradicting material
is included (see Section 2.1 and Figure 2). This process is computationally expensive, since there
are multiple generalisation paths that can be followed. Furthermore, additional musical criteria are
required in order to check whether the generated blends are transitions that include ‘acceptable’
chord types – it is not unlikely for the algorithm to generate note clusters or trivial single-note
chords that haphazardly satisfy the generic space requirements and achieve high rating value.

Considering a dictionary of acceptable chord types, it is not necessary to use amalgamation in
order to explore e�ciently the most prominent possible blends. By assuming that the dictionary of
chord types, denoted by T , consists of N chord types, then all the possible chords that have to be
examined are 12 N – every chord type with every pitch class as a root note (i.e. all transpositions).
Thereby, the ‘universe’ of all transitions between acceptable chords are 144 N

2. The number of
acceptable types (N) is not overwhelmingly large for most musical idioms. For instance, by consid-
ering major and minor chords along with their sevenths, plus the half and full diminished chords
(6 types in total), 5184 possible transitions can be generated. Therefore, producing good blends is
not a matter of constructing the proper chords, but finding the ones that satisfy the necessary and
desired attributes. For computing all possible blends between two input transitions, all acceptable
transitions are examined regarding their compatibility with the generic space produced by the input
transitions. All transitions that satisfy the generic space requirements and incorporate acceptable
chord types are considered as potential blends. The algorithm for constructing the list of all possible
blends is described in detail in Figure 1, while Section 2.3 analyses the process of rating and ranking
all possible blends in the list.

2.3 Rating a blend

The algorithm described in Figure 3 produces a list, B, that includes all possible acceptable transi-
tions that are potential blends of two given input transitions (I

1

and I

2

). All blends in B need to be
rated and ranked so that meaningful blends are distinguished and considered with higher priority for
the next steps described in Section 3. When blending two transitions taken from two di↵erent har-
monic spaces, the most meaningful blends would expectedly include a combination of all the salient
features that the input transitions encompass. The salience of a feature of a transition, however,
depends on the idiom that this transition belongs to. For a set of transitions in a certain harmonic
context, the more rare or characteristic a feature is, the more salient/prominent it is considered. For
instance, in C major the note transition B!C (11 ! 0) appears in and characterises fewer chord
transitions (namely G!C and Bdim!C), than say, note transition G!A (7 ! 9) that appears in
more transitions (e.g. G!Am, C!Am, C!F, C!Dm, G!F).

To compute the salience of a feature in a transition taken from an idiom, the above mentioned
‘uniqueness’ of this feature needs to be quantified. To this end, let us consider the set of all transitions
in an idiom, denoted by TI , where I is the set of indexes of all transitions in the examined idiom.
Also let T

i

, i 2 I be a transition from the examined idiom. Each transition property is considered as
a function of a transition, F

p

(T
i

) = v

p

, returning the value of this property in a specific transition –
denoted by v

p

. For instance, if T
i

is the perfect cadence transition (G7 ! C) and F

ascSemNextRoot

is
the binary function returning the ascSemNextRoot property value (0 or 1 for not having or having
an ascending semitone to next root respectively), then the value of this property in the perfect
cadence transition is obtained by F

ascSemNextRoot

(T
i

) = 1. We define the set of all transitions having
a property p with a value v

p

as

P

p=vp(TI) = {T
i

, i 2 I;F
p

(T
i

) = v

p

},

while the cardinality (number of elements) of this set is denoted as C(P
p=vp(TI)). The salience of a

property value v

p

in a transition is therefore inversely proportional to the number of all transitions
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Algorithm 1 Computation of all possible blends

Require: (i) two input transition, I
1

and I

2

, (ii) a dictionary of all acceptable chord types T
Ensure: List of all possible blends (B) of I

1

and I

2

1: B  ; {% initialise and empty set of blends}
2: g  getGenericSpace(I

1

,I

2

) {% get the generic space of inputs}
3: C  ; {% initialise the set of all possible acceptable chords}

{% make the set of all possible acceptable chords}
4: for t 2 T do

5: for r 2 {0, 1, . . . , 11} do

6: c = makeChordWithRootAndType(r,t)

7: C = append(C,c)
8: end for

9: end for

{% for all chord pairs}
10: for c

1

2 C do

11: for c

2

2 C do

12: tr = formTransition(c

1

,c

2

) {% form the transition from c

1

to c

2

}
{% check if transition satisfies generic space}

13: if satisfies(tr, g) then

14: B = append(B,tr)
15: end if

16: end for

17: end for

Figure 3: Algorithm for obtaining all possible transition blends of two input transitions, given a
dictionary of acceptable chord types.
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in the idiom that also include this property value. Hence, the salience, denoted by S

p=vp(Ti

), of a
property value v

p

of a transition T

i

is computed as

S

p=vp(Ti

) =
1

C(P
p=vp(TI))

.

This salience is only defined for values v
p

appearing in some transition in the idiom, from which it
is immediate that the denominator above does not vanish and the feature is well-defined.

An example of applying this methodology for computing saliences is given in Table 2. The
considered training idiom in this example is a set of Bach chorales in major mode, after performing
GCT-based grouping (Kaliakatsos-Papakostas et al., 2015) of chords. Specifically, only the 10 most
frequently used transitions of this idiom are considered, which represent each idiom as analysed in
Section 3. The transitions incorporated in the example are [7, 0 4 7] ! [0, 0 4 7] and [11, 0 3 6] !
[0, 0 4 7] and the examined saliences concern the values of the fromPCs property. Both transitions
include pitch class 11 as a fromPCs property value, but since they are the only transitions among the
10 ones representing the idiom that have it, the total salience of this feature is equally distributed
among these two transitions (the 11 value of their fromPCs property has salience 0.5). Contrarily, the
other fromPCs values are given smaller salience values, since they are also found in other transitions.

Table 2: Example of saliences in the respective fromPCs property values of two transitions in a set
of major mode Bach chorales: [7, 0 4 7] ! [0, 0 4 7] and [11, 0 3 6] ! [0, 0 4 7]. Since pitch class
11 appears as a member of the first chords only in these two transitions, the total salience of pitch
class 11 in the entire idiom is equally distributed among these two.

Idiom trained on a set of major-mode Bach chorales
example transition: [7, 0 4 7] ! [0, 0 4 7] [11, 0 3 6] ! [0, 0 4 7]

fromPCs property values: {7, 11, 2} {11, 2, 5}
respective saliences within idiom: {0.20, 0.5, 0.33} {0.5, 0.33, 0.25}

A rating value is attributed to each blend in B for ranking them. The rating value of a blend
in B is computed by summing all the saliences of features that this blend inherits from the input
spaces. This sum is related to the harmonic mean of the cardinalities C(P

p=vp(TI)) above; in fact it
is precisely its reciprocal times the number of common features. Therefore, blends that incorporate
a larger total of salience values inherited from the inputs are ranked as better blends, while blends
that either inherit few features, or less-salient features, are ranked as worse blends.

3 Blending harmonic spaces via chord transition blending

The chord transition blending methodology described in Section 2 is integrated into the melodic
harmonisation assistant presented in Kaliakatsos-Papakostas et al. (2016b). This assistant combines
several probabilistic modules that learn musical structures from data, including chord transitions and
cadences; chords are encoded using the GCT algorithm (Cambouropoulos et al., 2014), transitions
are learned and composed with the constraint hidden Markov methodology (cHMM) (Kaliakatsos-
Papakostas and Cambouropoulos, 2014), statistical models define the bass line voice leading (Makris
et al., 2015) and a module fills the inner chord voices. This study attempts to employ chord transition
blending in the context of the cHMM algorithm, with a view to combining creatively the indepen-
dent chord transition matrices of two di↵erent harmonic idioms into a novel consistent composite
harmonic space. To this end, GCT chord Markov transition tables learned from two initial idiom
datasets are employed and most common chord transitions are indicated. Afterwards the transition
blending methodology is applied on pairs of the most common transitions across the initial idioms,
producing new blended transitions that connect and extend the transition possibilities of the initial
idioms, generating a compound idiom that preserves some characteristics (in terms of transition
probabilities) of the initial ones. Before transition blending is applied, a methodology for identifying
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potential common or similar chords of the initial idioms is employed; this enables connections be-
tween two transition tables, making musically common-sense connections between the initial idioms
(see Section 3.2).

The cHMM methodology used in Kaliakatsos-Papakostas et al. (2016b) incorporates a first order
Markov model, indicating the probabilities of transitions from one chord to all possible next ones. A
convenient way to represent a first order Markov model is through transition matrices; this includes
one respective row and column for each chord in the examined idiom. The probability value in
the i-th row and the j-th column exhibits the probability of the i-th chord going to the j-th – the
probabilities of each row sum to one. Figure 4 illustrates a colour-based graphic representation of the
transition matrix obtained from a collection of Bach Chorales in major mode (darker cells indicate
higher probabilities). The displayed chords are actually GCT chord groups obtained by the method
described in Kaliakatsos-Papakostas et al. (2015), while transitions between chords that pertain to
the same GCT chord group are disregarded.

Figure 4: The first-order Markov transition matrix of chords (GCT groups) in a major Bach Chorales
dataset. The numbers after the colon indicate the number of times of appearance.

3.1 A Markov transition matrix that accommodates two harmonic spaces

Aim of the proposed methodology is to construct a musically meaningful matrix of GCT chord
transitions that includes and extends the respective transition matrices of two initial idioms. Figure 5
illustrates the general form of an extended transition matrix of two initial idioms. This matrix is
built around the transition matrices of the initial idioms (I

1

and I

2

), with new transitions being
inserted embodying the blends that are generated by blending pairs of transitions belonging to the
two initial idioms. Each initial idiom is considered to incorporate a separate set of GCT chords, even
if some chords might have common names in both idioms. For instance, even though a [0, 0 4 7]
chord might be found both in a Bach Chorales and a Jazz dataset, it is treated as a di↵erent chord,
since it has a potentially di↵erent functional role in terms of the chords that come before or after it
in each dataset. However, the identical or similar chords in the two initial idioms present “natural”
harmonic connection points; transitions between such chords are constructed in a pre-blending stage,
described later.

The parts of the extended matrix are the following:

1. I
1

and I

2

: the transition matrices of the initial idioms.
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2. A
i�j

: blended transitions that lead directly from idiom I

i

to I
j

. For instance, a non-zero value
in a cell of A

1�2

enables the transition from a chord in I

1

to a chord in I

2

.

3. B
i�X

: blended transitions that lead from idiom I

i

to a new chord generated with transition
blending.

4. B
X�i

: blended transitions that lead from a new chord generated with transition blending to
idiom I

i

.

5. C: transitions between two new chords (not considered in the current implementation and,
therefore, having 0 probability value).

A1-2

A2-1

B1-X

B2-X

BX-1 BX-2 C

I2

I1
I1

chords

I2
chords

New
chords

I1
chords

I2
chords

New
chords

Figure 5: Graphical description of a compound matrix that includes transition probabilities of both
initial idioms and of several new transitions generated through transition blending. These new
transitions allow moving across the initial idioms, creating a new compound idiom.

The proposed process for constructing the compound matrix, intuitively generates new transitions
by blending the most common transitions in the initial (I

i

, i = 1, 2) Markov matrices. It is not
straightforward how a blended transition can be inserted in the extended matrix, since the extended
matrix is a means to interconnect and relate chords between I

i

and I

j

. The idea behind the proposed
methodology is that blended transitions should allow moving from chords in I

i

to ones in I

j

and
vice-versa. However, transition blending can potentially invent transitions that include ‘new’ chords
that are not included in the chord sets of both initial idioms. In the case where transitions that
include new chords are generated, for the proposed methodology we ensure that every transition
should have at least one chord that departs from or leads to I

i

, i = 1, 2 and at most one new chord.
Therefore, in this study we assume that blended transitions can include only one new ‘intermediate’
chord for moving from I

i

to I

j

, while blends that include chords that are both new in both idioms
are discarded. Additionally, we need to ensure that if a new chord is used, it should be preceded by
a chord in I

i

and be followed by a chord in I

j

. If this requirement is not met, the new chord would
be either a terminal or a beginning chord, constituting a ‘dead-end’ or ‘unreachable’ chord.

By analysing the graphical representation of an extended matrix as depicted in Figure 5 the
following facts need to be highlighted:

1. By using transitions in I

i

, only chords of the i-th idiom are used. When using the transition
probabilities in I

i

, the resulting harmonisations preserve the character of idiom i.

2. Transitions in A

i�j

enable direct jumps from chords of the i-th to chords of the j-th idiom. If
a blended transition happens to be in A

i�j

there is no need for further considerations – such
transitions can be directly included in the extended matrix.
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3. Transitions in B

i�X

go from a chord of idiom i to a new (in both initial idioms) chord created
with transition blending. Similarly, transitions in B

X�j

arrive at chords in idiom j from new
chords. For moving from idiom i to idiom j using one external chord c

x

that was produced by
blending, a “chain” of two transitions is required: c

i

! c

x

followed by a transition c

x

! c

j

,
where c

i

is in idiom i and c

j

is in idiom j. A chain of two consecutive transitions with one
intermediate external chord from chords of i to chords of j will be denoted as B

i�X�j

.

4. Transitions in C incorporate pairs of chords that are new to both the i-th and the j-th idioms.
Having two external chords, transition blends in C are disregarded in the present work and,
therefore, all probabilities in C are set to 0.

3.2 Connecting transition tables via common chords

Two harmonic spaces may share common chords, or chords that belong to the same GCT chord
group. According to the methodology presented in Kaliakatsos-Papakostas et al. (2015), two chords
belong to the same group if they (i) have the same root; (ii) have subset-related chord types; and
(iii) both include pitch classes that are diatonic to the scale of the idiom. For instance, in a C major
key, the chords [0, 0 4], [0, 0 4 7] and [0, 0 4 7 11] belong to the same major tonic group, while
[0, 0 4 7 10] belongs to another since the pitch class value 10 is not diatonic to the major scale (this
chord is a secondary dominant seventh to F major). For the remaining of this section, the term
‘similar chords’ will be used for describing chords that belong to the same GCT group.

The first step for generating the compound version of two transition matrices does not include
blended transitions, but transitions that are composed of identical or similar chords between the
two initial spaces – formulating an initial set of A

1�2

and A

2�1

transitions. These transitions allow
moving between the two initial spaces by using common or similar chords as harmonic connection
points. To this end, all possible transitions of such chords (i.e. all preceding and next chords) in one
input idiom I

i

, are also considered as possible transitions of this chord in the other input idiom I

j

,
“activating” the respective transitions in A

1�2

and A

2�1

.
An example of this process is illustrated in Figure 6. In this example, chords X

1

in I

1

and X

2

in
I

2

are similar. The previous and next chords of X
i

are shown as probability values in the vertical
and horizontal stripe areas respectively in I

i

, with solid striped and dotted patterns for i = 1 and
i = 2 respectively. Since X

1

and X

2

are similar in both spaces, the following transitions are activated:

1. All chords leading to X

1

in I

1

(vertical solid striped pattern) should be also leading to X

2

.
Therefore, these probability values are copied to the faded vertical striped pattern area in
A

1�2

.

2. All chords departing from X

1

in I

1

(horizontal solid striped pattern) should be also departing
from X

2

. Therefore, these probability values are copied to the faded horizontal striped pattern
area in A

2�1

.

3. All chords leading to X

2

in I

2

(vertical solid dotted pattern) should be also leading to X

1

.
Therefore, these probability values are copied to the faded vertical dotted pattern area in
A

2�1

.

4. All chords departing from X

2

in I

2

(horizontal solid dotted pattern) should be also departing
from X

1

. Therefore, these probability values are copied to the faded horizontal dotted pattern
area in A

1�2

.

It should be noted that in this example, X
1

and X

2

are considered similar both in I

1

and I

2

. In the
case where two chords are similar only in the context of one initial space, then only the steps related
to this space are followed, i.e. steps 1-2 or steps 3-4 in the enumeration given above. An example
of such similarity asymmetry is the case of chords G7 and G, which are similar (belong to the same
GCT group) in a C major space, while they are not in G major (since the flat seventh of G7 is not
diatonic).
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Figure 6: Graphical representation of shared transitions between similar chords (X
1

and X

2

) in both
initial spaces (I

1

and I

2

respectively). Transitions departing from or arriving to the similar chords
within the initial spaces (solid colours in the I

1

and I

2

blocks) are ‘mutually exchanged’ in the A
1�2

and A

2�1

areas (faded colours) of the extended matrix, before transition blends are imported.

3.3 Identifying meaningful transition blending candidates

In order to reduce the number of of applications of chord transition blending, the 10 most common
transitions in I

1

and I

2

are gathered in two chord transition sets that represent the respective initial
idioms. Every transition of idiom 1 is blended with the ones of idiom 2, producing 100 di↵erent
potential applications of blending. Some applications of blending, however, may potentially subsume
others, in a sense that some transition blending pairs may incorporate harmonic characteristics that
have already been examined in other pairs. For the current study, meaningful transition blends are
considered the ones that incorporate maximal subsets of features from the generic spaces in regards
to the subsumption relation, as explained in the next paragraphs.

Each pair of input chord transitions (x
1

, x

2

) defines a generic space (G
(x1,x2)

) and a set of all
possible generated blended transitions (B

(x1,x2)
); the generic space represents the common properties

of the two input transitions, as described in Section 2.2, and by extension it defines the set of all
possible blended transitions that fulfill its requirements, generated by Algorithm 1 and later ranked
as per Section 2.3. It should be reminded that in the proposed transition blending methodology,
only the properties related to pitch classes are considered in the generic space, namely the fromPCs
and toPCs properties.

A generic space  
1

is said to subsume a generic space  
2

(or  
2

is subsumed by  
1

), denoted as
 

1

v  

2

, if  
1

is more general than or equal to  
2

(or equivalently  
2

is more specific than or equal
to  

1

) in the sense that  
1

defines a larger set of possible generated blended transitions. Using the
above notation, G

(x1,x2)
v G

(y1,y2)
is equivalent to B

(x1,x2)
◆ B

(y1,y2)
, which means that the pair of

transitions (y
1

, y

2

) gives rise to a smaller set of blended transitions B
(y1,y2)

due to a more constrained
generic space (i.e. the generic space G

(y1,y2)
is more specific than G

(x1,x2)
).

The subsumption relation between generic spaces defines a partial order relation, that is, in
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the set of all possible generic spaces the subsumption relation satisfies, for all  
i

, 

j

, the following
properties:

1. reflexivity:  
i

v  

i

;

2. antisymmetry: if  
i

v  

j

and  
i

w  

j

then  
i

=  

j

; and

3. transitivity: if  
i

v  

j

and  
j

v  

k

then  
i

v  

k

.

Therefore, in every finite subset of generic spaces there is at least one maximal element5  
M

, for
which no other generic space  

i

is more specific than  

M

. In other words, in any set of pair of
transitions there are always (one or more) pairs that define maximal (i.e. most specific) generic
spaces, while other non-maximal pairs are characterized by weaker conditions (i.e. with less strict
generic spaces) that produce larger blending sets containing those produced by the most specific
generic spaces.

The subsumption relation is then utilised to discard blended quadruples (i.e. pairs of transitions
formed by 4 chords) that are ‘overshadowed’ by others that incorporate a larger number of compa-
rable common properties between the inputs. Formally, by considering the set G = {G

i

} of generic
spaces from all blending quadruples that are generated for two initial idioms, the blends that are
retained are the ones that correspond to maximal generic spaces in G. Since each blended transition
also has a rating value, this set can be further reduced by applying a threshold on rating value or on
the number of desired outputs. In the next sections a maximum of 100 blends with highest rating
values will be retained for further processing.

Let us consider an example where idiom I

1

is a simple C major space that includes only three
transitions: C ! F, F ! G7 and G7 ! C; let I

2

be a simple F major space with only three
transitions: F ! B[, B[ ! C7 and C7 ! F. Table 3 shows all transition input pairs between
these two spaces and their respective generic space properties. Since these three-chord C major
and F major spaces have many pitch classes and many chords in common, their extended transition
matrix include blended transitions that reflect their strong relation. According to this approach,
meaningful blends are considered to be the ones that belong to blending quadruples with maximal
(i.e. most specific) generic spaces. In the example under discussion, the maximal generic spaces are
the following:

1. G
1

, G
2

, G
6

, G
9

v G
3

;

2. G
1

, G
7

v G
4

; and

3. G
5

, G
7

v G
8

.

Therefore, only the blends corresponding to the blending quadruples with generic spaces G
3

, G
4

and
G
8

are considered; the others are discarded6.
In the case where two blending quadruples include identical generic spaces with di↵erent input

transitions, the blends of both quadruples are retained. Even though, according to the algorithm
in Figure 3, the blends in quadruples with identical generic spaces are the same, they are evaluated
di↵erently, since the input transitions that produced them are di↵erent. Therefore, these quadruples
include blends that are ranked di↵erently, leading to di↵erent selections of topmost blends in the
subsequent steps.

3.4 Assigning probabilities and embedding transition blends in the ex-
tended idiom matrix

For each quadruple that passes the generic space subsumption filtering stage, the topmost 100 blends
are kept while the rest are discarded. For each of these blends, a probability value is calculated,
that will be used in subsequent selection steps described later. The proposed approach for assigning

5 M is maximal with respect to { 1, 2, . . . , n} when there is no element  i with  M v  i, or equivalently,

when for each i it either holds that  i v  M or ( M 6v  i and  i 6v  M ).

6
For computational e�ciency, in the implemented system the quadruple rejection/acceptance step precedes the

blending step – therefore the blends of the discarded quadruples are actually never computed.
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Table 3: Input spaces and their generic spaces in combining C major with F major three-chord
spaces.

Inputs Generic space elements
Index Input 1 Input 2 fromPCs toPCs
1: [0, 0 4 7] ! [5, 0 4 7] [5, 0 4 7] ! [10, 0 4 7] {0} {5}
2: [0, 0 4 7] ! [5, 0 4 7] [10, 0 4 7] ! [0, 0 4 7 10] ANY {0}
3: [0, 0 4 7] ! [5, 0 4 7] [0, 0 4 7 10] ! [5, 0 4 7] {0,4,7} {5,0,9}
4: [5, 0 4 7] ! [7, 0 4 7 10] [5, 0 4 7] ! [10, 0 4 7] {5,9,0} {2,5}
5: [5, 0 4 7] ! [7, 0 4 7 10] [10, 0 4 7] ! [0, 0 4 7 10] {5} {7}
6: [5, 0 4 7] ! [7, 0 4 7 10] [0, 0 4 7 10] ! [5, 0 4 7] {0} {5}
7: [7, 0 4 7 10] ! [0, 0 4 7] [5, 0 4 7] ! [10, 0 4 7] {5} ANY
8: [7, 0 4 7 10] ! [0, 0 4 7] [10, 0 4 7] ! [0, 0 4 7 10] {2,5} {0,4,7}
9: [7, 0 4 7 10] ! [0, 0 4 7] [0, 0 4 7 10] ! [5, 0 4 7] {7} {0}

probability values to the blends of a quadruple is intended to reflect (a) the probability values of
the input transitions that produced these blends and (b) the ranking placement of each blend in
the blending quadruple. Specifically, if the probability value (in the initial transition matrix of the
idiom) of the inputs that produced a blend is p

I1 and p

I2 , then the probability of a blend, p
b

, is
computed as:

p

b

=
p

I1 + p

I2

2

rate(b)

rate
max

,

where rate(b) is the rating value of the blend and rate
max

is the maximum rating value in the
examined blending quadruple. In other words, the probability assigned to a blend is the mean
probability of the inputs that produced it, scaled by a factor that indicates the rating of this blend
in comparison to the best-rated blend that these inputs have produced – the better the rate of the
blend, the closer its probability value to the mean value of probabilities of the inputs.

Among the blending quadruples that are preserved, a number of their best blends is stored for
further investigation, creating a pool of best blends. Based on trials, a large number of the best
blends (i.e. 100) from each blending quadruple should be inserted in the pool of best blends, so that
several scenarios for connecting the initial spaces can be created, since a greater number of blends
in the pool of best blends introduces a larger number of possible commuting paths in A

i�j

or in
B

i�X�j

.
Blended transitions in the pool of best blends are, then, categorised according to whether they

belong to category A
i�j

, B
i�X

or B
X�i

. Blends that belong to category A
i�j

can be directly embedded
in the extended transition matrix. However, blends that belong to either B

i�X

or B
X�i

may potentially
constitute terminal or beginning transitions respectively, as discussed in Section 3.1. Therefore,
blends in B

i�X

or B
X�i

are matched in B

i�X�j

chains/pairs and considered as integrated elements.
The rating value assigned to every chain of blended transitions is the mean of ratings of each blend
in the chain.

For allowing di↵erent intensities of blending in the harmonisations that the system produces, there
are also two parameters, namely rating-based selection (RBS) and probability intensity multiplier
(PIM), that define the number of blends to be embedded in the extended matrix and the relative
value of probabilities of transitions outside the initial harmonic spaces (I

1

and I

2

). RBS is in the
range [0, 1] and defines the percentage of top blends or transition chains that are imported in the
extended matrix. For instance a RBS value of 0.5 imports 50% of the most highly rated blends, while
a value of 0 generates an extended matrix that includes only the initial spaces and the pre-blending
common/similar connections (see Section 3.2). PIM is in the [0, 1] range and is used as a multiplier
of all probabilities outside the I

1

and I

2

according to the following formula:

p

new

= (0.1 + 20PIM) (p
(1�PIM

2 )

old

),

where p
new

is a new value (potentially greater than 1) assigned in the transitions matrix in the place
of p

old

, which is its probability value assigned by either the pre-blending or the blending stage. After
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all new values have been assigned, the transition matrix is normalised so that every row adds to
1. A PIM value of 0 reduces the probabilities of transitions in A

i�j

, B
i�X

and B

X�i

, resulting in
harmonisations that most probably use transitions (and, subsequently, chords) exclusively from one
initial harmonic space, making connections between initial spaces less possible. Conversely, a PIM
value of 1 encourages harmonisations that transit from I

i

to I

j

and vice versa by using existing
chords (transitions in A

i�j

) or even new ones (transitions in B

i�X

and B

X�i

), producing results that
incorporate mixed harmonies of the initial spaces, as well as new chords.

4 Examples of harmonisations using compound harmonic id-
ioms

Concept invention through blending harmonies is a new, currently vague and unexplored field. There-
fore, when blending harmonic styles there is no concrete expectation about the result. There are,
however, specific problems in harmony that need to be resolved creatively, in which tools like concept
invention can be used to propose many alternative and diverse solutions within a unified framework.
In this study we focus on customised harmonic settings/examples and illustrate aspects of harmony
that can be resolved creatively by using the proposed methodology, while an extended empirical
evaluation is presented in Zacharakis et al. (2017). In these examples, we investigate whether the
products of the system7 are within an acceptable range of musical solutions, taking into account the
aesthetic contexts of the examples. To the best of our knowledge, there is no methodology for resolv-
ing creatively harmonic ‘problems’ similar to the ones examined in this paper. The Bach chorales
are used in many examples since this harmonic style is well understood and gives a clear picture
of major and minor tonalities along with a relatively stable tonal centre; it is ideal for examining
examples that blend major and minor modes (Section 4.1), key transpositions (Section 4.2) and the
introductions of chromaticism (Section 4.3).

Evaluating creative systems is a di�cult task since there is no well-established and commonly
accepted definition of creativity (e.g. Boden (2004); Wiggins (2006); for a comprehensive discussion
see Jordanous (2013), chapter 3). The methods proposed so far either focus on the creative processes
per se Colton et al. (2011), or on the products of creative processes (Ritchie, 2007; Jordanous, 2013).
However, ongoing research (Zacharakis et al., 2017) indicates that the intended purposes of concept
blending are successfully accomplished in terms of human perception. For instance, blending major
and minor modes (Section 4.1) produces a new idiom that is perceived either in between the original
modes, or as novel, intrinsically related, space. Similarly, when blending Bach chorale idiom with
standard jazz (Section 4.4), the harmonisations produced by the compound harmonic space are
perceived either as in between or as novel space. Furthermore, blending transposed key versions of
the same idiom introduces novel creative characteristics to the resulting blended idiom; in the case
of Bach chorales (Section 4.3), pilot perceptual results with music university students indicate that
the tonal character is altered by the introduction of chromatic characteristics into a predominantly
diatonic idiom.

The creative potential of the system is tested on di↵erent harmonisation tasks that include
harmonisations of melodies using either blends of diverse learned idioms or blends of the same
learned idiom with di↵erent user-selected parameters. Five short melodies were chosen or created,
two original, two taken from a folk music repertoire and one classical music excerpt:

1. Original short melody: This short 8-bar melody deliberately avoids the 3rd and 6th melodic
degrees of the C scale, making it ‘neutral’ regarding its classification as major or minor. It
consists of two 4-bar phrases (half cadence - full cadence) that form an 8-bar period.

2. Original short melody: This short 10-bar melody includes tonal shifts between major tonalities
one tritone apart (the tritone denotes six steps in the circle of perfect 5ths, which is the largest
possible distance between two keys in tonal space). It consists of two phrases: the first 4 bars

7
For all the examples that follow, if not otherwise explicitly stated, the PIM and RBS values in the presented

harmonisations are 0.7 and 0.9 respectively.
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define C major tonality and the next 6 bars include a cadence into F] major and a return to
C major.

3. Scottish folk song: ‘Ye Banks and Braes’. This melody is in the G major pentatonic mode. It
is a 16-bar rounded-binary form (aa’ba’), comprising four 4-bar phrases, each concluding with
half or full cadence.

4. L. v. Beethoven: The melodic theme (‘Ode to Joy’ ) from the final movement of the 9th
Symphony, transposed into C major. The melody comprises two 4-bar phrases (half cadence -
full cadence) that form an 8-bar period.

5. Greek folk song: ‘Apopse ta mesanychta’ (Tonight at midnight). The melody is in D Aeolian
mode and comprises two 4-bar phrases, with the first one ending on the 4th melodic degree
and the second one on the 1st degree (modal centre).

Seven di↵erent musical idioms and some of their blends were used for the harmonisation of the
above five melodies, presented in the following list:

• BC major & BC minor: The homophonic tonal harmonic idiom of J. S. Bach chorales.

• JA major & JA minor: Mainstream jazz harmony, as encountered in selected jazz standards
from the Real Book.

• CN: Greek composer Yannis Constantinidis’s 20th-century modal style, as encountered in his
‘44 Greek miniatures for piano’ (Tsougras, 2010).

• HM: Paul Hindemith’s 20th-century neo-tonal harmonic idiom, as expressed in his ‘Six Chan-
sons’ for a capella choir.

• WT: Whole-Tone post-tonal harmony, as encountered in selected excerpts from early 20th-
century works.

A selection of sixteen harmonisations, taken from a pool of harmonisation attempts with a mixed
rate of ‘success’, are presented in this section8. An emphasis was given on the use of tonal idioms
(mainly BC major and minor) in the present paper, although the dataset includes numerous other
diverse harmonic idioms. This occurs because major-minor tonality is probably one of the most
studied harmonic idioms, so it functions as a reference point for testing and demonstrating blend-
ing procedures. The system produced raw MIDI files that were further processed by humans using
music notation software (Finale 2014). The process involved two stages: 1) correction of music
notation issues and enharmonic spellings of pitches in the MIDI file, and 2) manual editing of the
produced harmonisation regarding separation of the bass line in a di↵erent layer, preservation of a
constant number of active voices in the musical texture through the use of octave doublings, and
reworking of the inner voices for smoother voice-leading where needed (although a strict applica-
tion of common-practice voice-leading rules was not pursued). Also, manual analysis of harmonic
progressions through the use of Latin roman numeral notation of tonal harmonisation was made in
certain cases. The pitch content of the chords was always kept intact, and the bass line was manually
altered in very few cases (indicated by * in the scores) in order to avoid stylistic inconsistencies or
achieve more e↵ective voice-leading.

4.1 Blending major and minor tonalities

The first example concerns the problem of harmonising a melody with a blended major and minor
harmonic style. The short melody is harmonised four times (see Figure 7). It should be noted
that apparent parallelisms between the input melody (upper sta↵) and some voices of the produced
harmonisation (lower sta↵) are not considered errors here, because they merely reflect the prop-
erty that melody notes (input) are always included in the harmony (output), regardless of voice

8
Audio files of the presented examples can be found in following address: https://www.dropbox.com/s/

3enwfxe2j9t8ve1/JNMRaudioExamples.zip?dl=0 (temporary address for blind review).
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assignment. Further separation of these harmonic ‘blocks’ into coherent voices following specific
voice-leading practices might be handled in a post-processing stage, but is not considered here. The
first harmonisation is based on the BC major dataset and uses mainly the I and V harmonic degrees,
with sparse use of subdominant-function chords (IV and ii). The second harmonisation uses the BC
minor dataset and produces similar results in C minor (use of i, V and iv) with the exception of the
final tonic chord, which is major, as encountered in most of the Bach chorales. The first blended
harmonisation (low blending parameters) includes a mix of the chords encountered in the two un-
blended versions (I, V, iv), avoiding the minor tonic (i) and major subdonimant (IV) chords and
introducing other chords not used previously ([VI, v, iio). The second blended harmonisation (high
blending parameters) uses a di↵erent mix of chords from the two parallel tonalities, that includes
the minor tonic (i) and the submediant (vi). All four harmonisations conclude with a major tonic,
as expected.
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(a) Melody harmonised with the BC major idiom.
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(b) Melody harmonised with the BC minor idiom.
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(c) Melody harmonised with the blended major-minor BC space, using low PIM and RBS
values.
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(d) Melody harmonised with the blended major-minor BC space, using high PIM and RBS
values.

Figure 7: A melody harmonised with idioms learned from a dataset of (a) major (BC major), (b)
minor (BC minor) Bach chorales and their harmonic blend with (c) low PIM and RBS values (0.05
and 0.1 respectively) and (d) high PIM and RBS values (0.7 and 0.9 respectively)
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4.2 Blending di↵erent major keys for modulation purposes

Compound harmonic spaces created through transition blending can also be used for key transpo-
sitions, by combining the spaces of the incorporated keys. The short melody is harmonised three
times (see Figure 8), all with the use of the BC major (Bach Chorales major) harmonic idiom. The
first harmonisation does not incorporate any blending of keys, so the harmoniser attempts to assign
chords without modulating away from C major. The result reveals that the melodic shift towards
F] major has been ignored, however the system has managed to assign chords to the melody’s chro-
matic pitches, albeit with functionally awkward or ambiguous results (G] has been harmonised with
E major chord, F] with F] diminished chord, G] with G] diminished chord and A] enharmonically
with B[ major chord, see Figure 8 (a) for an analytical attempt with Roman numerals). The second
harmonisation uses the blended C-F] major space with low PIM and RBS values, so the system is
now able to identify the modulating segment of the melody, and manages to suggest functionally
correct chords for both the shift towards F] and the return to C major, as the harmonic analysis
reveals (see Figure 8 (b)). All the chords are triads, except for the dominant, which appears with
its 7th in two cases. The third harmonisation uses the blended space again, but with high PIN and
RBS values. The result is quite original, as apart from the modulation, which has been identified
and harmonised correctly, the system introduces chromaticism within each tonal region, with unex-
pected assigned chords in several cases (e.g. the B minor 7th in b. 1, the D half-diminished in b.
6, the G minor 7th and C major 7th in b. 9). This harmonisation displays elements of unexpected
originality to an extend that an explicit functional harmonic analysis would be unsuitable, so it has
been avoided.
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(a) Melody harmonised with the C major BC space.
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(b) Melody harmonised with the blended C and F] BC major spaces, using low PIM and RBS
values.
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Figure 8: A melody harmonised with the learned BC major idiom with (a) C major tonality and
blended versions of BC major in the tonality of C and its transposition in F] major with (b) low
PIM and RBS values (0.05 and 0.1 respectively) and (c) high PIM and RBS values (0.7 and 0.9
respectively).
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4.3 Creative blending of di↵erent major keys

Combining harmonic spaces in di↵erent keys can also be used creatively, e.g. for introducing chro-
matic harmonic characteristics when harmonising even simple tonal melodies, without necessarily
focussing on the problem of key transposition. ‘Ye Banks and Braes’ is harmonised four times (see
Figure 9), all with the use of the BC major harmonic idiom. The first harmonisation does not im-
plement blending and the space used is the G major tonality. The obtained result is a functionally
correct and original tonal harmonisation, featuring half and perfect cadences in b. 4, 8, 16, main use
of the three basic harmonic degrees (I, IV, V) and chromatic elements of tonicisations (V7/IV, V7/ii)
(see analysis in Figure 9 (a)). The other three harmonisations use the blended spaces G major-B[
major (3 semitones), G major-B major (4 semitones) and G major-C] major (6 semitones) respec-
tively and feature forced chromaticism applied on the pentatonic/diatonic space defined/implied by
the melody. Harmonic analysis has not been included for these three examples, although it was
obtainable in most cases, because of instances where the harmony deviated from functional pro-
gressions towards free chromaticism. Some interesting cases of chords are worth presenting though.
For the G major-B[ major space: the G half-diminished chord in b. 5 and the linear chromatic
progression in b. 13. For the G major-B major space: the augmented 6th chord in b. 5 and the
chromatic linear progressions in b. 6-7 and b. 11. For the G major-C] major space: the unexpected
chromatic beginning in F] minor in b. 1-2 and the linear chromatic progression in b. 6 and b. 14.
Since the melody is purely pentatonic and does not even imply chromaticism, it is interesting that
the blended tonal spaces can produce such a diverse range of forced harmonic chromaticism, with
elements of tonal mixture, chords of ambiguous functionality, and chromatic contrapuntal chords.
What is equally interesting is that the produced chords cannot always be explicitly identified as
belonging to one of the blended spaces.

4.4 Creative blending of Bach chorale with jazz standard styles

Blending can be used creatively for combining two idioms from di↵erent eras. The ‘Ode to joy ’
melody is harmonised three times (see Figure 10). The first harmonisation uses the BC major idiom
(no blending) and consists of the alternation of only two triads: the tonic and the dominant in root
position and without 7th extensions (Figure 10 (a)). The second uses the JA idiom (no blending also)
and conforms to the mainstream jazz harmony rules: all chords include major or minor 7ths, the
main harmonic pattern is the ii-V-I turnaround and there is a tonicisation of the IV at the beginning
of the second phrase instead of a half cadence (Figure 10 (b)). The third harmonisation is based
on the harmonic idiom produced by the blending of the previous two. As shown in Figure 10 (c),
there is a mix of simple and extended triads and a combination of tonicisations and progressions in
the circle of 5ths. Interestingly, now the tonicisation of IV occurs in b. 2-4 through a turnaround,
a tonicisation of ii is prepared but avoided in b. 5, and a chromatic tonicisation of vi is observed in
b. 7. These elements were not part of the unblended versions and seem implicitly only related to
either idiom, although there is a sense that the jazz idiom dominates the system’s choices.

4.5 Creative blending of diverse harmonic spaces

Even more ‘creative’ harmonisations are produced by the system when harmonies of diverse and
idiosyncratic idioms are blended. The Greek folk melody is harmonised two times (see Figure 11),
using blends of diverse, mainly post-tonal, harmonic idioms. The first harmonisation uses a blend
of Yannis Constantinidis’s harmonic style (20th-century chromatic modal harmony, see Tsougras
(2010)) and Whole-Tone harmony. It seems that Constantinidis’s harmony dominates, with its
parallel voice-leading (b. 1, 3), free use of minor or major 7th chords, and conclusion on an open-5th
sonority (b. 8), however a characteristic influence of the WT space can be observed in b. 5 (WT
chord C-D-E-G]). The second harmonisation is based on a blending between minor jazz harmony
(extended tonal idiom) and the neo-tonal harmonic idiom of Hindemith (free chromatic harmony
with pitch centres). The chords suggested by the system are mainly extended triads with loose
harmonic functions, but there are some notable exceptions, either as free mildly dissonant chords
(mostly free verticalisations of diatonic sets), e.g. the A-D-G-B sonority in b. 2 and 4, and the quartal
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(a) Traditional Scottish melody harmonised with the G major key of the BC space.
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(b) Traditional Scottish melody harmonised with the blended keys of G and B[ major.
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(c) Traditional Scottish melody harmonised with the blended keys of G and B major.
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(d) Traditional Scottish melody harmonised with the blended keys of G and C] major.

Figure 9: A traditional Scottish melody harmonised with the learned BC major space in (a) the G
major key and with blended versions of BC major in the keys of (c) G major and B[ major, (b) G
major and B major and (c) G major and C] major.
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(b) The melody of Ode to joy harmonised with the JA major space.
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(c) The melody of Ode to joy harmonised with the the blended Bach chorale and jazz
standards styles.

Figure 10: Beethoven’s Ode to Joy theme harmonised in the style of (a) BC, (b) jazz standards and
(c) their combined harmonic space.

chords D-E-A-B (b. 5) and C-F-G-B[ (b. 6) or as the highly dissonant sonority B-E[-G-B[ in b. 8.
However, although certain elements of the harmonisations may be classified as stemming from one
of the blended idioms, the overall produced idioms feel original and coherent.
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(a) A traditional Greek melody harmonised in the harmonic style of Constantinides blended
with the whole-tone harmony.
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(b) A traditional Greek melody harmonised in the harmonic style of jazz standards blended
with the Hindemith’s harmonic idiom.

Figure 11: A traditional Greek melody harmonised with the blended harmonic styles of (a) Con-
standinidis with whole-tone and (b) jazz standards with Hindemith.
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5 Conclusions

Creative melodic harmonisation through the combination of harmonic spaces is examined in this
paper; conceptual blending is integrated into a Markov chord transition methodology that is part
of an idiom-independent melodic harmonisation assistant that learns from harmonic data. The
algorithmic framework for conceptual blending developed in the context of the COINVENT (Concept
Invention Theory) project is utilised to blend transitions of chord (pairs of successive chords), referred
to as the ‘input transitions’, between di↵erent harmonic idioms, producing new blended transitions.
Transition blending is based on combining a priori defined transition features, while the best blends
are identified through a process that ranks all resulting blends according to the salience of their
incorporated features; the salience of features is automatically induced by statistical assessment on
the learned input idioms. The best blends of the most usual transitions in two initial harmonic
idioms are then used to construct a new ‘compound’ harmonic space, that includes the chords and
the allowed transitions of the initial idioms, along with new chords and new transitions.

The creative harmonic capabilities of the system have been examined under many blending
melodic harmonisation settings, revealing a number of di↵erent previously unexplored cases (in the
context of musical artificial intelligence) where this methodology can be applicable – from robust
problem solving to purely experimental harmonic exploration. The examples presented in this paper
discuss some interesting application of the proposed methodology for blending: (i) major and minor
modes; (ii) di↵erent major keys for modulations; (iii) di↵erent major keys for increasing chromati-
cism; (iv) di↵erent harmonic styles, e.g. Bach chorales and jazz standards; and (v) diverse harmonic
spaces for exploring novel harmonic ideas. Therefore, the presented system could on the one hand be
used for providing conventional harmonic solutions, constituting a useful tool, e.g., for music educa-
tion. On the other hand, it can be used for generating unconventional harmonic material, providing
composers with a tool that can produce many creative alternatives in harmonising a melody. Addi-
tionally, this system could be used by non-experts in music for experimenting in di↵erent blending
combinations, or it could be also integrated in other software, e.g. games, for producing novel, unique
and diverse musical backgrounds. The new possibilities that the proposed system o↵ers highlight
the overall new capabilities that are introduced in computational creativity by conceptual blending,
as algorithmically approached in the context of the COINVENT project.

Thorough evaluation of how the products of this system are perceived is an ongoing research, but
pilot results (Zacharakis et al., 2017) indicate that the intended purposes of blending are met, with
the system creating compound idioms that are perceived either as in between the blended ones, or as
something completely new, yet related to the original ones. An interesting future research direction
is towards increasing the self-awareness of the system, by developing methods that automatically cat-
egorise the products of the system, either by performing style classification or qualitative evaluation.
It would be also interesting to examine how current state-of-the-art algorithms for style classification
would classify blended harmonisations (as belonging to one of the input spaces, in-between them, or
as belonging to a whole new style). Self-awareness on this level would allow the system to re-adjust
the blending parameters, i.e. PIM and RBS, so that more meaningful blended harmonisations are
produced without user intervention.
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Abstract 
 

        The cognitive theory of conceptual blending may be employed to understand the way 
music becomes meaningful, but, at the same time it may form a basis for musical creativity per 
se. This work constitutes a case study whereby conceptual blending is used as a creative tool for 
inventing musical cadences. Specifically, the Perfect Authentic and the renaissance Phrygian 
cadences are used as input spaces to a cadence blending system that produces various cadential 
blends based on musicological and blending optimality criteria. A selection of ‘novel’ cadences 
is subject to empirical evaluation in order to gain a better understanding of perceptual 
relationships between cadences. Pairwise dissimilarity ratings between cadences are transformed 
into a perceptual space and a verbal attribute magnitude estimation method on six descriptive 
axes (preference, originality, tension, closure, expectancy and fit) is used to associate the 
dimensions of this space with descriptive qualities (closure and tension emerged as most 
prominent qualities). The novel cadences generated by the computational blending system are 
mainly perceived as one-sided blends (i.e. blends where one input space is dominant), since 
categorical perception seems to play a significant role (especially in relation to the upward 
leading note movement). Insights into perceptual aspects of conceptual bending are presented 
and ramifications for developing sophisticated creative systems are discussed.    
 
Keywords: conceptual blending, musical cadence, computational creativity, empirical evaluation, 
harmony perception 
 

Introduction 
 

New concepts may be created either by ‘exploring’ previously unexplored regions of a 
given conceptual space (exploratory creativity) or by transforming established concepts in novel 
ways  (transformational creativity) or by making associations between different conceptual 
spaces that share some structural relations (combinational creativity) – Boden maintains that the 
latter, i.e., combinational creativity, has proved to be the hardest to describe formally (Boden, 
2009). This paper explores aspects of combinational creativity in the domain of music, and more 
specifically, the harmonic structure of music.  

Conceptual blending is a cognitive theory developed by Fauconnier and Turner (2003) 
whereby elements from diverse, but structurally-related, mental spaces are ‘blended’, giving rise 
to new conceptual spaces that often possess new powerful interpretative properties allowing 
better understanding of known concepts or the emergence of novel concepts altogether. 
Conceptual blending theory is useful for explaining the cognitive process that humans undergo 
when engaged with creative acts, and is akin to Boden’s notion of combinational creativity.  A 
computational framework that extends Goguen's formal approach (Goguen 2006) has been 
developed in the context of the COINVENT (Concept Invention Theory) project (Schorlemmer 
et al., 2014). According to this framework, two input spaces are described as sets of weighted 
properties and relations, and after their generic space is computed, the amalgamation process 
(Eppe et al., 2015) leads to the creation of consistent blends that are optimal according to some 
criteria relating to the blending process and to the knowledge domain of the modeled spaces (the 
amalgamation process potentially includes multiple ‘generalization paths’, leading to many 
different blends). 
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With regard to music, conceptual blending has been predominantly theorized as the cross-
domain integration of music structural and extra-musical domains such as text or image (e.g. 
Zbikowski, 2002 & 2008; Cook, 2001; Moore, 2012). Additionally, it has been studied in the 
context of ‘musicogenic’ meaning (Koelsch, 2013), which refers to physical, embodied, 
emotional and personality-related responses to music; such studies include work on music and 
motion by Johnson and Larson (2003) or empirical studies on pitch perception and image 
schemata in children by Antovic (2009, 2011). Finally, there have been studies that touch upon 
issues of structural mappings/blending between different spaces within the music structure 
domain per se (such as mappings between incongruous tonalities (Ox, 2014) and different tonal 
pitch space theories (Spitzer, 2003)). Almost all of the above studies examine conceptual 
blending in retrospect, analyzing and explaining existing metaphors/blends rather than taking a 
bottom-up, creative perspective of generating novel blends. A more extended discussion and 
critical examination of conceptual blending processes in music is presented by Stefanou and 
Cambouropoulos (2015). 

In this paper it is maintained that the creative potential of conceptual blending (i.e., 
invention of new blends) in the domain of music is, probably, most powerfully manifested in 
processes that enable structural blending. To substantiate this potential, a proof-of-concept 
autonomous computational creative system that performs melodic harmonization is being 
developed (Kaliakatsos-Papakostas et al., 2016). A core component of this system is a transition 
blending mechanism that has been applied, among other things, to well defined harmonic 
concepts such as harmonic cadences (Eppe et al., 2015; Zacharakis et al., 2015b). The present 
work focuses on conceptual blending of musical cadences (with well-established 
functional/voice-leading characteristics) and reports in detail algorithmic and empirical findings 
that relate to its application. The particular focus on cadences comes from the fact that they 
constitute a most salient harmonic concept and are of major importance in tonal music. The 
cadence’s significance lies not only in its form-creating function, i.e. the delineation of 
phrase/group boundaries that give rise to hierarchical grouping structure, but, also, in that its 
harmonic content contributes, to a considerable extent, to the special character of a harmonic 
idiom in which it functions as an indispensable closure element (e.g. Bigand & Parncutt, 1999; 
Huron, 2006, Chapter 9; Sears, 2015; Caplin, 2004; Aldwell & Schachter, 1999). The insight 
obtained by this proof-of-concept approach will be exploited to develop a system capable of 
performing harmonic blending between different musical idioms in a melodic harmonization 
task. 

The blending methodology is applied to two distinct musical cadences: the tonal Perfect 
Authentic Cadence (PAC), as encountered in 18th and 19th century tonal music and the modal 
Phrygian cadence, as encountered in 16th century (Renaissance) modal music (Figure 1). The 
perfect authentic cadence is described as a functional dominant-to-tonic chord progression 
(Sears, 2015; Aldwell & Schachter, 2003; Caplin, 1998) constituted from a V(7) chord in root 
position –prepared by a chord with pre-dominant function– leading to a I chord in root position 
and with the tonic in the upper voice (^1). The three- or four-voice Phrygian cadence is described 
as a contrapuntal progression (Barnett, 2002; Schubert, 1999; Collins Judd, 2002) based on a 
two-voice linear movement and constituted from a ♭ vii6 chord leading to a I or i or Iomit3 chord 
with the tonic in the upper voice (^1) (see Figure 1). 

For the purposes of blending, the cadences are modeled as rich concepts that embody 
several properties. Thus, the above two cadences are represented not only as chord types but, 
additionally, as collections of notes and note transitions with weights attached to each note or 
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note transition based on functional/voice-leading properties, such as semitonal resolution of the 
leading note, type of harmonic progression expressed as distance between chordal roots, the 
existence of the tritone in the penultimate chord of the perfect cadence (lines in Figure 1 indicate 
important notes and note transitions). For instance, in the perfect cadence, the upward leading 
note is probably the most salient component of the penultimate chord, as it appears in all the 
main dominant chord types (V, V7 and viio), the root and the seventh of the dominant chord are 
salient but hypothetically less so than the leading note, and the fifth of the dominant is the least 
important component, as it can be omitted in most cases. Accordingly, in the Phrygian cadence, 
the most characteristic component of the penultimate chord is the downward leading note 
(downward semitone movement: ^2 to ^1), the root is salient but hypothetically less so (upward 
whole tone movement: ^7 to ^8) and the fifth is the least salient element of the chord. In short, 
the most prominent characteristics of the two cadences are assumed to be the upward leading 
note of the perfect and the downward leading note of the Phrygian cadence. The two input spaces 
(perfect and Phrygian) are represented as being equally important in the blending process; 
however, we expect the perfect cadence to be more prominent as a cadential schema in the mind 
of contemporary listeners, due to their comparatively longer exposure to classical tonal music 
rather than to Renaissance modal music (this is examined in the perceptual experiments below).  

(Figure 1) 
 
Applying the proposed conceptual blending system (see next section) to the perfect and 

Phrygian input spaces, the tritone substitution progression (see Figure 1) emerges; this cadence is 
highly ranked by the proposed blending process as it incorporates most of the salient features of 
both cadences (it includes both the most salient upward and downward leading notes). It is worth 
noting that the computational system ‘invents’ this cadential type, which emerged in jazz, 
centuries after the main tonal/modal input cadences. On the other hand, a cadence that does not 
include any of these two properties, such as the backdoor progression (also used in jazz), may 
also appear as a blend (depending on how blends are rated/selected), but much lower in the 
ranking. Many other blends are possible, seven of which are further examined empirically.  

Given that our computational system is capable of inventing novel cadential schemata by 
blending basic cadences, we are particularly interested in the following questions: Are the novel 
cadences generated by the system perceived as being one-sided blends (i.e., closer to one of the 
input cadences) or are they balanced double-sided blends (in between the perfect and Phrygian 
cadences)? Are the generated highly-ranked new cadences perceived by listeners as being ‘good’ 
blends between the perfect and Phrygian cadences (in case of double-sided blends) or as being 
interesting new versions of the perfect or Phrygian cadences (in case of single-sided blends)? 
How do listeners perceive the new cadences in terms of originality, expectancy, sense of closure 
and tension? Which cadences do they prefer? The current study attempts to address these issues 
through a series of subjective experiments. It gives no definitive answers, but hopefully the 
descriptions, experiments and discussions below will shed some light into perceptual aspects of 
musical creativity, opening the way for more extensive and thorough studies in the future. 

Evaluating creativity - either human or computational - is a non-trivial task, especially 
when the assessment of aesthetic quality is also involved.  The matter is further complicated by 
the fact that the mere definition of creativity is problematic and not commonly accepted as many 
authors approach it from different perspectives (e.g. Boden, 2004; Wiggins, 2006; for a 
comprehensive discussion see Jordanous, 2013, chapter 3). As a result, creativity is often broken 
down into partial constituent dimensions (e.g. novelty, value, surprise, problem solving ability, 
originality, divergence, etc.) (e.g. Maher et al., 2013; Jordanous, 2013). In terms of assessing a 
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creative system, the two usual approaches are either to directly evaluate the product of the 
system or to evaluate the production mechanism (Pearce and Wiggins, 2001). The former can be 
also viewed as a summative evaluation (Jordanous, 2013, chapter 1) whereby the overall 
creativity of a system is sought for. The latter is a formative evaluation process whose objective 
is to provide evaluation feedback concerning certain attributes of the creative system during the 
development stage and, thus, direct possible improvements. The present work adopts essentially 
the summative approach (evaluation of the end products of the system) but, also, takes into 
account the formative characteristics of the creative system with a view to increasing its creative 
potential. 

The empirical evaluation was performed by means of two subjective tests: a main non-
verbal dissimilarity rating listening test (following a preliminary study reported in Zacharakis et 
al. 2015b) and a complementary verbal subjective test. In the main experiment we opted for a 
(non-verbal) pairwise dissimilarity rating listening test between nine cadences (the two originals 
and seven blends). We subsequently applied Multidimensional Scaling (MDS) analysis to the 
acquired data and used the produced spatial configuration as an indirect way to measure the 
relation of blends to the input cadences. One intuitive assumption is that an ‘ideal’ double-sided 
blend should be ‘equally’ similar to each of the input cadences (it should resemble both input 
concepts) and therefore should appear in between them (ideally near the middle), while weaker 
one-sided blends should be positioned closer to either of the originals (off the middle). 

In a complementary experiment, a descriptive type of subjective evaluation (Verbal 
Attribute Magnitude Estimation) was employed to assess qualities of the produced blends. In this 
experiment, the nine cadences were presented to listeners in two different harmonic contexts, 
namely, a tonal minor context and a Phrygian context, resulting in 18 cadential stimuli. Listeners 
were asked to rate each cadence according to preference, degree of tension, closure effect, 
originality, expectedness and fit within the corresponding tonal/modal context. It was 
hypothesized that within a certain context some cadences might be considered more 
original/unexpected than other blends, evaluating thus directly certain aspects of the creative 
blending system.  

In the first section below, a systematic description of the conceptual blending mechanism 
is presented along with a formal representation of cadences. The next two sections present and 
discuss the two empirical experiments. An overall discussion of the findings concludes the paper. 
 

A computational method for conceptual blending: inventing new cadences 
 
The intended goal of a computational system for conceptual blending is to achieve a 

combination of different structural parts of two input conceptual spaces so that the generated 
blended space encompasses new structure and novel properties, preserving at the same time the 
common parts of the inputs. In computational creativity, conceptual blending has been modeled 
by Goguen (2006) as a generative mechanism, according to which input spaces are modeled as 
algebraic specifications and a blend is computed as a categorical colimit. A computational 
framework that extends Goguen's approach has been developed in the context of the COncept 
INVENtion Theory1 (COINVENT) project (Schorlemmer et. al., 2014) based on the notion of 
amalgams (Ontañón and Plaza, 2010; 2012). According to this framework, input spaces are 
described as sets of properties, and an amalgam-based workflow (Confalonieri et al., 2015; Eppe 
et al., 2015) finds the blends by generalizing (or removing) input properties until a generic space 
(i.e., the set of common properties between the input spaces) is found; intermediate generalized 
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versions of the input spaces are ‘merged’ to create blends that are consistent or satisfy certain 
properties related to the knowledge domain (see Figure 2)2. 

In this paper the specific case of blending the perfect and Phrygian cadences discussed 
above is examined. For simplicity, we assume that each cadence consists of two chords, the 
second of which is always a Cm; only the penultimate chord can be altered through blending. 
The properties that are used for describing a cadence concern either its penultimate chord or 
pitch class differences/intervals between the two constituent chords (described later in Table 1). 
When blending two cadences, the amalgam-based algorithm first computes their generic space 
(common properties illustrated as point 1 in Figure 2). After the generic space is found for two 
given input cadences, the amalgam-based process attempts to compute their amalgam, which is 
the unification of their content. If the resulting amalgam is inconsistent, then it iteratively 
generalizes the properties of the inputs (point 2 in Figure 2), until the resulting unification is 
consistent (point 3 in Figure 2). For instance, trying to directly unify the transitions I1: G7 → Cm 
and I2: B♭m → Cm would yield an inconsistent amalgam, since a transition cannot both include 
and not include a leading note to the tonic (which are properties of I1 and I2 respectively). 
Therefore, the amalgam-based process generalizes the property that creates the clash in one of 
the inputs (e.g., the property describing the absence of leading note would be left empty in I2) 
and tries to unify the generalized versions of the inputs again. 

After a number of generalization steps are applied (point 2 in Figure 2), the input spaces 
are generalized ‘enough’ so that the resulting blend is consistent (point 3 in Figure 2). However, 
it may be the case that the blend is not complete, in the sense that this process may have 
generated an over-generalized result by over-generalizing the inputs during the amalgamation 
step. Blends are then completed by blending completion (Fauconnier & Turner, 2003), which is a 
domain-specific process that uses background knowledge to consistently assign specific 
properties to generalized terms. For instance, in the hitherto examined case, blend completion is 
used for completing the A♭ note (which does not exist in any input) as the fifth of the 
penultimate chord when obtaining the tritone substitution cadence (Figure 1). 

(Figure 2) 
 

A formal description of cadences for generative conceptual blending 

A cadence is described by several properties that concern both the penultimate chord and 
musical values that change during its transition to the final chord - these properties are shown in 
Table 1. Among the properties that are included in the description of the penultimate chord are 
its root and type; chord roots are necessary for computing the root difference with the final 
chord. For computing the root and type in a consistent manner for all utilized chords, the General 
Chord Type (GCT) representation (Cambouropoulos et al., 2014) has been employed, which 
allows the re-arrangement of the notes of a harmonic simultaneity such that abstract types of 
chords along with their root may be derived. This encoding is inspired by the standard roman 
numeral chord type labeling, but is more general and flexible since it can be used to describe 
chords in any musical idiom. The GCT algorithm finds the maximal subset of notes in a 
simultaneity that contains only consonant intervals, given a user-defined consonance-dissonance 
classification of intervals that reflects sensory and/or culturally-dependent notions of 
consonance/dissonance. This maximal subset forms the base upon which the chord type is built, 
while the lowest note of the base is the root of the chord; any remaining notes that cannot be a 
part of the maximally consonant subset are included in the extension of the GCT type. For 
example, by considering the unison, third/sixth and perfect fourth/fifth intervals as consonant, 
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the GCT representation of the first degree (I) chord in a major scale is [0, [0 4 7]], where 0 
indicates the root note in relation to the scale (0 is the scale’s first degree) and [0 4 7] is the 
chord’s type (4 indicates a major third and 7 a perfect fifth). Accordingly, a V7 chord is denoted 
by [7, [0 4 7], [10]], where 10 is the extension (minor seventh), which cannot be included in the 
base considering that the tritone and minor seventh intervals are dissonant. As the GCT 
representation is general and can be applied to non-standard tonal systems such as modal 
harmony and, even, atonal harmony, the blending scheme considered for the cadences described 
herein, can be generalized to cadences of practically any musical idiom. 

(Table 1) 
 
Cadence properties 1-3 describe the first (penultimate) chord of the cadence; the first two 

properties (chord root and type) are computed by the GCT algorithm. The pitch classes of the 
chord are described in Property 3. Property 4, which is the difference between the chord roots, is 
an integer between -5 and 6 that indicates the pitch class difference between the roots of the first 
and second chords of the cadence. Property 5 captures the existence of a common pitch class 
between the two chords, while properties 6 and 7 indicate the existence of a semitone movement 
(upward and downward respectively) in any pitch class of the cadence transition. Properties 5, 6 
and 7 actually indicate if there is a 0, 1 or -1 in the Directional Interval Class (DIC) 
(Cambouropoulos, 2012; Cambouropoulos et al., 2013), flagging whether there are small pitch 
class voice leading movements (repeating notes or semitone movements) in the cadence. 
Properties 8 to 10 are used to indicate whether there is a semitone movement (property 10) to the 
tonic from the first to the second chord of the cadence, as well as whether this movement is 
ascending (property 8) or descending (property 9); these properties reflect the importance of the 
leading note (upwards or, even, downwards). 

 
Generating, rejecting and ranking blends 

Table 2 illustrates a blending example, where the tritone substitution cadence is created 
from the perfect and the Phrygian cadences. This blend incorporates properties from both input 
spaces, many of which are common to both spaces, while new properties have also been added 
through completion. Specifically, this blend includes four properties exclusively from input 1 
(fcType [0 4 7 10], fcPCs 11, DIChas1 1 and hasAscSemiToZero 1), three properties exclusively 
from input 2 (fcPCs 1, DIChas0 0, hasDescSemiToZero 1), three common properties (fcPCs 5, 
DIChasN1, hasSemiToZero 1) and three new properties that were not present in any input space 
(fcRoot 1, fcPCs 8, rootDiff 1). Therefore, the properties of the blended space come from either 
input space, or are completed by logical deduction through axioms describing cadences (e.g. the 
pitch class 8 was added as a fcPCs property, functioning as a fifth of the new chord), as indicated 
in the parentheses next to each respective property. 

(Table 2) 
 
By blending through the amalgamation process, the generation of several blends from 

two input spaces is allowed. In a strict sense, a cadence that does not include a common property 
of the two inputs (i.e., that does not satisfy the generic space restrictions), should not be 
considered as their blend. However, employing the generic space in such a strict manner may 
potentially disallow interesting blends to be generated. For instance, the ‘backdoor progression’ 
cadence in jazz, B♭7 → Cm, would not be produced if generic space restrictions are adhered to, 
since it does not have a semitone movement to the tonic’s root, which is a common property of 
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both inputs (hasSemiToZero 1). This cadence, failing to satisfy a generic space property, as well 
as many others are never produced by the strict version of the presented methodology. 

In this study it was regarded important to include diverse cadences that could potentially 
be considered as blends, even if they incorporated few of the input properties and regardless of 
whether these properties should normally comply to generic space restrictions. For enabling the 
generation of several diverse blends, the restrictions imposed by the generic space are not 
considered in the amalgamation process3. Additionally, acceptable cadence blends are the ones 
whose penultimate chord conforms to a specified dictionary of chord types (domain specific 
knowledge). The chord type dictionary includes some standard chords in tonal music (1-5) as 
well as two types that allow a wider diversity in the blends: 

1. [0, 4, 7] (major), 
2. [0, 3, 7] (minor), 
3. [0, 4 ,7, 10] (major with minor seventh), 
4. [0, 3, 7, 10] (minor with minor seventh), 
5. [0, 3, 6] (diminished), 
6. [0, 3, 6, 10] (half diminished) and 
7. [0, 4, 6, 10] (major with minor seventh and lowered fifth). 

In conceptual blending, after all blends have been generated, an evaluation process ranks 
them according to some optimality principles (Fauconnier & Turner, 2003); a complete 
description of which is outside the scope of this paper and the reader is referred to Goguen and 
Harrel (2010), for applications of such principles in the Alloy algorithm. Blending optimality in 
this paper is tackled through the assignment of a salience weight for each property that indicates 
the importance of specific features in cadences. Specifically, there are three grades of salience, 
represented as numerical weight values 1, 2 and 3, where increasing values indicate increasing 
salience. The weight value of each feature is assigned by hand according to basic musicological 
assumptions on the salience of features. Specifically for the perfect cadence, the salience weights 
for each properties were the following: 

1. Leading note to the tonic is important (weight value 3 for the 
hasAscSemiToZero and hasSemiToZero properties). 

2. The fact that it has the F-B tritone is relatively important (weight value of 2 for 
the fcPCs properties 5 and 11 only in the case where they are both included - if only one 
of them is included as fcPCs, it is attributed a weight value of 1). 
For the Phrygian cadence, the considered important feature was the downward leading 

note (weight value of 3 for the hasDescSemiToZero property). All other properties in both input 
spaces were considered less salient and were thus assigned a weight value of 1. 

When a blend inherits the property from an input, it is also considered to inherit its 
salience. Therefore, the blends that are ranked higher should incorporate as much of the input 
features as possible. Thus, the ranking of blends is based on the total salience (final row of Table 
2), expressed as the sum of the feature weights it inherits from the inputs. In the case where a 
property is not inherited from the inputs but is generated through completion, it is assigned the 
default salience weight value 1. 

 
Materials 

The blending setup described above produced 84 blended cadences, all of which had 
some relation to both or either of the inputs. The selection of cadences for the empirical 
experiment was made manually, including blends from different levels of the ranking, so as to 
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attain a maximally diverse test corpus. As already stated previously, all cadences (that were 
assumed to be in C minor tonality/modality) consisted of two chords, the penultimate/dominant 
and the final/tonic. The final chord was kept constant (C minor), thus variation between the 
stimuli resulted from altering the penultimate chords. Also, maximum uniformity in the 
formation of the chords and in voice-leading was pursued: all cadences were rendered with 
manual (human-made) voice-leading in four-voice harmony, with the upper voice moving 
upwards to the tonic (^7 - ^8, where possible), and with minimal movement in the inner voices 
(where attainable). Figure 3 depicts the nine cadential pairs of chords, described from a music-
theoretical perspective, in the following list:  

1. Perfect authentic cadence, featuring the full V7 dominant chord that resolves to the i tonic 
chord without 5th, in order to achieve correct voice leading. This cadence involves 
functional chord progression (chords moving downwards in the circle of perfect 5ths) and 
strong voice-leading elements (the leading note resolving upwards to the tonic and the 
7th of the dominant resolving downwards to the 3rd of the tonic, with the two active 
voices forming a tritone: F-B). 

2. Phrygian cadence, with the ♭vii chord in first inversion resolving to the i tonic chord. 
This cadence is considered contrapuntal, as it is based on a pair of linear steps (the 
downward leading note D♭ in the lower voice resolving by a semitone to the tonic and the 
B♭ in the upper voice moving upwards by a whole-tone to the tonic) and involves chord 
root movement by an ascending 2nd (B♭ to C). 

3. Tritone substitution progression, with the ♭II7♭ chord (German-type augmented-6th 
chord) leading to the tonic. The chord can also be considered an altered viio7 with its 
lowered 3rd in the lower voice. The progression incorporates elements from the two 
source cadences, as it includes both leading notes (upward leading note in the upper voice 
and downward leading note in the lower voice), includes the tritone F-B and implies a 
functional dominant-to-tonic relation. 

4. Backdoor progression, with the ♭VII7 chord in first inversion, in order to achieve 
maximum voice-leading uniformity. This progression is mainly contrapuntal and similar 
to the Phrygian, but without the downward semitonal leading note, while the D in the 3rd 
voice can be considered a borrowed element from the perfect cadence. Also, the 
penultimate chord is of the same type as in the perfect cadence (major triad with minor 
7th) and includes a different tritone (D-A♭), implying a functional progression in E♭ 
major tonality. 

5. Contrapuntal-type tonal cadence, with the viio6 resolving to the minor tonic. The viio is 
considered to have a dominant function, i.e. V7 without its root, and it has an upward 
leading note in the upper voice. The removal of the downward perfect 5th in the lower 
voice and its substitution by a downward step (D-C) can be considered an interesting 
affinity with the outer voices of the Phrygian cadence. 

6. Plagal-type cadence, with the iio6/5 progressing to the tonic. The iio6/5 is considered also a 
subdominant chord with added 6th (ivadd6), and there is no leading note in any of the 
voices. The progression also features a downward perfect 4th leap in the lower voice, 
typical of subdominant to tonic progressions. This progression can thus be considered 
distantly akin to the input cadences, due to certain common chordal tones (D, F), the 
inclusion of a tritone (D-A♭) and similar voice-leading (D-E♭, A♭-G). 

7. Minor-dominant to minor-tonic progression, utilising chords from the natural minor scale 
(Aeolian mode). This modal progression does not include leading tones. It can be 



Zacharakis et al.: Cadence blending 

considered closer to the perfect cadence due to the perfect 5th relation of the chord roots, 
but the lack of semitonal resolution in the upper voice and of the tritone can also be 
considered reciprocal elements of the Phrygian cadence. 

8. Altered dominant-7th chord to minor-tonic progression, with the dominant in second 
inversion and with its 5th lowered (French-type augmented 6th chord). This chromatic 
linear progression was used in the second half of the 19th-century and features two 
leading notes, one upward in the upper voice and one downward in the lower voice. This 
progression is similar to nr. 3, and can also be considered closely related to both source 
cadences, as it incorporates both leading notes, includes the tritone F-B and a functional 
dominant-to-tonic relation. 

9. Half-diminished ‘dominant’-7th chord to minor-tonic progression. This synthetic chord 
progression has not actually been used in any tonal or modal harmonic idiom, but it has 
been included in the experiment, since it incorporates key elements from input cadences 
(5th root relation, downward leading note in inner voice resolving to the tonic). Despite 
the perfect-5th root relation, the progression cannot be considered functional (dominant-
to-tonic type), and is distantly related to cadence no. 5, since the penultimate chords are 
of the same type (half-diminished 7th chords). 

(Figure 3) 
 

Table 3 shows the features of the penultimate chords in the GCT format. The ranking of 
the 7 selected blends based on the ranking scheme described previously is illustrated in the final 
row of the table; the selection includes high as well as low-ranked cadences. 
 
 
 

Experiment 1 

Method 

The first experiment aimed to investigate relative perception within the set of the 
generated cadences. A pairwise dissimilarity listening test was deemed appropriate for this 
purpose, as the dissimilarity matrices it produces allow Multidimensional Scaling (MDS) 
analysis to generate geometric configurations that represent the relationships between percepts. 
This in turn enables the interpretation of salient perceptual dimensions.   

In the pairwise dissimilarity listening test, participants were asked to compare all pairs 
among the 9 cadences described in the previous section using the free magnitude estimation 
method. Therefore, they rated the perceptual distances of 45 pairs (same pairs included) by freely 
typing in a number of their choice to represent dissimilarity of each pair (i.e., an unbounded 
scale) with 0 indicating a same pair (for a discussion of the advantages of this approach over a 
bounded magnitude estimation see Zacharakis et al., 2015a). Each stimulus lasted around 4 
seconds and interstimulus interval was set at 0.5 seconds. The listening test was conducted under 
controlled conditions in acoustically isolated listening rooms. Sound stimuli were presented 
through the use of a laptop computer, with an M-Audio (Fast Track Pro USB) external audio 
interface, and a pair of PreSonus HD7 circumaural headphones.  

For the analysis of dissimilarity data between the examined cadences, this work 
employed a non-metric (ordinal) weighted (INDSCAL) MDS approach as offered by the SPSS 
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PROXSCAL (proximity scaling) algorithm (Meulman & Heiser, 2008). PROXSCAL applies an 
ordinal (rank order) transformation to the raw dissimilarities within each participant’s responses, 
thus addressing the issue of the different rating scales used as a result of the free magnitude 
estimation approach. In turn, INDSCAL computes weights that represent the importance 
attributed to each perceptual dimension by each participant and then uses these weights to 
reconstruct an ‘average’ perceptual space.  

 
Participants 

Twenty listeners (age range = 18-44, mean age 24.9, 10 male) participated in the first 
listening experiment. Participants were students from the Department of Music Studies at the 
Aristotle University of Thessaloniki. All of them reported normal hearing and long term music 
practice (16.5 years on average, ranging from 5 to 35). All participants were naive about the 
purpose of the test.   

Procedure        

Listeners became familiar with the range of cadences under study during an initial 
presentation of the stimulus set (random order). This was followed by a brief training stage 
where listeners rated the distance between four selected pairs of cadences. For the main part of 
the experiment participants were allowed to listen to each pair of cadences as many times as 
needed prior to submitting their dissimilarity rating. The pairs were presented in random order 
and participants were advised to retain a consistent rating strategy throughout the experiment. In 
total, the listening test sessions, including instructions and breaks, lasted around thirty minutes 
for most of the participants.  

Results 

Before proceeding to the main body of the analysis for the dissimilarity data we 
examined the internal consistency of the dissimilarity ratings. Cronbach’s alpha was .94 
indicating high inter-participant reliability. 

In the main body of the analysis, the dissimilarity ratings were analyzed through MDS as 
described above. Table 4 shows two measures-of-fit (S-Stress and D.A.F.) along with their 
improvement for each added dimension. A two-dimensional solution was deemed optimal for 
data representation as the improvement of both measures when adding a third dimension was 
minimal. Figure 4 shows the configuration of the cadences within this 2-D space. 
(Table 4) 
(Figure 4) 

 
Simple visual inspection of figure 4 can reveal some parameters that seem to have 

influenced the perception of the different cadences. The 1st dimension of the space can be 
interpreted as ‘tonal’ vs. ‘modal’ based on the fact that all cadences featuring a leading note 
resolving to the tonic (upward semitone movement from B to C) cluster at the negative side 
while all cadences featuring an upward tone movement (B♭ to C) cluster at the positive side. The 
plagal cadence (No. 6) that features a duplication of the tonic is positioned almost exactly in the 
middle of the 1st dimension. The interpretation of the configuration along the 2nd dimension, 
however, is not so obvious. It could be that a combination of the inherent dissonance of the 
penultimate chord (as reflected by its type and voicing layout) together with its distance from the 
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final chord in the Tonal Pitch Space theoretical/cognitive model (Lerdahl, 2001) may explain the 
positions along this dimension. This notion resembles the breaking of dissonance in static 
‘sensory dissonance’ and dynamic ‘tension dissonance’ suggested by Huron (2007, chapter 8). 
Indeed, distances in the Tonal Pitch Space (TPS) in combination with the roughness of each 
penultimate chord calculated by the MIR Toolbox4 (Lartillot & Toiviainen, 2007) seem to 
account for the ordering of cadences along the 2nd dimension. Table 5 shows the chord distance 
values of each cadence according to the TPS model5 together with the roughness of the 
penultimate chord and figure 5 shows the scatter plot between the 2nd perceptual dimension 
against a simple predictor variable (TPS distance plus roughness value). The Spearman’s 
correlation coefficient corresponding to this scatterplot is ρ(8) = .78 (p<.05) indicating a strong 
relationship between this metric and the 2nd MDS dimension. It has to be noted that for a linear 
combination of these two components the Spearman’s correlation was maximized by a mere 
addition.  
(Table 5) 
(Figure 5) 
 
Discussion 

The dissimilarity rating experiment suggests a categorical perception mode in the way 
cadences are perceived. This is reflected by the positioning along the 1st MDS dimension and 
seems to be dictated primarily by the existence of an upward semitone movement to the tonic 
(upward leading note) in the left-hand cadences in comparison to the lack of an upward leading 
note in the right-hand cadences. Two major clusters of cadences were formed based on this 
differentiation along with one outlier (the plagal cadence) that featured neither an upward 
semitone nor an upward tone to the tonic but a duplication of the tonic. The implications of 
categorical perception in the blending process will be discussed in the final general discussion. 

The differentiation of cadences along the 2nd MDS dimension was less obvious but could 
be explained up to a great extent by the inherent dissonance of the penultimate chords (as 
expressed by the MIR Toolbox roughness calculation) together with their distances from the 
final chord in Lerdahl’s Tonal Pitch Space. The combined influence of sensory (i.e., auditory 
roughness) and cognitive (i.e., Tonal Pitch Space distance) parameters has been suggested to 
account for the perceived tension in music (e.g., Bigand et al. 1996). The next experiment, which 
also includes tension among other descriptors of cadential closure, will serve to clarify whether 
the 2nd MDS dimension could be indeed interpreted in terms of perceived tension.   

 
 

Experiment 2 
 

Method 

The second experiment was designed as complementary to the first one. Pairwise 
dissimilarity rating can be very useful for creating a spatial representation of the perceptual 
space. However, while being explicit regarding perceived similarity relationships of the objects 
under study, it may prove to be rather implicit when it comes to the interpretation of these 
relationships. Therefore, we designed a Verbal Attribute Magnitude Estimation (e.g., Kendall & 
Carterette, 1993a, 1993b) type of experiment whereby listeners rated the nine cadences on four 
descriptive scales, namely preference, originality, tension and closure effect. Originality, which 
is a key term for creativity evaluation (Jordanous, 2013, Hekkert et al., 2003), could also be seen 
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as an equivalent to surprise and novelty or the opposite of expectancy, all of which have been 
proven very important for music perception and appreciation (Huron, 2006). The alternation 
between tension and relaxation is regarded as one of the key factors for musically induced 
emotions (Huron, 2006; Lerdahl & Krumhansl, 2007; Farbood, 2011;  Lehne & Koelsch, 2015). 
Closure effect is a specific characteristic of musical cadences (e.g., Sears et al., 2014) as they 
serve the purpose of concluding phrases, sections or pieces of music. And, finally, preference 
measures the extent to which participants may prefer some cadences over others.  

After the analysis of the acquired data, an extension of this experiment was additionally 
carried out. As will be explained in detail later, the ratings on originality were not very consistent 
across participants implying that there was a lack of a common understanding of this concept. 
Therefore, the same experimental protocol was repeated recruiting different participants and 
requesting a rating on merely two additional concepts that were regarded to be relevant to 
originality but at the same time more clearly defined: expectancy and fit. 

The points of interest were multiple here. Firstly, we wanted to see the level of agreement 
between raters regarding judgements upon these scales and also to examine the potential 
relationships between the scales. Additionally, we sought to investigate the effect that different 
harmonic contexts may have on the perception of these particular cadences as expressed by the 
ratings. And finally, we wanted to interpret these results in the light of the perceptual cadence 
space generated from experiment 1 and vice versa. 

 
Materials 

Figure 6 presents the stimulus set that consisted of the nine cadences of experiment 1 
positioned in two different harmonic contexts (one tonal and one modal). Each stimulus 
comprises a four-bar phrase, with a two-bar antecedent sub-phrase and a two-bar consequent 
sub-phrase. The first two-bar sub-phrase suggests the harmonic content with a four-chord 
progression and has two versions: the tonal version (stimuli 1-1 to 1-9) in C minor tonality and 
the modal version (stimuli 2-1 to 2-9) in C Phrygian mode. The second two-bar sub-phrase 
contains the two-chord cadential progression in slower harmonic rhythm to strengthen the effect 
of phrase closure, and has nine versions (the cadences of experiment 1). An attempt was made to 
maximize both voice-leading uniformity and harmonic idiom specification. The former condition 
was achieved by the use of the same sequence of melodic degrees in the upper voice for almost 
all stimuli: ^3 - ^2 - ^1 - ^1 - ^7 - ^1 (except stimuli 1-6 and 2-6, which do not have ^7 melodic 
degrees). For the fulfilment of the latter condition two four-chord progressions should be devised 
for each of the two versions of the first sub-phrase, containing the most characteristic elements of 
the two harmonic idioms. The sequence for the description of the minor tonal idiom was i - V7 - 
VI - iv (emphasis on functional progressions, the dominant chord and the sharpened leading 
note) and the sequence for the Phrygian mode was i - ♭vii - iv - i6 (emphasis on the lowered ^2 
degree and non-functional progressions). All stimuli lasted around 9 seconds. The equipment and 
listening conditions were identical with experiment 1. 

(Figure 6) 
 

Participants (Group 1)  

Twenty six listeners6 (age range = 18-36, mean age = 22.7, 17 male) participated in the 
first listening experiment. Participants were students from the Department of Music Studies of 
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the Aristotle University of Thessaloniki. All of them reported normal hearing and long term 
music practice (12.8 years on average, ranging from 6 to 25). All participants were naive about 
the purpose of the test.  

 
Participants (Group 2)  

Twenty five listeners (age range = 20-50, mean age = 26.7, 15 male) participated in the 
second listening experiment. Participants were students from the Department of Music Studies of 
the Aristotle University of Thessaloniki. All of them reported normal hearing and long term 
music practice (15 years on average, ranging from 5 to 40). All participants were naive about the 
purpose of the test.  

Procedure 

Listeners became familiar with the type of the stimuli through an initial random 
presentation of five examples. Then the stimuli were presented within the two different harmonic 
contexts. Both the order of the harmonic context and the order of the cadences within each 
context were randomized. Participants were allowed to listen to each stimulus as many times as 
needed prior to submitting their rating on all provided scales. The strengths of the attributes were 
represented by sliders tagged with Greek attribute names (featuring also an English translation in 
parenthesis) whose endpoints were labeled ‘high - low’ corresponding to a hidden numeric scale 
ranging from -10 to 10. In total, the listening test sessions, including instructions and breaks, 
lasted around twenty minutes for most of the participants.             

 

Results      

Before analyzing the data, we examined the internal consistency of responses for each 
rating scale for both harmonic contexts. Cronbach’s alpha was .91 for preference, .77 for 
originality, .85 for tension, .94 for closure effect, .94 for expectancy and .92 for fit. These results 
indicate excellent inter-participant reliability for preference, closure effect, expectancy and fit. 
The consistency of tension is good, but originality features a significantly lower consistency.  
Based on this, originality will not be further examined since interpretation of its results is not 
considered reliable. Figure 7 presents the boxplots of each cadence for the five descriptive scales 
and the two harmonic contexts. 

(Figure 7) 
 

As ratings on several cadences did not pass the Shapiro-Wilk normality test (p<0.05) a 
non-parametric approach was taken for examining the effect of harmonic context on cadence 
description. Wilcoxon Signed-rank tests for each cadence revealed a harmonic context effect 
only for the expectancy ratings of the perfect (No.1) (Mdn_tonal = 10 vs. Mdn_modal = 8.8), Z = 
2.1, p < 0.05, r = .29, phrygian (No.2) (Mdn_tonal = -5 vs. Mdn_modal = -1.2), Z = -2.8, p < 
0.05, r = -.40 and French sixth (No.8) (Mdn_tonal = 0.07 vs. Mdn_modal = 5.3), Z = -2.2, p < 
0.05, r = -.31. For all the other cadences and rating scales no effect of harmonic context was 
found. Furthermore, in the rating scale level, expectancy was the only scale that featured a 
significant effect of harmonic context indicating an overall increase in modal context (Mdn_tonal 
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= 0 vs. Mdn_modal = 2.4), Z = -2.35, p < 0.05, r = -0.11. Figure 8 shows the boxplot of all five 
rating scales aggregated for both harmonic contexts (although the overall expectancy boxplots 
should be viewed having in mind that this scale exhibits an effect of harmonic context). 
Inspection of figures 7 and 8 reveal that cadences that featured an upward leading note (No. 1, 3, 
5 and 8) tended to receive higher ratings for closure effect and tension, and lower ratings for 
preference regardless of harmonic context. Thus, the positioning of cadences along dimension 1 
of the perceptual space (Figure 4) is also reflected by the descriptive data. A Page’s trend test 
showed a very strong trend (Page’s L = 13494, z =117.28, p = 0) for increasing closure effect 
from the positive to the negative side of the 1st MDS dimension. This suggests that positioning 
of cadences along this dimension represents the perceived ‘strength’ of closure signified by the 
cadence. 

(Figure 8) 
 

The interpretation of dimension 2 is not so straightforward. A visual inspection of the 
boxplots for overall tension implied that tension might play a role in positioning along dimension 
2. To examine this hypothesis, we performed a Page’s trend test that showed a significant trend 
for increasing tension along the 2nd MDS dimension (Page’s L = 11749, z = 3.20, p << .001).  
Strong trends were also present within the leading-note plus plagal cadence cluster (No. 6-5-1-8-
3) and the absence of upward leading note cluster (No. 6-7-2-9-4)7 (Page’s L = 2489, z = 24.80, p 
<< .001 and Page’s L = 2409, z = 11.50, p << 0 respectively). In line with the findings of 
experiment one, the above also provide some evidence that dimension 2 of Figure 4 is related to 
perceived tension. However, the trend became even stronger (Page’s L = 12806.5, z = 72.33, p = 
0 ) when the ordering of cadences came from their projections on a -45o line as shown in figure 
9, implying that tension and closure effect (i.e., dimension 1) are not completely independent. 

Table 6 shows the Spearman’s correlation coefficients between the six rating scales 
constructed by the mean rating for each of the 18 stimuli (i.e. 9 cadences in both contexts). In 
agreement with the boxplots presented previously, preference features a very strong inverse 
correlation with closure effect, expectancy and fit (i.e., stronger closure/expectancy/fit induces 
less preference than weak closure/expectancy/fit). All these four variables seem to be used in 
essentially the same manner. Tension is the variable that conveys the highest amount of unique 
variance within this set being the least related to the others. Nevertheless, it shows medium 
correlations with closure effect (in line with what was suggested above), expectancy and fit. 

(Table 6) 
(Figure 9) 
 
Discussion 

Out of all descriptive qualities in the verbal attribute magnitude estimation experiment, 
originality seems to have been least understood (highest disagreement) by the listeners. This 
finding implies that, despite originality being a commonly agreed upon measure of creativity, it 
may not be a clear-cut concept within all contexts. In this particular case, it seems possible that 
many (but not all) listeners might have confused the concept of ‘originality’ (relating to novelty 
and inventiveness) with the concept of authenticity that relates to the root ‘origin’. In this 
respect, we speculate that the term ‘originality’ might have introduced uncertainty as to whether 
it stands for ‘novelty’ or indeed ‘conventionality’. 

As a result of the above, we conducted an additional experiment with different 
participants requesting for ratings on two additional scales: expectancy and fit. These two 
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qualities were highly agreed upon, and expectancy was the only quality that exhibited an effect 
of harmonic context. It could be argued that the modal context is more ‘flexible’ allowing for 
more possibilities; the expectancy of cadences that were unexpected in the tonal context (such as 
the Phrygian and the French sixth) is increased and, at the same time, the expectancy of the 
perfect cadence is decreased. For all other qualities no effect of harmonic context was revealed. 
Three factors can be taken into account as a possible explanation of this: 1) the two-bar harmonic 
progression that defined the tonal/modal context might have been too short to firmly establish the 
context, 2) the participants were more familiar with the tonal idiom, due to their prolonged 
exposure to classical Western music, and therefore tended to favor expectancy for tonal cadence 
even in stimuli with modal context, 3) the participants tended to conceive chromatic or extended 
cadential chords as tonal instead of modal as Renaissance modality did not include such 
sonorities (they were historically used only in 19th-century modality –e.g. in national musics– as 
exotic extensions/transformations of chromatic tonality). 

The mean ratings on preference, closure effect, expectancy and fit were highly correlated 
showing that (in average) participants favored cadences that were less expected, i.e., had a 
weaker closure effect. This finding should not be generalized, however, as it might well be the 
case that people may tend to prefer more expected/familiar cadences within a more unexpected 
harmonic background. In other words, unexpectedness might be favored when introducing 
novelty while expectedness might be favored when resolving high uncertainty. Further 
experimentation is warranted to validate this hypothesis. Furthermore, closure effect, that is a 
direct outcome of the existence of an upward leading note (or lack thereof), seems to be the 
major contributor to whether two cadences will be perceived as similar, thus reflecting the 
categorical perception of cadences which was discussed previously. Tension is less related to the 
other qualities and there is indication that it may be associated with the second dimension of the 
perceptual space. However, tension is not completely independent from closure effect and 
expectancy partly confirming Huron’s (2006, chapter 8) view that these two are positively 
related. These results imply that, in general, the higher the expectancy (presence of an upward 
leading note) the stronger the tension but -according to the results of experiment 1- within each 
of the two groups of cadences, tension differentiations can be attributed to the inherent roughness 
(sensory dissonance) of the penultimate chord and the distance of the pair in the Tonal Pitch 
Space (tension dissonance). This is in accordance with other -complementary to Huron’s- views 
with regard to musically induced tension in general (Lehne & Koelsch, 2015) and tonal tension 
in particular (Lerdahl & Krumhansl, 2007). 

A more specific look can reveal some characteristics of certain cadences. The perfect 
cadence gets the highest closure effect/expectancy/fit ratings and the Phrygian cadence is rated 
quite low for closure effect/expectancy/fit while the various products of the cadence blending 
system fill the space in-between. Moreover, cadences 4 (backdoor progression) and 9 (half 
diminished fifth) seem to get the highest preference while the perfect cadence receives the lowest 
preference rating in both harmonic contexts. 

Therefore, despite the identified categorical perception for the cadences examined in this 
work, the acquired knowledge of the perceived relationships in combination with qualitative 
characteristics is still valuable for enhancing the creativity of the system. This information can be 
exploited by the cadence blending system in order to increase its capability for interaction with a 
human user by enabling refinement of the desired outcome. For example, when the system 
receives a request to produce a cadence that should be perceived relatively close (i.e., having 
similar closure effect) to the Phrygian but at the same time featuring higher tension, it will direct 
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itself towards the backdoor progression (No. 4). Another example could be the request to 
produce a cadence that would feature a similar closure effect compared to the perfect (i.e., close 
in the perceptual space) but with the highest possible tension. In that case, it should direct itself 
towards the French sixth (No. 8). Finally, if the request is for a blend that is far away from both 
the perfect and the Phrygian, the plagal (No. 6) among others is a possible solution. 
 

 
General Discussion 

 
The purpose of this work was to present a case study of conceptual blending in music 

harmonic structures and to obtain some insight regarding the way its outcomes are being 
experienced by human listeners. Using two cadences (the perfect and the Phrygian) as starting 
points, our system produced several blends, seven of which were selected for empirical 
assessment. To this end, two listening experiments were conducted to shed some light on 
cadence perception within and out of harmonic context. Both the relative perception of these 
cadences and their description on (initially) four selected qualities were obtained. 

From the perspective of creativity evaluation, the two input cadences (perfect and 
Phrygian) were positioned in the maximum distance along the 1st dimension of the perceptual 
space. However, no blend occupied a position that was directly in-between the original cadences, 
i.e., no blend was double-sided according to the results of the dissimilarity rating experiment. 
One could maintain that all blends (with a possible exception of the plagal cadence that is 
considered as an outlier) were perceived as variations of either the perfect or the Phrygian 
cadence.  

For instance, despite the fact that some blends featured salient characteristics from both 
originals (such as the tritone substitution where both the leading note and the ^�2 are present 
and lead to the tonic), cadence perception was categorical, based on the presence or absence of 
the upward leading note (the tritone substitution can be seen as a single-sided blend that 
preserves primarily the perfect cadence character but has embodied characteristics from the 
Phrygian cadence). It can be argued that the presence of the downward leading note ^�2 in the 
tritone substitution cadence was overshadowed by the perceptual dominance of the upward 
leading note and failed to bring cadence No. 3 in the middle between No. 1 and No. 2. This does 
not seem to confirm our initial hypothesis that the D� resolution to the tonic is equally salient to 
the upward leading note. In our experimental set up, this may also be due to the fact that the 
upper voice (that always features the upward motion in our case) is of higher perceptual salience 
compared to the bass (that always features the downward motion) (Thompson & Cuddy, 1989; 
Palmer & Holleran, 1994). 

To sum up, having input spaces with a single salient property that is mutually exclusive 
(such as the upward semitone and upward tone to the tonic) prevents the blending system from 
creating balanced (i.e., double-sided) blends. This is something that may need to be taken into 
account in future attempts of conceptual blending of harmonic structures.  

In some accordance with the dissimilarity data, the two original cadences were generally 
rated in the extreme values of expectancy, preference, closure effect and fit (that seem to be well 
represented by MDS dimension 1) and have produced seven blends that received various values 
in-between. Additionally, the blends received both higher and lower values of tension ratings 
compared to the originals. This shows that the blending system is capable of exploring away 
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from its inputs, as Pearce and Wiggins (2001) put it, by exhibiting a variability regarding both 
perceptual distances and  several qualitative attributes, thus highlighting its creative potential.  

The hypothesis that the conceptual space represented by the perfect cadence would have 
higher prominence seems to be confirmed by the data. Its representative cadences induce 
stronger closure effect and are perceived as more appropriate endings (higher fit) regardless of 
context. At the same time, this increased predictability is translated into lower preference. Within 
the group of ‘tonal’ cadences, however, the French sixth (No. 8) and the tritone substitution (No. 
3) seem to be more preferred, probably because of the higher amount of surprise they introduce. 
This is in agreement with the fact that they receive the highest positions in the system ranking in 
terms of blend quality and suggests that successful blending of a prominent conceptual space (in 
our case the perfect cadence) with  a weaker one (i.e., the Phrygian cadence) has raised the 
preference by introducing an interesting variation. This effect was not conversely evident, 
however, since the Phrygian cadence was already appreciated and so were its variations through 
blending. 

As a conclusion, this exploratory study on blending of musical cadences has 
demonstrated the creative potential of conceptual blending theory when applied to musical 
harmony. Future work will build on this approach to enable the application of the blending 
mechanism to more complex harmonic structures, ultimately aiming at harmonic blending 
between separate musical idioms. This will require the definition of harmonic concepts 
characterizing different idioms and their expression through a formal computational model. 
Assessing the ability to produce hybrid harmonic idioms or the extent to which the 
characteristics of an idiom are conveyed through harmony alone will be the subject of future 
empirical studies. This will, in turn, require the application of behavioral approaches capable of 
assessing longer musical stimuli where pairwise dissimilarity rating will not apply. Additionally, 
an advanced version of the harmonic blending system will be aimed to offer the possibility of 
high level descriptions of the desired harmonizations by extending the descriptive approach 
presented in the current work. 
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Footnotes 
1 http://www.coinvent-project.eu  

2 In the process of blending through amalgams, the notions of ‘amalgam’ and ‘blend’ are 
the same. Therefore, in the following paragraphs they are used interchangeably. 

3 In the strict version of the system, cadences 4, 6 and 7, as presented in the Materials 
section, would not have been produced by the system since their penultimate chords do not have 
a pitch class with semitone movement to the tonic. 

4 Using Vassilakis’ algorithm. 
5 The calculations were performed with the use of the CHORD DISTANCE RULE 

(Lerdahl, 2001: 60). The chord distance value yielded depends on the distance between diatonic 
collections, on the chordal roots’ distance in the circle of 5ths and on the number of non-common 
tones. 

6 The two groups of participants of the second experiment were different from those who 
took part in the first experiment. 

7The assumed order of cadences for both groups was from negative to positive values on 
MDS dimension 2. 

 
 
 
 
 
 
 

Table 1 
Properties describing a cadence - an example of the perfect cadence (ending in C minor chord). 

Index Property name Description Value 

1 fcRoot Root of the penultimate chord (numeric value) 7 

2 fcType Type of the penultimate chord (GCT type) [0 4 7 10] 

3 fcPCs Pitch classes of the penultimate chord {7 11 2 5} 

4 rootDiff Root difference for the transition 5 

5 DIChas0 Existence of common pitch class between the 
two chords, i.e. zero pitch interval transition 
(Boolean value) 

1 

6 DIChas1 Existence of upward semitone movement 
between any pitch classes of the two chords 
(Boolean value) 

1 

7 DIChasN1 Existence of downward semitone movement 
between any pitch classes of the two chords 
(Boolean value) 

1 

8 hasAscSemiToZero Existence of ascending semitone to the tonic - 1 
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leading note (Boolean value) 

9 hasDescSemiToZero Existence of descending semitone to the tonic 
(Boolean value) 

0 

10 hasSemiToZero Existence of upward or downward semitone 
movement to the tonic (Boolean value) 

1 
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Table 2 
Example of the tritone substitution cadence invention, by blending the perfect and the Phrygian 
cadences. Generic space elements (common properties of inputs) are shown in bold. The 
assignment of salience values is explained in the text. 

Property’s name Input 1 
(perfect) 

Input 2 
(Phrygian) 

Possible blend salience 

fcRoot 7 10 1 (new) 1 

fcType [0 4 7 10] [0 3 7] [0 4 7 10] (input 1) 1 

fcPCs [7 11 2 5] [10 1 5] [11 1 5 8] (combination 
and new) 

[2,1,2,1] 

rootDiff 5 2 1 (new) 1 

DIChas0 1 0 0 (input 2) 1 

DIChas1 1 0 1 (input 1) 1 

DIChasN1 1 1 1 (both) 1 

hasAscSemiToZero 1 0 1 (input 1) 3 

hasDescSemiToZero 0 1 1 (input 2) 3 

hasSemiToZero 1 1 1 (both) 3 

   Total salience: 21 
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Table 3 
The penultimate cadence chords along with their respective indexes and their ranking according 
to their total sum of property salience weights. Cadences belonging to the ranking positions 1-29 
(in bold) are the cadences produced by the system when considering the generic space 
restrictions in the blending process. The highest ranking is attributed to No.3 and No.8 with 21 
points of total salience, followed by No. 5 and No. 9 with 17, No. 4 and No.6 with 13 and No. 7 
with 12. 

  input  blends 

index 1 2  3 4 5 6 7 8 9 

pitch 
classes 

[7 11 2 5] [10 1 5]  [1 5 8 11] [10 2 5 8] [11 2 5] [2 5 9 0] [7 10 2] [1 5 7 11] [7 10 1 5] 

chord 
type 

[0 4 7 10] [0 3 7]  [0 4 7 10] [0 4 7 10] [0 3 6] [0 3 7 10] [0 3 7] [0 4 6 10] [0 3 6 10] 

System 
ranking 

- -  1-3 46-66 20-29 46-66 67-84 1-3 20-29 

 
 
 
 
 
 
 
 
 
 
Table 4 
Measures-of-fit and their improvement for different MDS dimensionalities. 

Dimensionality Stress I Improvement D.A.F. Improvement 

1D .36 -- .87 -- 

2D .20 .16 .96 .09 

3D .13 .07 .98 .02 
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Table 5 
The Tonal Pitch Space distance for each cadence together with the roughness value of each 
penultimate chord. 
   cadence index 

1 2 3 4 5 6 7 8 9 

Tonal Pitch Space 
distance 7 9 11 9 9 6 5 8 8 

roughness 
(Vassilakis’ 
algorithm) 

4.20 5.60 4.13 5.11 3.06 5.05 3.16 5.25 5.13 
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Table 6 
 Spearman’s correlation coefficients between the rating scales.  

 Preference Tension Closure effect Expectancy Fit 

Preference 1.0 -- -- -- -- 

Tension -.44 1.0 -- -- -- 

Closure effect -.86** .63** 1.0 -- -- 

Expectancy -91** .50* .94** 1.0 -- 

Fit -88** .56* .94** .97** 1.0 
**Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Running head: Cadence blending 28 

Figure Captions 
Figure 1. Conceptual blending between the tonal perfect cadence and a Renaissance Phrygian 
cadence gives rise to the tritone substitution progression / cadence (the backdoor progression 
can also be derived as a blend). 

Figure 2. The conceptual blending scheme: properties describing the perfect and the 
renaissance Phrygian cadences are blended to create new cadences with combined properties. 
The generic space is computed (1) and the input spaces are successively generalized (2), while 
new blends are constantly created (3). Some blends might be inconsistent or evaluated poorly 
according to blending optimality principles or domain specific criteria. 
Figure 3. Score annotation of the nine cadences that constituted the stimulus set. 
Figure 4. The two-dimensional dissimilarity perceptual space of the nine cadences. The perfect 
and the Phrygian cadences (No. 1 & 2) are positioned far away from each other on the 1st 
dimension.  
Figure 5. Scatter plot between the 2nd perceptual dimension and the simple predictor: tonal 
pitch space distance + roughness value. 

Figure 6. The score annotations of the stimulus set which consisted of the nine cadences of 
experiment 1 positioned in two different harmonic contexts: (a) tonal and (b) modal.  
Figure 7. Boxplots of the nine cadences for the five descriptive scales and the two different 
harmonic contexts. 
Figure 8. Boxplots of the aggregated data for the nine cadences on the five descriptive scales. 
Figure 9. The perceptual cadence space with a line of -45o angle.  Projection on this line 
constitutes a good approximation of perceived tension. 
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Introduction 
 
Creative music systems often fall into two major categories (Pearce and Wiggins, 2001): the 
ones whose goal is to imitate a particular musical genre or the style of a certain composer and the 
ones that aim to generate novel musical styles. These two approaches were also described as 
''empirical style modelling'' and ''active style synthesis'' by Ames (1992). Synthesis of novel 
musical styles is a lot more demanding than mere modelling of certain musical characteristics as 
its major challenge is to transform existing rules of music making into new principles that depart 
from mere imitation while generating meaningful musical material. The present study constitutes 



   
 

   
 

an empirical evaluation of melodic harmonisations produced by a system that utilises the 
principles of  conceptual blending theory towards active music synthesis.  
Conceptual blending is a cognitive theory developed by Fauconnier and Turner (2003), which 
supports that even the most ordinary concepts in everyday thought are constructed through a 
subconscious combination of diverse, but structurally-related, mental spaces. Aspects of human 
creativity have been modeled using the perspective of this approach, resembling the notion of 
combinational creativity introduced by Boden (2009). A computational framework that extends 
Goguen's formal approach (Goguen 2006) has been developed in the context of the COINVENT 
(Concept Invention Theory) project (Schorlemmer et al., 2014). This framework aimed at a 
bottom-up creative approach according to which conceptual blending would be used as a creative 
mechanism for the generation of novel blends rather than as mere analytic instrument. 
Blending in music exists in various forms, for example grafting harmonic, melodic, rhythmic or 
timbral elements from one musical idiom to another, thus creating novel idioms. In the context of 
the COINVENT framework, a melodic harmonisation assistant capable of blending between 
different harmonic idioms was developed (Kaliakatsos-Papakostas et al., submitted). Harmonic 
blending can take place through two different processes. The first –and computationally simpler- 
is the melody-idiom blend whereby a melody originating from a given musical idiom is 
harmonised based on a first-order markov model of harmonic successions (i.e., chord transition 
matrix) characterising another idiom. The second is the cross idiom blend whereby the chord 
transition matrix itself is a product of blending between two different idioms. For cross idiom 
blending, the definition of a -both computationally feasible and cognitively relevant- harmonic 
concept upon which conceptual blending would be applied was of major importance.  
A precursor study on the empirical evaluation of cadence blending (Zacharakis et al., submitted) 
showed that applying the blending methodology to chord sequences typical of cadences (that in 
essence consist of a single transition between two chords) could result in the production of 
interesting and meaningful blends. Hence, the single harmonic transition appeared to be a 
promising concept for harmonic blending application. Following this, an extension of the 
computational approach adopted by (Zacharakis et al., submitted) to the entire chord transition 
matrix that characterises an idiom was implemented (a detailed description is proved in the next 
section). Therefore, originating from blending at the single transition level, this methodology 
allowed the production of extended transition matrices incorporating both transitions appearing 
in the two original idioms but also novel transitions that were generated through blending. It was 
assumed that both melody-idiom blending and cross idiom blending would reflect cognitive 
aspects of musical harmony. This would mean that not only harmonisations of a given melody 
according to a different idiom but also harmonisations based on an extended chord transition 
matrix would result in musical compositions featuring elements from both original idioms. One 
of the goals of this study was to empirically assess the extent to which these two methods of 
harmonic blending were cognitively relevant.  
Since the developed system for harmonic blending falls into the scope of computational 
creativity, a comprehensive assessment of its value would require an attempt to ‘measure’ its 
creativity. A prominent debate in the field of computational creativity evaluation is whether 
assessment of creative systems should be based solely on the their products or also on the 
process through which they are generated. In a short literature overview, Jordanous (2016) 
presents the rationale of both approaches. While Ritchie (2007) supports that humans judge the 
creativity of others mainly based on what they produce, Colton (2008) argues that process may 
be equally important for art appreciation giving the example of conceptual art. However, while 



   
 

   
 

knowledge of the context in which the work of art is placed can be proven informative regarding 
lower-level creative processes, contextual information is (arguably) not necessarily identical to 
the process per se. Additionally, in their FACE/IDEA evaluating framework, Colton et al. (2011) 
have accompanied process assessment with audience appreciation to measure the impact of a 
creative act. Following this, Jordanous (2012) has suggested a system specific approach whereby 
the researcher is provided with a set of fourteen evaluation parameters in order to select the most 
appropriate ones according to the context of the assessed system. In a follow up work, Jordanous 
(2016) proposed that a good strategy in computational creativity evaluation may be to make an 
assessment based on the pair value-novelty -whose importance has been also highlighted by 
various researchers (Mayer, 1999; Wiggins, 2006; Ritchie, 2007; Jordanous, 2012)- under the 
perspective of the four Ps (i.e., Person/Producer, Process, Product, Press/Environment) (Rhodes, 
1961; MacKinnon, 1970).  
Creativity evaluation within the context of the present harmonic blending system is broken down 
into three components, the first two being value and novelty of the product. The presence of a 
third component has to do with the fact that the developed melodic harmonisation system had a 
clearly manifested goal: to utilise harmonic information from two diverse musical idioms in 
order to generate hybrid or novel harmonic idioms (i.e., blends). In this respect, we were 
interested to assess whether listeners would classify melody-idiom and cross idiom blends as 
blends indeed, as completely novel harmonic idioms, or as belonging to either of the originating 
idioms. We were also interested to examine the potential influence of melody on this process, 
i.e., the extent to which the implied harmony of the harmonised melody would affect idiom 
perception. 
In order to address the above questions, as well as to evaluate the novelty and value attributed to 
the generated artefacts, two varied versions of a listening experiment were designed and 
conducted. Melodies coming from different idioms were harmonised by the system either 
according to the chord transition matrix of a single idiom (e.g., Bach’s chorale style or Jazz) as 
melody-idiom blends or according to extended chord transition matrices as cross idiom blends. 
The task of the listeners was -with slight variations depending on the specific experimental 
protocol- to perform idiom classification (i.e., evaluation of idiom blending success), report their 
preference (i.e., attributed value) and rate the expectancy (i.e., attributed novelty) of each 
harmonisation. 
 

A creative melodic harmoniser that blends harmonic spaces 
 
The harmonic diversity in different musical styles/idioms is established by independent harmonic 
spaces that involve numerous concepts such as chord, root, scale hierarchy, tonality, harmonic 
rhythm, harmonic progression, voice-leading, implied harmony, reduction, prolongation, and so 
on. Conceptual blending aims to exploit the rich background~\citep{coinventGeneral2014} of 
concepts that is available in diverse input idioms and construct new harmonic spaces that 
creatively combine elements of the concepts in the input harmonic spaces. The combination of 
concepts from different idioms injects novelty and creativity to the melodic harmonisation 
process and, therefore, the existence of a rich background of diverse harmonic idioms that 
include formal descriptions of a variety of harmonic elements is required. 
 



   
 

   
 

Even though the chord progressions in tonal and jazz music have been effectively modelled by 
models related to grammar structures ~\citep{rohrmeier_towards_2011, Koops2013, 
GranSteed_14}, for the purposes of blending, more musical styles need to be represented that are 
substantially different from the aforementioned ones. The melodic harmoniser used in this study 
follows a modular, hierarchical representation of harmonic structure and is able to learn from 
data of practically any musical idiom through statistical learning. Furthermore, this system 
employs conceptual blending to combine learned, diverse harmonic styles and generate new 
‘meaningful’ harmonic idioms that can be used to harmonise given melodies. The blending 
methodology is based on the framework developed in the COINVENT project while it is applied 
on the level of chord transitions, leading to the construction of Markov transition probability 
matrices that blend the elements of the respective matrices in learned initial idioms. Section 
NEXT describes briefly the idiom-independent harmonic learning and generating methodology 
and the harmonic blending, while Section after_the_NEXT includes a short overview of the the 
harmonic blending methodology. More details for both methodologies can be found in 
\cite{harmoniser_JCMS} and \cite{blender_JNMR} respectively. 
 
Statistical learning of harmonies in diverse idioms 
 
The melodic harmoniser used for producing the material of this study is based on a statistical 
approach that combines different learning modules concerning different aspects of harmony. The 
utilised probabilistic algorithms allow for diverse harmonic idioms to be learned, generating 
harmonisations that reflect the characteristics of learned idioms in terms of chord types, 
cadences, chord transitions and bass voice leading. The system learns the harmonic content of 
an idiom through annotated training data, while it produces new harmonisations according to 
guidelines provided in the melody input file. The harmonic training pieces have been manually 
annotated by music experts in terms of the following structural aspects: (a) harmonic 
reduction(s) of each musical work/excerpt are created so that structural harmonic/non-harmonic 
notes are explicitly marked; (b) local scale/key changes are determined so that harmonic 
concepts relating to modulations can be learned; and (c) grouping structure is given so that 
cadential patterns at various hierarchic levels can be inferred. 
 
In detail, the harmonic aspects that the system learns independently are: 

• Chords and chord types are learned in the form of the General Chord Type (GCT) 
\cite{cambouropoulosGCT_14,Cambouropoulos_Repr_2015}, followed by a grouping 
stage based on the relations between learned chord types \cite{ISMIR_gct_grouping}. 

• Cadences, which are considered as the final pairs of chords in phrase endings 
\cite{harmoniser_JCMS}, are learned in the form of simple statistics regarding their 
number of occurrence at the training corpus. 

• Chord progressions are learned through a model based on the hidden Markov Model 
\cite{rabiner_HMM}, namely the constraint HMM (cHMM) \cite{cHMM_paper}, that 
allows the generation of chord sequences that comply with given chord constraints (either 
the imposed cadences by the aforementioned module or user-defined constraints). 

• Bass voice leading is learned by combining three statistical models: (a) a hidden Markov 
model learning the bass contour (hidden states) transitions, given the melody contour 
(observations), (b) distributions on the distance between the bass and the melody voice 
and (c ) statistics regarding the inversions of chords . 

 



   
 

   
 

After the system is trained, it can harmonise a given melody that, at this stage, is accompanied by 
information regarding harmonic rhythm, harmonically important notes, key and phrase structure. 
Learned cadences are placed at positions indicated as phrase endings in the melody input files 
and then chord sequences in the GCT representation are generated with the cHMM methodology. 
Then, the bass voice is defined by combining the bass voice related statistical models and, 
finally, the inner voices (between the bass and the melody) are placed according to criteria 
concerning attraction to a given intermediate pitch height, evenness in neighbouring note 
distances and movement distances of inner voices between successive chords 
\cite{harmoniser~JCMS}. The output of this system is a harmonic realisation with actual chord 
notes (not only chord symbols). 
 
Chord transition blending for blending harmonic spaces 
 
The melodic harmonisation system used in this work incorporates harmonic blending with an 
approach that focusses on chord transitions. The harmonic description of an idiom is based on 
the Markov matrix of GCT chord transitions, while blending is employed on the level of chord 
transition, i.e., transitions from one idiom are blended with ones from the other to generate 
blended transitions. The outcome of this process is a set of novel transitions that potentially 
include new chords or even new chord types, that preserve, however, some salient features of the 
input transitions. Transition blending can be considered as a generalisation of cadence blending 
as studied in \cite{Eppe_2015, Zacharakis_2015}, where different cadences were considered as 
pairs of chords including different penultimate chords leading to a fixed final chord; in a pair of 
chords forming a transition, the final chord is not fixed. However, a richer representation of 
transitions is used for transition blending, as discussed in this paper, in comparison to the simpler 
description of cadences presented in \cite{Eppe_2015, Zacharakis_2015}. The new blended 
harmonic idiom is a result of transition blending and several additional processes that that lead to 
the construction of a compound set of transitions, which comprises the transitions of the initial 
idioms, accompanied by a set of novel transitions and chords that provide creative and 
meaningful harmonic connections between the chords of the initial spaces. 
 
To illustrate the meaningfulness of the blending approach that the utilised system follows, we 
use the example in Figure C-F#_FIG, taken from \cite{blender_JNMR}, where the transitions of 
two purely diatonic but distant harmonic spaces are blended. These spaces are assumed to 
incorporate only three basic chords, namely the tonic, the dominant and the subdominant, they 
do not overlap since the have no common chords and, as shown by the white color blocks in 
Figure C-F#_FIG (a), there is zero probability for transitions between chords of one space to 
chords of the other. In the case where the system is requested to harmonise a melody that begins 
in C major and then modulates to F# note, the Markov-based model of the non-blended harmonic 
spaces reaches a dead-end since there is no possible transition (with probability greater than 0) 
that leads to a chords that can harmonise this chromatic note. Aim of transition blending between 
the matrices representing two tonalities in this example, is to generate chord transitions that 
allow creative and meaningful transpositions from one tonality to the other. In general, aim of 
transition blending is to allow such transitions between two initial learned idioms.  Therefore, 
transition blending creates novel transitions (as well as new chords) that enable connections 
between the initial harmonic spaces. The new transitions illustrated in Figure C-F#_FIG (b) are 
the topmost blends according to the ranking produced by a rating process that takes into account 
the number of common features between the blend and the input chord transitions. The 



   
 

   
 

considered features include common pitch classes in the first and second chords of the blend in 
relation to the two input transitions and ascending and descending semitone movements to the 
root of the final chord of each transition. 

 

 

a. No Blends (b) Topmost blends 

Figure C-F#_FIG: (a) A compound harmonic space of C and F# major diatonic transition 
spaces that does not include blends and (b) with some of the topmost blends. 
 
Chord transition blending can create new transitions that preserve important features of the input 
transitions, while the number of topmost selected transitions among the blends for further 
processing is determined by the user of the system with, according to a methodology described 
later. A larger number leads to a compound matrix that is more populated, including more 
transitions and chords. Similarly, the user can select the intensity of the probabilities in the 
transitions that result from blending, with a process that is also explained later; higher 
probabilities force the system to move more freely between chords of the compound space, 
regardless of the initial space they belong to, creating a space that radically differs for the initial 
harmonic spaces. 
 
Chord transition blending and rating 
 
The COINVENT framework for conceptual blending extends Goguen’s \cite{Goguen_2016} 
generative model, according to which input spaces are described as algebraic specifications and 
their blended space is computed as their categorical colimit. According to this framework, two 
input spaces are described as sets of features, properties and relations. The description of a chord 
transition in this study includes properties that involve each chord independently and the entire 
chord transition as follows: 

1. fromPCs: the pitch classes included in the first chord, 
2. toPCs: the pitch classes included in the second chord, 



   
 

   
 

3. DIChas0: Boolean value indicating whether the Directed Interval Class (DIC) 
vector~\citep{cambouropoulosDIC_12, cambouropoulosDIC_13} of the transition has 0 
(i.e.\ that both chords have at least one common pitch class), 

4. DIChas1: as above but for DIC value $1$ (i.e., at least one ascending semitone), 
5. DIChasMinus1: as above but for DIC value $-1$ (i.e., at least one descending semitone), 
6. ascSemNextRoot: Boolean value indicating whether the first chord has a pitch class with 

ascending semitone relation to the pitch class of the second chord's root, 
7. descSemNextRoot: as above but with descending semitone, 
8. semNextRoot: as above but with either ascending or descending semitone and 
9. 5thRootRelation: Boolean value indicating whether the first chord's root note is a fifth 

above the root of the second. Root notes of chords are computed with the General Chord 
Type (GCT)~\citep{cambouropoulosGCT_14} algorithm. 

 
After the generic space of two input transitions is computed, i.e. the set of their common 
features, an amalgamation process \cite{Eppe_2015, Confalonieri_2015} constructs several 
amalgams or blends. Therefore, each blend (or an amalgam) of two input spaces is a new 
consistent space that combines parts of the inputs and also includes (or is subsumed by) the 
generic space, i.e., common elements of the inputs need also to be present in any possible blend. 
This methodology has been successfully employed to construct new cadences as blends between 
the perfect cadence and the Phrygian cadence \cite{Eppe_2015, Zacharakis_2015}. 
 
In the melodic harmoniser of this study, the notion of the generic space does not concern all 
transition properties, since this potentially leads to generic spaces that included many properties 
and allow a smaller number of ‘surprising’ blends. Properties are therefore divided into two 
categories: the necessary properties that are included in the generic space during the blending 
process and the desired that are not. If a blend does not include a necessary property that both 
both inputs have, then it is rejected. Blends that do not include desired properties from the inputs 
are not discarded, but are ranked lower, according to the rating process described later, since they 
do not incorporate properties that characterise the inputs. Within the context of the presented 
harmoniser, the necessary properties are fromPCs and toPCs, while the others are considered as 
desired. 
 
The followed methodology for generating transition blends is equivalent to amalgamation, but 
takes advantage of the fact that a dictionary of possible GCT chord types is available in each 
input idiom. Therefore, in this methodology only chords within a predefined set of types (but 
with any possible root) can be used for generating transition blends. By employing a dictionary 
of acceptable chord types with size N, the number of possible chords, in terms of pitch classes, is 
12 N (every chord type for each possible pitch class root) and the number of possible chord 
transitions is 144N^2. The use of amalgamation for exploring possible blends is thereby not 
necessary, since the ‘universe’ of all possible acceptable blends/transitions is not 
overwhelmingly large. The chord transitions that satisfy the generic space requirements are 
considered as acceptable blends, however, all acceptable blends need to be ranked according to 
some criteria that concern the salience of the features they include. This way, among all possible 
blends, the ones ranked higher are expected to capture more meaningful elements from the inputs 
and the overall harmonic space they are embedded in; depending on the number of possible 
transition blends requested (by a process that involves user selection described later), a specific 
number of the topmost ranked blends is selected for further processing. 



   
 

   
 

 
In this work, the question of how meaningful a blend is, or how high is its ranking among other 
blends, is tackled by summing the quantified salience of the features it inherited from the input 
spaces. The salience value of a feature in a transition depends on the idiom that this transition is 
taken from and reflects how ‘characteristic’ or ‘unique’ this feature is for the examined transition 
in the idiom it belongs to. The numeric value attributed to the salience of a feature in a transition 
is computed as the fraction of one over the number of transitions that also include this feature in 
the examined idiom. Therefore, the greater the number of transitions in an idiom that include a 
feature, the less characteristic, unique, or salient this feature is for each transition that includes it. 
For example, the feature of having the pitch class 11 in the first chord of a transition is very 
salient for the transition describing the perfect cadence in tonal music, since not many transitions 
include a first chord with this feature. Therefore, better blends are the ones that inherit more 
features from the inputs that have larger salience values, a fact that is reflected by the greater 
sum of saliences that represent the rating value of each blend. 
 

Using chord transition blending for constructing compound harmonic spaces 
 
Chord transition blending is combined with learned chord transitions of the idiom-independent 
melodic harmonisation system discussed earlier, in order to construct new harmonic spaces that 
combine and extend the learned ones. Specifically, a compound chord Markov transition matrix 
is constructed that provides musically meaningful GCT chord transitions between learned chords 
of both initial idioms, using potentially new invented chords through transition blending. To this 
end, the 10 most usual transitions are extracted from the learned chord Markov transition tables 
of two initial idioms and the transition blending methodology blends these transitions, generating 
new, blended transitions that are afterwards imported into the compound Markov matrix. Before 
transition blending is employed, potential similar chords of the initial idioms are identified, 
enabling musically rational connections from chords of one initial idiom to chords of the other, 
with a process described later. 
 
Figure FIG_COMPOUND illustrates the general form of a compound chord Markov transition 
matrix that extends two initial idioms, I_1 and I_2. Chords that are common in both initial 
idioms are considered as belonging to different sets, supposing that they potentially have 
different functional roles; e.g. the GCT chord [0, 0 4 7] is found both in the Bach chorales and 
the Jazz idioms and it is treated as a different chord in the compound matrix, i.e., there are two 
rows and two columns related with this chord. The sections A_{i-j} of the matrix include chord 
transitions that either came out of blending or by chord similarity relation (as explained later). 
Transitions in these sections lead directly from idiom i to idiom j. Sections B_{i-x} include 
transitions that lead from idiom I_i to a new chord generated with transition blending, while 
B_{x-i} transitions lead from a new chord to idiom I_i. Section C incorporate transitions 
between new chords and they are not considered in this study, since the harmoniser in this study 
works under the assumption that a new chord can be used only as an intermediate ‘node’ for 
transitioning from I_i to I_j. 



   
 

   
 

 
Figure FIG_COMPOUND: Graphical description of a compound matrix that includes 

chords and transition probabilities of both input idioms, along with new chords that were 
generated through transition blending. 

 
Based on the graphical representation of a compound matrix, as depicted in Figure 
FIG_COMPOUND, employing transitions in section I_i leads to harmonisations that preserve 
character of idiom I_i, since only chords of this idiom are involved. As mentioned above, 
according to the assumption made for the harmonisation system of this study, a new chord 
created by transition blending can only be used as pivot chord that connects a chord from idiom 
I_i with a chord of idiom I_j. Therefore, a blended transition that includes a new second chord, 
e.g. c_i -> c_x, is imported in B_{i-x} if there is a transition in B_{x-j} that has c_x as a first 
chord, i.e. c_x -> c_j. If this requirement is not met, then c_x would potentially constitutes a 
‘dead-end’ (terminal-only) or an ‘unreachable’ (beginning only) chord and, therefore, this blend 
is not considered for further processing. 
 
Before blended transitions are inserted into the compound matrix, a process that identifies 
common or similar chords between the initial idioms is employed for enabling transitions 
between these chords with chords of the other idiom. Two chords are considered similar if they 
belong to the same GCT group, as defined in \cite{ISMIR15_GCTeval}, specifically if they (i) 
have the same root; (ii) have subset-related chord types; and (iii) both include pitch classes that 
are diatonic to the scale of the idiom. For example, in an idiom in C major scale, the chords [0, 0 
4 7], [0, 0 4] and [0, 0 4 7 11] belong to the same GCT group (the group referring to the C major 
chord), while [0, 0 4 7 10] belongs to another group since it include the non-diatonic pitch class 
10. According to this pre-blending process if two chords are similar in both initial idioms, then 



   
 

   
 

the probabilities of all transitions beginning from the chord in I_i (entire row) are copied in the 
row of its similar chord in A_{j-i} and all transitions leading to the chord in I_i (entire column) 
are copied to the column of the similar chord in A_{i-j}. The same process is employed for the 
similar chord in I_j. 
 
For the application of transition blending, the 10 most common transitions in I_1 and I_2 are 
selected as representing the initial idioms. More transitions could be used for representing each 
idiom, but the number of 10 transitions is a good compromise between time efficiency and 
interestingness of the results. While the aim is to examine all possible blends between the 10 
selected transitions in idiom 1 with the 10 selected ones of idiom 2, i.e. the results of  100 
transition blending processes, to further improve time efficiency, some among the 100 possible 
blending processes are not executed. Specifically, transition blending process that have a generic 
space which subsumes (i.e., is more general than) the generic space of at least one other process 
are disregarded. The rationale behind this step is based on the fact that a transition blending 
process X, which has a generic space which is more specific (less general) than the one in 
transition blending process Y, involves input transitions that capture a larger amount of common 
information from their originating initial harmonic spaces. Therefore, the transition blends 
generated from process X are considered to be more specialised and better suited to serve as 
transitions between chords in the initial harmonic spaces. Transition blending processes 
generated by Y are a superset of the ones generated by X, but blends in the set Y-X (transitions 
generated by Y and not X) are more general and capture less common information of the initial 
harmonic spaces and, thereby, they are disregarded. 
 
The final step is to integrate the best rated blends generated by all blending processes described 
above into the compound transition matrix. To this end, the topmost 100 blended transitions from 
each blending process are stored into a set, sorted in descending rating order. A user-defined 
variable in [0,1] defines what percentage of the best of these blends will be integrated in the 
compound transition matrix. If this variable is set to 0, then only the pre-blending connections 
are used in the compound matrix, while a value of 1 integrates all available blends. The 
probability value assigned for each transitions in this set depends on the probability values of the 
input transitions that produced each blend and their rating values. Specifically, the probability 
value of a blended transition is the product of the mean probability of the input transitions with 
the fraction of the rating value of this blend over the maximum rating of all produced blends. 
Another user-defined value allows the relative adjustment of the probability values in A_{i-j}, 
B_{i-X} and B_{X-i}, i\in {1, 2}. Higher values of this variable amplifies the probabilities in 
these regions of the matrix, promoting transitions that connect chords of I_i with chords of I_j, 
resulting in harmonisations that transit more often from chords of one idiom to chords of the 
other. Lower values promote probabilities in the I_i and I_j regions, resulting in harmonisations 
that incorporate larger parts of consecutive chords in a single idiom. 
 
 

Method 
 
Annotated melody files were used as inputs to the melodic harmonisation assistant for generating 
the stimuli that were used in the two experiments described in this section. The idioms that were 



   
 

   
 

mainly involved were learned from sets of Bach chorales and the Jazz pieces, while learned 
idioms based on sets for songs from The Beatles and pieces of Hindemith were also used. The 
choice to incorporate mainly the Bach chorales and the Jazz idioms in the experiments is based 
on the assumption that they should be known and identifiable by the participants, who were 
students of the Music Department of the Aristotle University of Thessaloniki. The first 
experiment is designed to assess the effect of blending between these idioms through perceptual 
tests on categorising the produced melodic harmonisations. An additional inquiry that this 
experiment aims to address is the effect of the implied harmony that the melody incorporates in 
the harmonisation process. To this end, tonal and jazz melodies were harmonised with the Bach 
chorales and Jazz idioms interchangeably, as well as with blended version of these two. 
Additional harmonisations with the learned idioms of The Beatles and Hindemith or their 
blended version were also used to produce material not pertaining to the Bach chorales and Jazz 
idioms. 
 
Furthermore, the Bach chorales are among the most characteristics paradigms of tonal music, 
making them perfectly suitable for examining whether the tonal character of this idiom can be 
drastically altered using blending-based techniques on this tonal idiom itself. Specifically, the 
learned Bach chorales harmonic idiom was transposed in several keys and blending between 
these transposed spaces created new idioms that introduced harmonic elements that extended the 
tonal idiom. This effect and the extent of this diversification of the tonal spaces is assessed in the 
second experiment by using harmonisations of a tonal traditional melody with the idiom of the 
Bach chorales, a ‘wrong’ harmonisation with a transposed version of the Bach chorales idiom in 
the wrong key, transposition-related blends and an extreme harmonic blend between the 
Hindemith and a transposed version of The Beatles idioms. 

Idiom classification experiment 

Stimuli 
Six blocks of stimuli were presented in the idiom blending experiment. Each of the first five 
consisted of a different melody that was harmonised by the system according to the tonal idiom 
(learned through a set of Bach Chorales), the jazz idiom (learned through a set of jazz standards) 
and some of their blends. In a couple of cases some harmonisations were obtained either by 
blending between two other idioms (Beatles and Hindemith) or according to a third idiom 
(Hindemith). Two of the five melodies featured tonal implied harmony (the ‘Ode to Joy’ theme 
by L. W. Beethoven’s 9th Symphony and ‘Ah vous dirai-je, maman’ which is a French children's 
song used as theme in W.A. Mozart's Piano Variations K265), the other two featured Jazz 
implied harmony (‘Summertime’ by G. Gershwin and ‘Someday my prince will come’ by F. 
Churchill, soundtrack from Disney's Snow White and the Seven Dwarfs (1937)), while the last 
one was a Greek folk song melody (‘Του Κίτσου η µάνα’). The last block consisted of a melody 
that was especially composed for the needs of the experiment in order to lack the third degree. 
Thus, a harmonisation following either a major or a minor mode was made equally possible. This 
melody was harmonised according to both modes and their blends. The overall number of stimuli 
(presented in Table 1) in all six blocks was 25.  



   
 

   
 

Procedure 
The experiment took place in three different sessions with simultaneous stimuli presentation 
through loudspeakers (M. Antovic, 2016). Each listening session featured between 10 and 20 
participants. The presentation order of the blocks as well as the presentation order of the different 
harmonisations within each block was different for each experimental session. Listeners were 
provided with a questionnaire asking them to classify each stimulus in a five point likert scale 
between Tonal and Jazz. Apart from the three in-between positions, which implied that the 
stimulus could not be classified as purely Tonal or Jazz but rather as somewhere in the middle, 
the option of ‘Other’ idiom was also provided. In addition to classification, participants were 
asked to note their preference for each stimulus in a scale ranging from 1 to 10.  As a 
familiarisation stage, participants first listened to one tonal and one Jazz harmonisation of the 
Scottish traditional melody Ye Banks and Braes and were informally asked to classify them 
before proceeding to the main experiment. Multiple playbacks of the stimuli were offered in the 
case a listener was unsure of the classification he/she should assign. Overall, including 
instructions, each session lasted about thirty minutes.  

Participants 
Forty listeners (mean age 22, age range = 18-45, 18 male) volunteered to participate in the first 
listening experiment. Participants were students from the Department of Music Studies at the 
Aristotle University of Thessaloniki. All of them reported normal hearing and long term music 
practice (12.8 years on average, ranging from 5 to 30). All participants were naive about the 
purpose of the test and especially about the fact that the creative agent under consideration was 
computational rather than human. 

Type of chromaticism classification experiment 

Stimuli 
This additional experiment featured one traditional Scottish melody (Ye Banks and Braes)  
harmonised using the following: 

1. A tonal idiom as learned from a set of Bach chorales (indicated by ‘BC’). 
2. A ‘wrong’ idiom obtained by transposing the Bach chorales idiom by three semitones 

(‘BC_3’). 
3. A peculiar blend between the style of Hindemith and a transposition of The Beatles by 

three semitones (‘BH’). 
4. Three blends between the ‘correct’ tonality of the Bach chorales idiom and its 

transposition by two, three and four semitones (‘BL_2’, ‘BL_3’ and ‘BL_4’ 
respectively). 

The total number of stimuli was 7 since the tonal harmonisation was presented a twice to test 
consistency of the responses.  

Procedure 
The experiment took place in two different sessions, each one featuring 10 to 20 participants (M. 
Antovic, 2016). The presentation order for the different harmonisations was kept the same for all 
sessions as it was assumed that it would not affect the judgements due to the lack of relativity of 
the task. Listeners were provided with a questionnaire asking them to classify each stimulus in 



   
 

   
 

either one out of four categories: diatonic, chromatic, atonal and other. The smaller number of 
stimuli (5 vs. 25) compared to the style classification experiment (translated into shorter 
experimental time) allowed us to request one additional rating apart from mode class and 
preference for each stimulus: the degree of expectancy characterising each harmonisation. The 
scale of the preference and expectancy ratings ranged from 1 to 5.  As a familiarisation stage, 
participants first listened to one tonal and one Jazz harmonisation of the Scottish traditional 
melody Ye Banks and Braes and were informally asked to classify them before proceeding to the 
main experiment. Multiple playbacks of the stimuli were offered in the case a listener was unsure 
of the classification he/she should assign. Overall, including instructions, each session lasted 
about fifteen minutes.  

Participants 
Thirty listeners (mean age 22.2, age range = 19-29, 13 male) volunteered to participate in the 
listening experiment. Participants were students from the Department of Music Studies at the 
Aristotle University of Thessaloniki. All of them reported normal hearing and long term music 
practice (12 years on average, ranging from 6 to 20). All participants were naive about the 
purpose of the test and especially about the fact that the creative agent under consideration was 
computational rather than human. 

Results 
 

Idiom and mode classification experiment 
 
Figure 1 presents the histograms for the six categories provided for classification together with 
the preference ratings on the ten-point scale. Table 1 shows the excess kurtosis values (kurtosis - 
3) for the preference ratings and for the ratings on the Tonal vs. Jazz classification (where the 
‘Other’ bin was omitted). Lower kurtosis values signify the existence of more outliers (i.e., lower 
agreement among participants) while higher ones represent a distribution with less outliers (i.e., 
higher agreement among participants). It can be observed that the agreement regarding 
classification is generally greater when melody and harmonisation come from the same idiom 
(i.e., when no blending of any form takes place). Also, the mode classification (major vs. minor) 
distributions feature the highest kurtosis values compared to all other distributions. Preference 
ratings lead to somewhat flatter distributions (but not too far away from normal) for the majority 
of the stimuli. 
 



   
 

   
 

 
 
 
 
  
Table 1. Excess kurtosis values of the classification and preference distributions for each stimulus. (Bc: Tonal harmonisation, Jz: Jazz 
harmonisation, Bl_L_H_M: blended harmonisation with low, medium or high blending rate respectively, Hm: Hindemith 
harmonisation, other: Beatles-Hindemith blend). 

 Ah vous dirai-je, 
maman Greek folk song Ode to joy 

Someday my 
prince will 

come 
Summertime major-minor 

 Bc Jz Bl_
L 

Bl
_M 

Bc Jz Bl_
M 

Bl_
H 

Hm Bc Jz Bl_
M 

Bl_
H 

othe
r 

Bc Jz Bl_
L 

Bc Jz Bl_
M 

Mj Mn Bl_
L 

Bl_
M 

Bl_
H 

Classif
ication 

4.79 -.23 .08 .54 -.68 -.38 .87 -.37 -.28 2.9 -.51 .55 -.94 -.64 -.04 1.7 .67 -.92 -.24 -.6 6.7 1.55 1.2 2.5 -.25 

Prefe 
rence 

-1.0 -.94 -1.1 -.6 .39 -.45 -.33 -.2 .28 -0.4 -.29 -.12 .47 -.51 -.17 -59 .54 .10 2.0 -.25 .09 .08 .07 -.54 .10 



   
 

   
 

 
 

  

  

  
Figure 1. Histograms of the participants’ responses regarding classification (left) and preference 
(right) for the different melodies and harmonisations. 
 
 



   
 

   
 

Effect of harmony  
 
Since most of the distributions failed to pass a Shapiro-Wilk test of normality, a non-parametric 
approach was adopted for the analysis of the data. Friedman’s ANOVA tests were applied to the 
Tonal vs. Jazz discrete variable (once again excluding the ‘Other’ field) to reveal a potential 
effect of harmonisation on idiom classification and/or preference for the examined melodies. The 
results shown in table 2 indicate that while the different harmonisations indeed affected the 
idiom classification of every single melody, preference was affected only for Ode to Joy and 
major-minor at the p<.001 significance level.  
 
Table 2. Friedman’s ANOVA for classification (without the ‘other’ field) and preference. 

  Ah vous 
dirai-je, 
maman 

Greek folk 
song 

Ode to Joy Someday 
my prince 
will come 

Summertime major-
minor 

 
 
 

Classification 

x2 56.87 48.95 70.12 56.853 46.58 75.908 

df 3 4 4 2 2 4 

p .000 .000 .000 .000 .000 .000 

 
 
 

Preference 

x2 8.130 8.153 20.33 7.986 8.153 19.532 

df 3 4 4 2 2 4 

p .043 .086 .000 .018 .079 .001 

 
 
As a post-hoc analysis, Wilcoxon-Signed-Rank tests for all possible pairs of harmonisations 
within each melody were applied to identify the exact pairs that were classified as significantly 
different. Bonferroni correction (p/number of comparisons) was also applied to correct for 
multiple comparisons. Tables 3 to 8 present the significantly different pairs for each melody 
together with their effect sizes. Only four out of ten Ode to Joy pairs were classified as different. 
The harmonisation according to Bach’s chorale style (i.e., the more expected tonal harmony) was 
classified differently compared to all other harmonisations, however no different classification 
was attributed to the blended (either melody-idiom or cross idiom blends) harmonisations. On 
the other hand, all but one Ah vous dirai-je, maman pairs were classified differently and the same 
stood for seven out of ten of the Greek folk song pairs, all the pairs of Someday my prince will 
come and Summertime and nine out of ten major-minor pairs. This analysis shows that, with the 
exception of Ode to Joy where the success of the blending system was partial, the harmonisations 
produced by the system for the rest of the melodies seemed to have generated distinguishable 
harmonic idioms. 
 
 



   
 

   
 

Table 3. Significantly different classified pairs of Ode to Joy harmonizations identified through 
Wilcoxon-Signed-Rank tests with Bonferroni correction (p/10). 
 Ode to Joy 

 Jz vs Bc M vs Bc H vs Bc Other vs Bc 

Z -5.02 - -5.5 -  -5.5 - -5.0 - 

p <.001 <.001 <.001 <.001 

Effect size -0.56 -.61 -.62 -.59 

 
 

Table 4. Significantly different classified pairs of Ah vous dirai-je, maman harmonizations 
identified through Wilcoxon-Signed-Rank tests with Bonferroni correction (p/6). 
 Ah vous dirai-je, maman 

 Jz vs Bc L vs Bc M vs Bc L vs Jz M vs L 

Z -5.28 - -4.88 - -4.7 - -4.8 + -2.86 - 

p <.001 <.001 <.001 <.001 <.001 

Effect size -.60 -.57 -.62 -.57 -.39 

 
 
 
 
Table 5. Significantly different classified pairs of the Greek folk song harmonizations identified 
through Wilcoxon-Signed-Rank tests with Bonferroni correction (p/10). 
 Greek folk song 

 Jz vs Bc M vs Bc H vs Bc H vs Jz Hm vs Jz H vs M Hm vs M 

Z -5.03 - -4.21 - -3.96 - -3.80 + -4.50 + -3.38 + -3.71 + 

p <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Effect size -.59 -.58 -.46 -.45 -.62 -.47 -.60 

 
 

Table 6. Significantly different classified pairs of Summertime harmonizations identified through 
Wilcoxon-Signed-Rank tests with Bonferroni correction (p/3). 



   
 

   
 

 Summertime 

 Jz vs Bc M vs Bc M vs Jz 

Z -5.5 - -3.8 - -3.5 + 

p <.001 <.001 <.001 

Effect size -.61 -.45 -.40 

 
 

Table 7. Significantly different classified pairs of Someday my prince will come harmonizations 
identified through Wilcoxon-Signed-Rank tests with Bonferroni correction (p/3). 
 Someday my prince will come 

 Jz vs Bc M vs Bc M vs Jz 

Z -5.4 - -4.8 - -4.3 + 

p <.001 <.001 <.001 

Effect size -.63 -.56 -.52 

 
 
 
 

Table 8. Significantly different classified pairs of major-minor harmonizations identified through 
Wilcoxon-Signed-Rank tests with Bonferroni correction (p/10). 

 Major - Minor   

 Mn vs Mj L vs Mj M vs Mj H vs Mj L vs Mn M vs Mn H vs Mn H vs L H vs M 

Z -5.05 -4.36 -4.64 -3.73 -4.32 -4.33 -4.75 -2.80 -2.81 

p <.001 <.001 <.001 <.001 <.001 <.001 <.001 .001 .001 

Effect 
size 

-.60 -.54 -.55 -.45 -.54 -.52 -.56 -.36 -.35 

 
 
In the same manner as above, significant differences in preference as a result of harmonisation 
for each separate melody were further examined in a post-hoc analysis. Since the Friedman’s 
ANOVA showed a significant effect (at the level of p <.001) only for Ode to Joy and major-
minor these were the only two melodies that were tested through a Wilcoxon-Signed-Rank test. 
Table 9 shows the pairs that featured a significant difference in preference along with the effect 



   
 

   
 

sizes. The ‘Other’ harmonisation of Ode to Joy was significantly less prefered compared to the 
Bach, Jazz and medium blend and also the major harmonisation of the major-minor melody was 
less prefered compared to the minor one. Based on these results, it can be supported that, with 
very few exceptions, there were generally not significant differences in preference for the 
different harmonisations of a given melody.  
 
 
 
 
 
Table 9. Significantly different preference for pairs of Ode to Joy and major-minor 
harmonizations identified through Wilcoxon-Signed-Rank tests with Bonferroni correction 
(p/10). 
 Ode to Joy major-minor 

 Other vs Bc Other vs Jz Other vs M Mn vs Mj 

Z -3.30  -3.70  -2.84  -3.72  

p .001 <.001 .004 <.001 

Effect size -.37 -.41 -.32 -.42 

 

Effect of melody 
 
Since we showed that the different harmonisations affected idiom classification, we were 
additionally interested to examine whether each of the melodies under study was affected by a 
different harmonisation in the same way. To this end, we considered only the harmonisations 
according to Bach’s chorales (Tonal) and Jazz that were shared by all blocks of melodies. The 
assumption here was that if idiom perception was merely based on harmonic style then idiom 
classification would be the same for these two harmonisations regardless of the harmonised 
melody. A Friedman’s ANOVA for Tonal and Jazz harmonisations across the five tested 
melodies did not confirm this hypothesis. Table 10 shows that the classification of both Tonal 
and Jazz harmonisations was affected by the melody itself despite not considering the ‘Other’ 
field. More specifically, the post-hoc Wilcoxon-Signed-Rank tests presented in table 11  showed 
that the tonal harmonisation of the jazz melody of Summertime was classified as less tonal than 
the ones of the tonal melodies of Ode to Joy and Ah vous dirai-je, maman. Additionally, the Jazz 
harmonisation of the jazz melody of Someday my prince will come was classified as more jazz 
than the jazz harmonisation of the tonals Ode to Joy and Ah vous dirai-je, maman. Finally, even 
the jazz harmonisation of the modal melody of the Greek folk song was classified as more jazz 
than the jazz harmonisation of the tonal Ode to Joy.  
 
Table 10. Friedman’s ANOVA (without the ‘other’ field) for comparison between the same 
harmonisation style across the five melodies. 



   
 

   
 

 Tonal Jazz 

x2 14.92 29.52 

df 4 4 

p .005 <.001 

 
 
Table 11. Significantly different pairs identified through Wilcoxon-Signed-Rank tests with 
Bonferroni correction (p/10) . 

 Tonal Jazz 

 Ode to Joy vs. 
Summertime 

Ah vous dirai-
je, maman vs. 
Summertime 

Ode to Joy 
vs. Greek 
folk song 

Ode to Joy vs. 
Someday my 
prince will 
come 

Someday my 
prince will come 
vs. Ah vous 
dirai-je, maman 

Z -3.3 -3.09 -3.42 -4.29 -3.29 

p .001 .002 .001 .000 .001 

Effect 
size 

-.37 .35 .39 -.49 -.39 

 

Type of chromaticism classification experiment 
 
Figure 2 presents the histograms for the four categories provided for harmonic style 
classification together with the preference and expectancy ratings on the five-point scale. 
Similarly to the previous analysis, table 12 presents the excess kurtosis values (kurtosis - 3) for 
all three distributions (treating the style classification as a discrete rather than a categorical 
variable for depiction purposes) in order to get a quantification of the outlying values. The results 
of a Friedman’s ANOVA on the preference and expectancy distributions (shown in table 13 ) 
revealed that there was an effect of harmonisation on both properties. Tables 14 and 15 present 
the significantly different pairs of harmonisations as resulted from a post-hoc analysis (i.e., 
Wilcoxon Signed-Rank tests).  



   
 

   
 

 
Figure 2. Histograms of the responses regarding style classification (left), preference (middle) 
and expectancy (right) for the different harmonisations of Ye Banks and Braes. (1: Diatonic, 2: 
Chromatic, 3: Atonal, 4: Other) 
 
 
 
 
 
Table 12. Kurtosis values for mode categorization, preference and expectancy responses for the 
different harmonisations of Ye Banks and Braes. 

 Excess Kurtosis 



   
 

   
 

BC_1 TD4 Bb TD2 BC_2 AT TD3 

Style Classification - -1.44 .55 -.09 8.88 6.25 -.63 

Preference -.077 -.03 3.52 1.26 -1.07 1.38 -.77 

Expectancy .35 .05 .26 -1.26 1.87 2.85 -.14 

 
 

According to figure 2 and table 12 the BC harmonisation was unanimously classified as diatonic 
in the first presentation and the same with very high agreement in the second exposure where it 
was mistaken for chromatic, atonal or other from only four out of thirty participants. In addition, 
it was rated as the most expected harmonisation and it was more preferred compared to Bb and 
Atonal. The Bb and the Atonal harmonisations were classified as Atonal with high agreement 
and were attributed the highest unexpectancy (with an exception between B�and TD4 where the 
difference was not significant) and the least preference among the rest harmonisations. The TD2, 
TD3 and TD4 were mostly rated as chromatic but with some percentage of participants rating 
them as diatonic or even as other. The TD4 was the harmonisation that featured the least 
agreement among participants for style classification. These three harmonisations were rated as 
less expected than BC but most expected than Bb and Atonal. The difference of expectancy 
among them was insignificant. Regarding preference, TD4 was significantly less preferred than 
TD3 but no significant difference was found among any of these blends and BC.  

 
Table 13. Friedman’s ANOVA for expectancy and preference between the various 
harmonisations of Ye Banks and Braes (N=30). 

 Expectancy Preference 

x2 118.05 85.40 

df 6 6 

p <.001 <.001 

 
 
Table 14. Significant difference for expectancy from post-hoc analysis (Wilcoxon signed rank 
test) of all pairs (Bonferroni correction p/21). 

 BC_1 TD4 Bb TD2 BC_2 AT TD3 

BC_1 -       

TD4 X -      

Bb X  -     

TD2 X  X -    



   
 

   
 

BC_2  X X X -   

AT X X  X X -  

TD3 X  X  X X - 
 
 

Table 15. Significant difference for preference from post-hoc analysis (Wilcoxon signed rank 
test) of all pairs (Bonferroni correction p/21). 

 BC_1 TD4 Bb TD2 BC_2 AT TD3 

BC_1 -       

TD4  -      

Bb X X -     

TD2   X -    

BC_2   X  -   

AT X X  X X -  

TD3  X X   X - 

 
 

 
 

Discussion 
 
As discussed in the introduction, a creative agent may be evaluated both in terms of the 
processes it incorporates and in terms of the artefacts it generates. This piece of research has 
focused on empirical evaluation of a number of computer-generated melodic harmonisations 
(i.e., products of the harmonic blending system). The most direct way to evaluate creativity 
would be to ask the participants’ opinion on the extent of creativity demonstrated by each 
product (in our case harmonisation). However, since this is essentially equivalent to judging the 
creativity of the producer, it might introduce some biases by causing subconscious assumptions 
regarding its identity (e.g., human or computational). Besides, this computational system had a 
well-manifested target, which was the creation of hybrid harmonic idioms through harmonic 
blending. In this sense, there was a clear criterion for measuring success: idiom classification. By 
additionally requesting judgements on preference and expectancy it was also aimed to assess the 
value and novelty of the harmonisations. 
 
What the empirical experiments have shown was that the different harmonisations produced by 
the system have indeed influenced idiom perception. The harmonisations according to purely 



   
 

   
 

tonal or jazz transition matrices were mostly classified as belonging to the originating harmonic 
style. On the contrary, harmonic blends between tonal and jazz harmony were mostly perceived 
as belonging to either a hybrid jazz/tonal idiom or to an unidentifiable ‘other’ idiom. The ‘other’ 
field was also more prominent in the two cases where the harmonisation style was not one of the 
tonal, jazz or their blends (i.e., Hindemith and a blend between Beatles and Hindemith). This 
shows that participants were -up to some extent- able to discriminate between a blend and a 
harmonisation that was based on a totally different idiom. At the same time, inspection of the 
kurtosis values of the classification distribution showed that the harmonisation of a melody by an 
idiom other than its original (either blended or not) generally lowers agreement among 
participants regarding the perceived musical style. That is, blending (either melody-idiom or 
cross-idiom) seems to introduce some uncertainty for idiom identification.  
 
The identified effect of harmony on idiom perception was also melody dependent, meaning that 
idiom classification was decided by consideration of both harmonic and melodic characteristics. 
This was tested on harmonisations based on purely tonal or jazz style so as to have the same 
reference for all melodies. This finding implies that even a melody-idiom blend (i.e., 
harmonisation of a melody according to an idiom other than its original) may constitute a 
perceivable type of blend. In addition, preference ratings were significantly lower only for the 
Ode to Joy ‘other’ harmonisation in comparison to the other versions.  
 
The mode classification (major-minor) experiment showed that people were able to classify the 
major mode very successfully. The slight confusion regarding minor mode classification is due 
to the fact that the short excerpt was concluded with a Picardy third that is common in Bach’s 
minor mode chorales. This has expectedly shaped the judgments of the listeners slightly towards 
major mode. Other than that, the blends were mostly classified as in-between major and minor 
mode or rated as belonging to the ‘other’ mode. In addition, the preference ratings were 
significantly different only between the purely minor and major harmonisations (with a 
preference for minor).  
 
Finally, the type of chromaticism clasification experiment showed that judgments on 
compositional style were quite consistent except for TD4 harmonisation, ratings of which were 
almost equally distributed between tonal, chromatic and other. The tonal harmonisation 
according to Bach’s chorale style received a unanimous tonal rating in the first presentation with 
very slight differentiation in the second one. The B�harmonisation was mostly judged to be 
atonal as was the Atonal one. The TD2 was generally considered to be chromatic as was TD3 but 
with slightly less agreement (small leakage towards tonal and other in both cases). B�and 
Atonal received significantly lower preference ratings accompanied by significantly lower 
expectation ratings; a confirmation of excess novelty not being highly appreciated (Margulis and 
Beatty, 2008) and of the fact that the harmonisations deliberately produced to sound ‘wrong’ 
were identified as such. On the other hand, the BC harmonisation received significantly higher 
ratings for expectancy compared to all the rest but not any significant difference when preference 
was concerned (with the exception of B�and Atonal). This means that the blending system 
produced some novel harmonisations (i.e., TD4, TD2 and TD3) that were both recognised as 
being different stylistically and were equally appreciated in comparison to a conventional tonal 
harmonisation.  
 



   
 

   
 

Overall, based on the above it can be supported that the harmonic blending system has indeed 
succeeded in producing perceivable blends -both across idioms, modes and types of 
chromaticism- that were equally preferred compared to non-blends. Here it is worth noting that, 
even though it is assumed that successful style classification provides a self-rewarding 
experience and therefore should positively influence aesthetic judgements (Leder et al., 2004), it 
has not affected preference ratings in a consistent way. The Ode to Joy ‘other’ harmonisation has 
indeed received significantly lower preference ratings combined with increased ‘other’ 
classification but this was not the case for the Greek folk song M and Hm harmonisations or the 
TD4 harmonisation. Of course, the fact that some participants reported the ‘other’ field does not 
necessarily mean that they had difficulty identifying some style that did not fall into the provided 
categories. However, the most probable explanation for this may be that, when music 
appreciation is concerned, successful style identification is an elementary level that can only be 
rewarding once the task is not completely trivial. The complete inability to perform style 
classification might indeed lead to negative aesthetic judgements but a situation in-between 
triviality and absolute unpredictability whereby despite some cues style cannot be classified with 
indisputable certainty may be also appear compelling. This study has not provided with evidence 
to either support or reject this hypothesis as the differences in preference were minimal. It has to 
be noted, however, that alterations between stimuli in this experiment concerned harmony alone, 
which is only one out of various parameters that define musical style.  
 
Future work will aim to quantify the potential influence of the harmonisation assistant on human 
creative processes. Such an evaluation would not be possible through the passive listening 
protocol adopted in this work. Some active interaction with the system would be required 
instead. In this direction, a pilot study that aimed to assess the enhancement of human creativity 
through interaction with the system was conducted. The objective was to examine whether (and 
in what way) the harmonisation of a certain melody by humans would be affected as a result of 
participants’ exposure to a number of different harmonisations of the same melody produced by 
the system. This would, in turn, require a reliable measure of harmonic dissimilarity that could 
be used as a metric of harmonic divergence (i.e., inspiration offered by the products). This piece 
of research is still in progress and results will be reported in future work. The obvious next step 
would be to allow people to make use of the system without any type of mediation to evaluate 
both user experience and artefact production in such a scenario.  
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