
D8.4
System extension exhibiting

serendipitous behaviour

Authors Joseph Corneli, Simon Colton
Reviewers Ewen Maclean

Grant agreement no. 611553
Project acronym COINVENT - Concept Invention Theory
Date September 1, 2015
Distribution PU/RE/CO

Disclaimer

The information in this document is subject to change without notice. Company or product names mentioned in this document may
be trademarks or registered trademarks of their respective companies.

The project COINVENT acknowledges the financial support of the Future and Emerging Technologies (FET) programme within
the Seventh Framework Programme for Research of the European Commission, under FET-Open Grant number 611553.

Abstract
The work presented here relies on the independent extension of individual COINVENT modules. A distributed, combinatorial
search process seeks to find novel combinations of modules that produce output satisfying a success condition. This may occur for
surprising reasons, for instance, if the outside world changes, or if the system gains new knowledge that unlocks a new approach.

Keyword list: serendipity, tests, automated programming, flowcharts, type signatures.

Changes

Version Date Author Changes
0.1 01.08.15 Joseph Corneli Creation
0.2 01.09.15 Joseph Corneli Revision for internal review
0.3 07.09.15 Joseph Corneli Minor corrections to text
0.3 30.09.15 Joseph Corneli Address reviewer comments

Executive Summary

Rather than relying on a specific module that can be plugged into the system to introduce serendipi-
tous effects, the work presented here relies on the independent extension of individual COINVENT
modules. The system has the potential to realise “serendipity”, understood as as a two-phase
process involving the discovery of something unexpected in the world and the invention of an
application for the same.

The flowcharting system FloWr provides a suitable basis for the system extension because of
its intrinsic modularity, and its support for automated programming. Discovery is broken down
into a generative process that produces combinations of nodes in new flowcharts and a reflective
process that notices interesting which flowcharts are potentially interesting. In the prototype,
flowcharts are potentially interesting either if they haven’t been tried before, or if they could be
possibly be repaired through a simple modification. Invention is broken down into an experimental
process and an evaluation process. In these early experiments, the basic result the system is aiming
to achieve is simply to generate a new combination of nodes that can fit together and that generate
non-empty output. The system has a “prepared mind” comprised of tests that tell it which nodes
can fit together, as well as a record of previous trials. It queries FloWr via its Web API to test new
combinations of nodes to see if they produce results.

Future work centres on making the system more discriminating, so that instead of simply
searching for non-empty output, the process could search for output with some particular quality.
Wrappers for COINVENT software components that are available as web services have been
developed, which means they can be included in flowcharts. Improvements to search, and the
possibility of blending flowcharts are interesting prospects for future work.

CONTENTS

Contents

1 Introduction 1

2 Background: Features of the FloWr system 3

3 Overview of the system extension 4

4 Prototype code for testing node combinations 5

5 Future Work 6

6 Conclusions 7

Annex

A Tests that qualify node input and output 8

B Prototype for a web-servicised COINVENT architecture 9

iv September 1, 2015 611553

D8.4 Serendipitous behaviour FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

1 Introduction

Two key phrases need to be clarified at the outset: first, the meaning of system extension that this
work assumes, which is straightforward, but requires some comment, and second, the particular
interpretation of serendipitous behaviour that we make use of, which has been discussed in depth
in D5.1 and D5.2, but which should be clarified here from the point of view of system building.

System extension Rather than relying on a specific module that can be plugged into the system to
introduce serendipitous effects, the work presented here relies on the independent extension
of individual COINVENT modules. Serendipity is not exhibited by one specific module,
but is a global, aggregate behaviour of the system as a whole. What is described here is a
route by which individual components of the COINVENT system can be extended with an
interface to another system, in such a way that the resulting global behaviour will exhibit
serendipitous effects.1 Simplified examples will be discussed, and as more components of
the system are extended, richer examples will become available.

Serendipitous behaviour Our understanding of the term “serendipity” as a two-phase process
involving discovery of something unexpected in the world and invention of an application
for the same is developed in detail in D5.1. In D5.2, evaluation standards for computational
serendipity are described, and applied to three case studies. The key features of the model
are the trigger T , which arises by chance outside the control of the system, the prepared
mind, with components p and p′ which, respectively, supply the curiosity required perform
a focus shift – noticing that T is interesting – and the sagacity to find a bridge from the
now-interesting trigger T ? to a result, R, with positive value. Figure 1 shows a relatively
generic architecture diagram, which serves as a guide to the implementation work that will
be discussed here. In this figure, p is viewed as an iterative process, divided into two com-
ponents: p1, which notices particular aspects of the data, and p2, which offers reflections
about those aspects. Similarly, p′ is an iterative process that relies on functions p′1 and p′2,
which verify interesting features of the trigger by devising experiments and assessing their
results.

The system to which individual modules are to be integrated is called FloWr [1]. FloWr is
a user interface for creating and running flowcharts built of small modules called ProcessNodes,
each of which carries out a simple processing step. Figure 2 is a screenshot showing an example of
a flowchart. In day-to-day use, FloWr can be used a visual programming environment. It can also
be invoked programmatically, on the Java Virtual Machine – or using any language via a new web
API. The goals of FloWr are to be both a user friendly tool for co-creativity, and an autonomous
Flowchart Writer.

Here, we target the latter scenario, and look at ways to assemble available ProcessNodes into
flowcharts automatically, and evaluate the results. Some changes to FloWr have been necessary
to facilitate this work, and these will be described, along with a preliminary evaluation of the
system’s serendipity. FloWr provides a suitable basis for the system extension because of its
intrinsic modularity, and its support for automated programming.

1One can compare the notion of a fibre over a manifold.

611553 September 1, 2015 1

D8.4 System extension exhibiting serendipitous behaviour

Discovery: generative
process T feedback

reflective
process

p1p2

T ?[Focus shift]

Invention: verification

experimental
process

p′1p′2

R
evaluation
process

...

Figure 1: Generic architecture sketch for a serendipitous system

Figure 2: An example of a flowchart in the FloWr system

2 September 1, 2015 611553

D8.4 Serendipitous behaviour FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

2 Background: Features of the FloWr system

In the backend, FloWr’s flowcharts are stored as scripts. These specify the names of the nodes
involved in the flowchart, together with their (input) parameters and (output) variables. A connec-
tion between nodes is established when one node’s input parameter references the output variable
of another node. Listing 1 is an example with two nodes. Here the WordSenseCategoriser’s
stringsToCategorise parameter takes its setting from the Dictionary’s #dictionaryWords
output variable.

text.retrievers.Dictionary.Dictionary_0

lowerFrequencyPercent:90

upperFrequencyPercent:95

numberRequired:10000

#dictionaryWords = words[*].text

text.categorisers.WordSenseCategoriser.WordSenseCategoriser_0

requiredSense:aj0

stringsToCategorise:#dictionaryWords

#adjectives = haveMainSense[*]

Listing 1: An short script comprised of a Dictionary and a WordSenseCategoriser

Inputs and outputs both come with constraints. For example:

• The Dictionary’s lowerFrequencyPercent and upperFrequencyPercent parameters
are required to be between 0 and 100 and 1 and 100, respectively; and the former should be
less than the latter.

• Both #dictionaryWords and #adjectives are guaranteed to be ArrayLists of strings,
where each string is a single word.

• The WordSenseCategoriser’s stringsToCategorise parameter needs to be seeded
with an ArrayList of strings. The node produces useful output only when these strings
can be parsed as as a space-separated list of words.

• The WordSenseCategoriser’s requiredSense parameter needs to be seeded with a string
that represents exactly one of the 57 British National Corpus Part of Speech tags.

Given constraints of this nature, the first challenge in automated flowchart assembly is to match
inputs to outputs correctly, and to make sure that all required inputs are satisfied.

Appendix A lists new tests that have been introduced to guarantee that constraints of this nature
are met. Node authors can use these tests to specify constraints on inputs and outputs (see Listing
2 for an example).2 The more detail that can be added to these descriptions, the more subsequent
users of the node can reason about its behaviour.

2The Comment formalism has been prototyped in FloWr, but is not yet active in the deployed system. As explained
in Section 4, current experiments were conducted using the same information, copied to another codebase that integrates
with FloWr over the web API.

611553 September 1, 2015 3

D8.4 System extension exhibiting serendipitous behaviour

In short, this additional information should be seen as part of the (type) signature of each
FloWr node along with the standard Java type information (String, ArrayList[String], etc.), Strictly
speaking, only some constraints, like integers that are required to fall within a given range, can be
specified by subtyping; other more global constraints, such as relationships between parameters
and variables, need more elaborate specifications.

public static String lowerFrequencyPercentComment = "S:Required;Test: →
IntInRange[0,100]";

public static String upperFrequencyPercentComment = "S:Required;Test: →
IntInRange[1,100],IntBiggerThan[lowerFrequencyPercent]";

public static String numberRequiredComment = "S:Required;Test: →
PositiveInteger";

public static String wordsComment = "S:Optional;Test:EachOne[IsWord]";

public static String wordsTuplesComment = "S:Optional;Test: →
EachOneInPlaces[tuplesPositionsToKeep,IsWord]";

public static String tuplesPositionsToKeepComment="S:RequiredWith[→
wordsTuples];Test:ExclamSeparatedIntsOrAll"

(a) Additional comment strings in Dictionary.java specify constraints on inputs

public static String lessFrequentWordComment = "Test:IsWord"

public static String mostFrequentWordComment = "Test:IsWord"

public static String wordsTuplesWithFrequency = "Test:MapSelectionFrom[→
wordsTuples]"

public static String words_textComment = "Test:IsWord"

public static String words_frequencyComment = "Test:FloatInRange →
[0,100]"

public static String words_totalOccurrencesComment = "Test: →
NonNegativeInteger"

public static String words_senses_senseComment = "Test:StringInList[→
CombineLists[BNC-POS-TAGS,BNC-POS-PTags]]"

public static String words_senses_OccurrencesComment = "Test: →
NonNegativeInteger"

(b) Additional comment strings in DictionaryOutput.java specify constraints on outputs

Listing 2: Specifying the constraints on inputs and outputs for the Dictionary node

3 Overview of the system extension

The system is implemented following the general purpose design in Figure 1. The following text
summarises the system features in terms drawn from the figure. Note that the system as a whole
is part of a large-scale feedback loop; in other words, “ ... ” from Figure 1 feeds back into the
generative process. This is explained in more detail below.

4 September 1, 2015 611553

D8.4 Serendipitous behaviour FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

Generative process In our current experiment, the system’s potential triggers result from trial
and error with flowchart assembly. Some valid combinations of nodes will produce results,
and some will not. Due to the dynamically changing external environment (e.g., updates to
data sources like Twitter) some flowcharts that did not produce results earlier may unexpect-
edly begin to produce results later on. The system will not try combinations that it knows
cannot produce results, but it may retry earlier flowchart specimens that have the chance to
become viable.

Reflective process The first aspect of the system’s prepared mind lies in a distributed knowledge
base provided by ProcessNode signatures, and another crucial aspect its ability to test candi-
date flowcharts by running them. Randomly assembling a collection of nodes for which no
known working combination existed into a flowchart that works is an occasion for a focus
shift. The new working flowchart becomes interesting.

Experimental process This prompts the question: what made this particular combination work?
Is there a pattern that could be exploited in the future? It may be that no broader pattern
can be found, other than the fact that the combination works, in which case, the successful
combination is the only tangible result, and it is recorded. Successful combinations and
any further inferences about them form a third aspect of the system’s prepared mind. The
bridge to the next set of results (new node combinations and new heuristics for assembling
nodes) is accordingly found by informed trial and error.

Evaluation process In these early experiments, the basic result the system is aiming to achieve
is simply to generate a new combination of nodes that can fit together and that generate
non-empty output. Subsequent versions of the system may have more detailed evaluation
functions, setting a higher bar. For example, a future version of the system could be tuned
to search for flowcharts that generate meaningful poems, as we discuss in [2].

4 Prototype code for testing node combinations

The current code for developing, testing, and reasoning about combinations of nodes is written
in Python. Since potential node combinations can computed using only the node’s signature,
information about node signatures has been extracted and stored separately from FloWr. The
system queries FloWr via the Web API only to test a new combination of nodes to see if it produces
results. It includes an integration with Java using PyJNIus3 that makes the tests described in
Appendix A available in Python, so that potential inputs and received outputs can be tested locally.

A successful combination serves as a template that can be instantiated later. Reasoning back-
wards from a particular goal (e.g., a specific type of output with particular qualitative features) is
supported at a rudimentary level. Successful combinations that can produce a particular kind of
output are stored. This is useful in subsequent runs, in which that type of output may be needed
as an input.

The code for the current prototype is available at https://github.com/holtzermann17/
FloWrTester. Note, a login to FloWr is required in order to obtain an up-to-date API key, which
needs to be copied into the code.

3https://github.com/kivy/pyjnius

611553 September 1, 2015 5

https://github.com/holtzermann17/FloWrTester
https://github.com/holtzermann17/FloWrTester
https://github.com/kivy/pyjnius

D8.4 System extension exhibiting serendipitous behaviour

Figure 3: Basic demo of COINVENT component integration, using FloWr’s web interface

5 Future Work

The more discriminating the system can be about measures of value, the more meaningful an at-
tribution of serendipity to any particular successful run will be. One interesting route would be to
assess the value of explanatory heuristics, rather than generated texts; this would require increased
sagacity on the part of the system. More stringent goals would inform this process. For exam-
ple, instead of simply searching for non-empty output, the process could search for output with
some particular quality (e.g., a subject/verb/object format). FloWr can already reliably generate
output of this sort, using flowcharts that have been built by hand. Interaction between different
heuristically-driven search processes would also be possible, and could produce more surprising
results. Again in the poetry context, one search process could look for narrative outlines that would
structure a poem with, and another process could look for lines or stanzas to fill out that outline.

The population of ProcessNodes constrains (and, as more nodes are added, extends) the pos-
sible strategies for assembling flowcharts. New nodes that carry out core functions of the COIN-
VENT system will make outputs and reasoning steps relevant to the core domains of mathematics
and music available to the system. Appendix B gives an example of a ProcessNode built around
a generic webservice. Writing wrappers for COINVENT components that have been turned into
webservices is similarly straightforward, and has been prototyped (Figure 3). With more fine-
grained modules, a more targeted combinatorial search for new solutions can be conducted. For
instance, modules that could combine to generate valid CASL input would allow the system to
search over the space of valid theories.

The concept of search can be introduced into flowcharts themselves at various levels. Indeed,
at each point in a flowchart there is, in principle, the possibility to run a search. As more options
are generated, it may be relevant to backtrack and select a different part of the search space to
explore. FloWr can support simple loops, but more complex loops that would adjust the structure

6 September 1, 2015 611553

D8.4 Serendipitous behaviour FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

of underlying programs (as envisioned in Figure 1) are not yet supported. Valuable search param-
eters that are given a favourable local evaluation may also be propagated forward, as we examined
in a distributed model of search that aimed to realise a global condition [3].

Given the importance of signatures in the COINVENT formalism, the work presented here
suggests the interesting possibility of blending flowcharts. This has not been attempted; however in
[4], we examine the somewhat related issue of blending succinct video game descriptions, written
in the Video Game Description Language (VGDL). An ability to blend objects from semantic
domains not initially within the COINVENT remit would show the strength of the approach.

6 Conclusions

Describing the relationships between nodes that exist in the form of constraints allows automated
processes to assemble components into functioning programs. Explicitly specifying component
interfaces supports a combinatorial search for new solutions. Happy, unexpected, accidental dis-
coveries are more likely to occur, and to register, if, in addition, we are able to discern the proper-
ties and value of generated artefacts. Combinatorial and evaluative concerns can both be addressed
with programmatic tests. The expressiveness of the testing and constraint language is a major lim-
itation; another limitation is the size of the collection of available ProcessNodes. Current work is
aimed at facilitating further extensions. Where possible, input fields should be broken down into
machine-understandable components. The result will be a version of the COINVENT system that
can be used by programs as well as by people, and that can (sometimes) generate serendipitous
results.

References

[1] COLTON, S., AND CHARNLEY, J. Towards a Flowcharting System for Automated Process
Invention. In Proceedings of the Fifth International Conference on Computational Creativity
(2014), D. Ventura, S. Colton, N. Lavrac, and M. Cook, Eds.

[2] CORNELI, J., JORDANOUS, A., SHEPPERD, R., LLANO, M. T., MISZTAL, J., COLTON,
S., AND GUCKELSBERGER, C. Computational poetry workshop: Making sense of work in
progress. In Proceedings of the Sixth International Conference on Computational Creativity,
ICCC 2015, S. Colton, H. Toivonen, M. Cook, and D. Ventura, Eds. Association for Compu-
tational Creativity, 2015.

[3] CORNELI, J., AND MACLEAN, E. The search for computational intelligence. In Social
Aspects of Cognition and Computing Symposium, Proc. Annual Convention of the Society
for the Study of Artificial Intelligence and Simulation of Behaviour (SSAISB), University of
Kent, Canterbury, UK, 20-22nd April 2015 (2015), Y. J. Erden, R. Giovagnoli, and G. Dodig-
Crnkovic, Eds.

[4] GOW, J., AND CORNELI, J. Towards generating novel games using conceptual blending. In
Proceedings of the Second AIIDE Workshop on Experimental AI in Games (EXAG2), 14-15
November 2015, Santa Cruz, CA, USA (2015), M. Cook, A. Liapis, and A. Zook, Eds. To
appear.

611553 September 1, 2015 7

D8.4 System extension exhibiting serendipitous behaviour

A Tests that qualify node input and output

IsRegex (String) Guarantees that the object is a Java regular expression.

StringInList (String, String[]) Guarantees that the given string is an element of the given list
of strings.

PositiveInteger (int) Guarantees that the given integer is positive.

NonNegativeInteger (int) Guarantees that the given integer is ≥ 0.

IntAsString (String) Guarantees that the string can be parsed as an integer.

IntAsStringOrAll (String) Guarantees that the string can either be parsed as an integer or else
that it is the unique string “all”.

IntInRange (int, int, int) Guarantees that the first argument is between the other two (inclu-
sive).

FloatInRange (float, int, int) Guarantees that the first argument is between the other two
(inclusive).

IntLessThan (int, int) Guarantees that the first argument is less than the second argument (ex-
clusive).

IntBiggerThan (int, int) Guarantees that the first argument is bigger than the second argument
(exclusive).

IntLeqThan (int, int) Guarantees that the first argument is less than the second argument (in-
clusive).

IntGeqThan (int, int) Guarantees that the first argument is bigger than the second argument
(inclusive).

IsWord (String) Guarantees that the argument does not contain any spaces.

ExclamSeparatedWords (String) Guarantees a !!-separated list of words.

ExclamSeparatedInts (String) Guarantees a !!-separated list of integers, as strings.

ExclamSeparatedIntsOrAll (String) Guarantees a !!-separated list of integers, as strings, or
“all”.

SemicolonSeparatedWords (String) Guarantees a ;-separated list of words.

ExclamSeparatedItemsFromList (String, String[]) Guarantees that the input string is a !!-
separated list of items from the string array.

IntMinimizesTuplesLengths (int, ArrayList<String[]>) Guarantees that the input integer
is smaller than the length of the shortest input tuple.

UnderscoreSeparatedWords (String) Guarantees a -separated list of words.

EachOne (String, ArrayList<String>) Guarantees that the test named by the input string is
satisfied by each element of the ArrayList of strings.

8 September 1, 2015 611553

D8.4 Serendipitous behaviour FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

B Prototype for a web-servicised COINVENT architecture

The following code gives an example of a web-service wrapped up as a ProcessNode. It queries
the public AlchemistAPI service for JSON with a GET request, and uses that to set an output
variable. Querying web services using a POST request is similar.

Alchemist.java:

package ccg.flow.processnodes.mynodefolder.Alchemist;

import ccg.flow.processnodes.ProcessNode;

import ccg.flow.processnodes.ProcessOutput;

import java.io.BufferedReader;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import java.net.URLEncoder;

import java.util.HashMap;

import java.util.Map;

import java.net.MalformedURLException;

import java.io.IOException;

import org.json.simple.*;

import org.json.simple.parser.JSONParser;

// other JSON libraries mentioned in the comments at

// http://stackoverflow.com/a/18998203/821010

// are likely to be more convenient

public class Alchemist extends ProcessNode {

// according to the service provider this should be kept secret

// it is easy to get your own from http://www.alchemyapi.com/

public String apiToken = "xx";

public String apiEmail = "xxxxxxxxxxxxxxxxxxxxxxx";

public String apiCommand = "calls/data/GetNews";

@Override

public ProcessOutput process () {

AlchemistOutput output = new AlchemistOutput();

String url = "http://access.alchemyapi.com/";

String charset = "UTF-8";

// the required parameters will go into the URL

Map<String,String> params = new HashMap<String,String>();

611553 September 1, 2015 9

D8.4 System extension exhibiting serendipitous behaviour

params.put("apikey",apiToken);

params.put("outputMode","json");

params.put("start","now-1d");

params.put("end","now");

params.put("maxResults","100");

params.put("q.enriched.url.enrichedTitle.relations.relation","| →
action.verb.text=acquire,object.entities.entity.type=Company →
|");

params.put("return","enriched.url.title");

params.put("c",apiCommand);

try {

StringBuilder sb = new StringBuilder();

for (Map.Entry<String, String> entry : params.entrySet()) {

if(sb.length() > 0) sb.append(’&’);

sb.append(URLEncoder.encode(entry.getKey(),charset) + "="

+ URLEncoder.encode(entry.getValue(),charset));

}

String query = new String(sb);

// route the query to the URL via the correct API command

HttpURLConnection con = (HttpURLConnection) new URL(url + →
apiCommand + "?" + query).openConnection();

con.setRequestMethod("GET");

con.setDoOutput(true);

con.setRequestProperty("Accept-Charset", charset);

con.setRequestProperty("Content-Type", "application/x-www- →
form-urlencoded;charset=" + charset);

System.out.println("\nSending ’GET’ request to URL : " + url →
+ apiCommand + "?" + query);

System.out.println("Response Code : " + con.getResponseCode →
());

InputStream is = con.getInputStream();

BufferedReader in = new BufferedReader(new InputStreamReader →
(is));

String s;

StringBuilder response = new StringBuilder();

while ((s = in.readLine()) != null)

response.append(s);

in.close();

String responseAsString = new String(response);

// Parse the JSON response

Object obj = JSONValue.parse(responseAsString);

10 September 1, 2015 611553

D8.4 Serendipitous behaviour FP7-ICT-2013-10 Collaborative Project 611553 COINVENT

JSONObject jobj = (JSONObject)obj;

JSONObject result = (JSONObject)jobj.get("result");

JSONArray docs = (JSONArray)result.get("docs");

String titles = "";

for (int i = 0; i < docs.size(); i++)

{

JSONObject doc = (JSONObject)docs.get(i);

JSONObject source = (JSONObject)doc.get("source");

JSONObject enriched = (JSONObject)source.get(" →
enriched");

JSONObject docurl = (JSONObject)enriched.get("url");

String title = (String)docurl.get("title");

titles += title + "\n";

}

// populate the output

// (in this case, just with the concatenated titles,

// in general we can build something with more structure)

output.returnValue = titles;

}

catch (Exception ex) {

if (ex instanceof MalformedURLException) {

reportError("Malformed URL.");

return null;

} else if (ex instanceof IOException) {

reportError("Unable to open connection: " + ex.getMessage →
());

return null;

}

}

return output;

}

}

AlchemistOutput.java:

package ccg.flow.processnodes.mynodefolder.Alchemist;

import ccg.flow.processnodes.ProcessOutput;

public class AlchemistOutput extends ProcessOutput {

// Just a string for this demo

public String returnValue;

}

611553 September 1, 2015 11

	Introduction
	Background: Features of the FloWr system
	Overview of the system extension
	Prototype code for testing node combinations
	Future Work
	Conclusions
	Tests that qualify node input and output
	Prototype for a web-servicised COINVENT architecture

