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Abstract. We present a framework for conceptual blending – a concept inven-
tion method that is advocated in cognitive science as a fundamental, and uniquely
human engine for creative thinking. Herein, we employ the search capabilities of
ASP to find commonalities among input concepts as part of the blending pro-
cess, and we show how our approach fits within a generalised conceptual blend-
ing workflow. Specifically, we orchestrate ASP with imperative Python program-
ming, to query external tools for theorem proving and colimit computation. We
exemplify our approach with an example of creativity in mathematics.

1 Introduction, Preliminaries and Motivation

Creativity is an inherent human capability, that is crucial for the development and inven-
tion of new ideas and concepts [2]. This paper addresses a kind of creativity which [2]
calls combinational, and which has been studied by Fauconnier and Turner [4] in their
framework of conceptual blending. In brief, conceptual blending is a process where one
combines two input concepts to invent a new one, called the blend.
As a classical example of blending, consider the concepts house and boat (e.g. [7, 4]):
A possible result is the invention of a house-boat concept, where the medium on which
a house is situated (land) becomes the medium on which boat is situated (water), and
the inhabitant of the house becomes the passenger of the boat. A sub-task of conceptual
blending is to find a common ground, called generic space, between the input concepts
[4]. For example, the house-boat blend has the generic space of a person using an object
which is not situated on any medium. Once the generic space has been identified, one
can develop possible blends by specialising the generic space with elements from the
input concepts in a meaningful way. This is not trivial because the naive ‘union’ of
input spaces can lead to inconsistencies. For example, the medium on which an object is
situated can not be land and water at the same time. Hence, before combining the input
concepts, it is necessary to generalise, and to remove at least one medium assignment.
Finding the generic space of two concepts is a non-monotonic search problem, and
it is well-known that Answer Set Programming (ASP) (see e.g. [5]) is a successful
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tool to cope with such problems. In this paper, we present a computational framework
for blending, that addresses the following question: “How can we use ASP as a non-
monotonic search engine to find a generic space of input concepts, and how can we or-
chestrate this search process with external tools to produce meaningful blends within a
computationally feasible system?” Towards this, we use a mixed declarative-imperative
amalgams process known from case-based reasoning [14], which coordinates the gen-
eralisation and combination of input concepts.

Concept Blending as Colimit of Algebraic Specifications. Goguen [7] proposes to
model the input concepts of blending as algebraic specifications enriched by priority
information about their elements, which he calls semiotic systems. This algebraic view
on blending suggests to compute the blend of input specifications as their categorical
colimit – a general unification operation for categories, similar to the union operation
for sets. In our case the colimit unifies algebraic signatures (see [12, 17] for category
theoretical details). We represent semiotic systems by using the Common Algebraic
Specification Language (CASL) [13]. CASL allows us to state first-order logical speci-
fications, which consists of four kinds of elements, namely sorts, operators, predicates
and first order logical axioms. Operators are functions that map a list of arguments of a
certain sort to a range sort, and predicates are functions that map arguments to boolean
values. Such a representation language lets us define more than just concepts, namely
full first order theories. As an example, consider the following specifications that rep-
resent the mathematical theories of natural numbers and lists.

spec NAT =
sort Nat p:3
ops zero : Nat; p:2

s : Nat→ Nat p:3
sum : Nat→ Nat p:2
qsum : Nat × Nat→ Nat p:2
plus : Nat × Nat→ Nat p:1

∀ x, y : Nat
(0) . sum(zero) = zero p:2
(1) . sum(s(x)) = plus(s(x), sum(x)) p:2
(2) . qsum(s(x), y) = p:2

qsum(x, plus(s(x), y))
(3) . qsum(zero, x) = x p:2
(4) . plus(zero, x) = x p:1
(5) . plus(s(x), y) = s(plus(x, y)) p:1
(NT) . sum(x) = qsum(x, zero) p:3
(NL) . plus(sum(x), y) = qsum(x, y) p:3
end

spec LIST =
sorts El p:3

L p:3
ops nil : L; p:2

cons : El × L→ L; p:3
app : L × L→ L; p:2
rev : L→ L; p:2
qrev : L × L→ L p:2

∀ x, y : L; h : El
(6) . rev(nil) = nil p:2
(7) . rev(cons(h, x)) = p:2

app(rev(x), cons(h, nil))
(8) . qrev(nil, x) = x p:2
(9) . qrev(cons(h, x), y) = p:2

qrev(x, cons(h, y))
(10) . app(nil, x) = x p:1
(11) . app(cons(h, x), y) = p:1

cons(h, app(x, y))
(LT) . rev(x) = qrev(x, nil) p:3
end

For example, in LIST, the operator cons maps an object of the sort El (element) and
an object of the sort L (list) to an object of the sort L. That is, cons constructs lists by
appending one element to a list. The rev operator is a recursive reverse function on lists,
and the qrev is a tail-recursive version of the reverse function. Similarly, in NAT, s is a
successor function, sum denotes a recursive function to obtain the cumulative sum of a
number (e.g. sum(3) = 1 + 2 + 3 = 6), and qsum is a tail-recursive version of sum .
We enrich CASL specifications by considering priority information for the individual
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elements. We denote such specifications as prioritised CASL specifications (PCS). For
example, the ‘p:3’ behind the cons operator declaration denotes that cons has a rela-
tively high priority of 3, and analogously for the other operators, sorts and axioms.
Motivating Example – Discovering Eureka Lemmas by Blending. Of particular
interest in the above theories are (NT) and (LT). These theorems state that the recur-
sive functions sum and rev are equivalent to the computationally less expensive tail-
recursive quick-functions qsum and qrev . Proving such theorems by induction is very
hard due to the absence of a universally quantified variable in the second argument
of the tail-recursive version [9]. An expert’s solution here is to use a lemma that gener-
alises the theorem. An example of such a generalisation is the eureka lemma (NL) in the
naturals, which we assume to be known in this scenario. Discovering such lemmas is a
challenging well-known problem (see e.g. [11, 10]), and we demonstrate how blending
is used to obtain an analogous eureka lemma for lists as an example application.

2 ASP-driven Blending by Amalgamation
We employ an interleaved declarative-imperative amalgamation process to search for
generalisations of input spaces that produce and evaluate logically consistent blends.
System description. The workflow of our system is depicted in Figure 1. First, the
input PCS s1, s2 are translated into ASP facts. Then, s1, s2 are iteratively generalised by
an iterative ASP solver until a generic space is found. Each generalisation is represented
by a fact exec(γ, s, t), where t is an iterator and γ is a generalisation operator that, e.g.,
removes an axiom or renames a sort, as described below. The execution of generalisa-
tion operators is repeated until the generalised versions of the input specifications have
the same sorts, operators, predicates and axioms, i.e., until a generic space is found. We
write s(t) to denote the t-th generalisation of s. For example, a first generalisation of the
house concept might be the concept of a house that is not situated on any medium. In or-
der to find consistent blends, we apply the category-theoretical colimit [12] to compose
generalisations of input specifications. The colimit is applied on different combinations
of generalisations, and for each result we query a theorem prover for logical consis-
tency. To eliminate uninteresting blends from our search process, we consider that the
more promising blends require less generalisations. Consequently, we go from less gen-
eral generalisations to more general generalisations and stop when a consistent colimit
is achieved. Thereafter, the result is evaluated using certain metrics that are inspired by
Fauconnier and Turner [4]’s so-called optimality principles of blending to assess the
quality of the blend (due to lack of space, we refer to the literature for details on those
principles). Note that different stable models, and therefore different generalisations,
can be found by the ASP solver, which lead to different blends.
Modelling algebraic specifications in ASP. First, we translate PCS to ASP facts,
with atoms like sort(s, s, t) that denote that s is a sort of the specification s at a step
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t. Operators and predicates are declared similarly. Arguments of operators are defined
by atoms opHasSort(s, o, si, i, t) that denote that an operator o in a specification s has
the sort si as i-th argument. For each element e in a PCS specification s, we represent
its priority vp as a fact priority(s, e, vp).
Formalising generalisation operators in ASP. For the generalisation of PCS, we
consider two kinds of generalisation operators. The first kind involves the removal of
an element in a specification, denoted by rm predicates, and the second kind involves
the renaming of an element, denoted by rename predicates. We represent the execution
of a generalisation operator with atoms exec(γ, s, t), to denote that a generalisation
operator γ was applied to s at a step t. Each generalisation operator is defined via a
precondition rule, and, in case of renaming operations, an effect rule. Preconditions are
modelled with a predicate poss/3 that states when it is possible to execute a generali-
sation operation, and effect rules model how a generalisation operator changes an input
specification. For example, the preconditions for removing and renaming operators are
specified by the following rules:

poss(rm(e), s, t)←op(s, e, t), exOtherSpecWithoutElem(s, e, t), (1a)

0{ax (s, A, t) : axInvolvesElem(s, A, e, t)}0
poss(rename(e, e′, s′), s, t)←op(s, e, t), op(s′, e′, t), not op(s, e′, t), not op(s′, e, t), (1b)

not opSortsNotEquivalent(s, e, s′, e′, t), s 6= s′

For the removal of elements we have a condition exOtherSpecWithoutElem(s, e, t),
which denotes that an element can only be removed if it is not involved in another
specification. Such preconditions are required to allow only generic spaces that are
least general for all input specifications, in the sense that elements can not be removed
if they are contained in all specifications. We also require operators, predicates and sorts
not to be involved in any axiom before they can be removed (denoted by 0{ax (s, A, t) :
axInvolvesElem(s, A, e, t)}0). We also need rules to state when elements remain in a
specification. This is expressed via noninertial/3 atoms as follows, where (2c) is an
examplary case of operator elements of a specification.

noninertial(s, e, t)←exec(rm(e), s, t) (2a)
noninertial(s, e, t)←exec(rename(e, e′, s′), s, t) (2b)

op(s, e, t+ 1)←not noninertial(s, e, t), op(s, e, t) (2c)

For renaming, we also have effect rules that assign the new name for the respective
element. For example, for renaming operators we have:

op(s, e′, t+ 1)← exec(rename(e, e′, s′), s, t), op(s, e, t) (3)

Generalisation search process. ASP is employed to find a generic space, and gen-
eralised versions of the input specifications which lead to a consistent blend. This is
done by successively generating generalisations of the input specifications. A sequence
of generalisation operators defines a generalisation path, which is generated with the
following choice rule:

0{exec(a, s, t) : poss(a, s, t)}1← not genericReached(t), spec(s). (4)

Generalisation paths lead from the input specifications to a generic space, which is a
generalised specification that describes the commonalities of the input specifications.
genericReached(t) atoms determine if a generic space has been reached. This is the
case if for two specifications s1 and s2, at step t, (i) sorts are equal, (ii) operator and
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predicate names are equal, and (iii) argument and range sorts of operators and predicates
are equal, and (iv) axioms are equivalent.

Composition and evaluation. The next step in the amalgamation process depicted
in Figure 1 is to compose generalised versions of input specifications to generate a can-
didate blend. The key component of this composition process is the categorical colimit
[12] of the generalised specifications and the generic space. The colimit is then enriched
with the priority information, which we compute as the sum of the priorities of the in-
put elements. The composition is then evaluated according to several factors that reflect
the rather informal optimality principles proposed by Fauconnier and Turner [4]. Our
formal interpretation of these principles considers logical consistency and the follow-
ing three evaluation metrics which are based on Fauconnier and Turner [4]’s informal
descriptions of certain optimality principles for blending:

a) We support blends that keep as much as possible from their input concepts by using
the priority information of elements in the input concepts. This corresponds to unpack-
ing, web and integration principles. Towards this, we compute the amount of informa-
tion in a blend as the sum of the priorities of all of its elements.

b) We support blends that maximise common relations among input concepts as a
means to compress the structure of the input spaces. Relations are made common by
appropriate renamings of elements in the input specification. This corresponds to the
vital relations principle. Maximising common relations raises the compression of struc-
ture in a composition, which is computed as the sum of priorities of elements in the
composition that have counterparts in both input specifications. For example, consider
the predicate liveIn : Person × House of the House specification and the predicate
ride : Person × Boat of the Boat specification. Both are mapped to the same ele-
ment in the composition, i.e., the predicate liveIn : Person ×House . The liveIn in the
composition uses the same symbol as the one in House , but it carries more information
because due to the renaming it now also represents the ride predicate. We account for
this form of compression of information by adding the priority of liveIn to the com-
pression value.

c) We support blends where the amount of information from the input specifications is
balanced. This corresponds to the double-scope property of blends, which is described
by Fauconnier and Turner [4] as ‘... what we typically find in scientific, artistic, and
literary discoveries and inventions.’ Towards this, we consider a balance penalty of a
blend, which we define as the difference between the amount of information from the
input specifications as described in a).

Proof of Concept – Lemma Invention for Theorem Proving. To perform the blend
of the theories of naturals and lists discussed in Section 1, our system first generates a
generic space, which is achieved with the following generalisation paths:5

5 Note that for this example, we extend the unary constructor s(n) in the naturals by an addi-
tional canonical argument c, so that the constructor becomes binary, i.e., s(c, n). This is valid
when considering a classical set theoretic construction of the naturals as the cardinality of a
set (see [1] for example), where the theory of the naturals corresponds to a theory of lists of
the same element.
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PNAT = {exec(rename(Nat, L, LIST), NAT, 0), exec(rename(zero, nil, LIST), NAT, 1),

exec(rename(C,El, LIST), NAT, 2), exec(rename(s, cons, LIST), NAT, 3), · · ·
exec(rm(1), NAT, 9), exec(rm(2), NAT, 10), exec(rm(c), NAT, 11), exec(rm(NL), NAT, 12)}

PLIST = {exec(rm(10), LIST, 0), · · · , exec(rm(7), LIST, 3)}
With this generalisation path, the sort L is mapped to the sort Nat , the terminal ele-
ments nil and zero are mapped to each other, the construction operator s is mapped
to cons , rev is mapped to sum , qrev is mapped to qsum , and app is mapped to plus .
Note, that the meaning of the List-symbols is now much more general because they
map to both, the List and the Nat theory, and represent now analogies between both
theories. After finding the generic space, our framework iterates over different combi-
nations of generalised input specifications and computes the colimit. It then checks the
colimits consistency and computes the blend value. In this example, the highest com-
position value for a consistent colimit is 90, where the 4th generalisation of LIST and
the 8th generalisation of NAT is used as input. The result is a theory of lists with the
newly invented lemma app(rev(x), y) = qrev(x, y) which can be used successfully as
a generalisation lemma to prove (LT).

3 Conclusion
We present a computational approach for conceptual blending where ASP plays a cru-
cial role in finding the generic space and generalised input specifications. We imple-
ment the generalisation of algebraic specifications using a transition system semantics
of preconditions and postconditions within ASP, which allows us to access generalised
versions of the input specifications. These generalised versions of the input specifica-
tions let us find blends which are logically consistent. To the best of our knowledge,
there exists currently no other blending framework that can resolve inconsistencies and
automatically find a generic space, while using a representation language that is simi-
larly expressive as ours. On top of the ASP-based implementation, we propose metrics
to evaluate the quality of blends, based on the cognitive optimality principles by Fau-
connier and Turner [4]. A number of researchers in the field of computational creativity
have recognised the value of conceptual blending for building creative systems, and par-
ticular implementations of this cognitive theory have been proposed [18, 15, 16, 6, 8, 3].
They are, however, mostly limited in the expressiveness of their representation lan-
guage, and it is in most cases unclear how they deal with inconsistencies and how the
generic space is computed. Furthermore, existing approaches lack a sophisticated eval-
uation to determine formally how ‘good’ a blend is. An exception is the very sophis-
ticated framework in [15, 16], which also has optimality criteria based on [4]’s theory.
However, the authors do not say how to find the generic space automatically and how
to deal with inconsistencies.
A prototypical implementation of our system can be accessed at https://github.
com/meppe/Amalgamation. It will be a core part of the bigger computational con-
cept invention framework that is currently being built within the COINVENT project
http://www.coinvent-project.eu.
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