
Upward Refinement Operators for Conceptual Blending in the
Description Logic EL++

TR-IIIA-2016-01

Roberto Confalonieri1, Manfred Eppe2, Marco Schorlemmer1, Oliver Kutz3, Rafael Peñaloza3,
Enric Plaza1

1 Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain
{confalonieri,marco,enric}@iiia.csic.es
2 International Computer Science Institute, Berkeley, USA

eppe@icsi.berkeley.edu
3 Free University of Bozen-Bolzano, Bolzano, Italy

{oliver.kutz,rafael.penaloza}@unibz.it

Abstract. Conceptual blending is a mental process that serves a variety cognitive purposes, including hu-
man creativity. In this line of thinking, human creativity is modeled as a process that takes different mental
spaces as input and combines them into a new mental space, called a blend. According to this form of com-
binational creativity, a blend is constructed by taking the commonalities among the input mental spaces
into account, to form a so-called Generic Space, and by projecting the non-common structure of the input
spaces in a selective way to the novel blended space. Since input spaces for interesting blends are often
initially incompatible, a generalisation step is needed before they can be blended. In this paper, we apply
this idea to blend input spaces specified in the description logic EL++ and propose an upward refinement
operator for generalising EL++ concepts. We show how the generalisation operator is translated to Answer
Set Programming (ASP) in order to implement a search process that finds possible generalisations of input
concepts. The generalisations obtained by the ASP process are used in a conceptual blending algorithm
that generates and evaluates possible combinations of blends. We exemplify our approach in the domain of
computer icons.

1 Introduction

The upward refinement—or generalisation—of concepts plays a crucial role in creative cognitive processes
for analogical reasoning and concept invention. In this work we focus on its role in conceptual blending
[18], where one combines two input concepts to invent a new one. A problem in blending is that the
combination of two concepts may generate an unsatisfiable one due to contradiction, or may not satisfy
certain properties. However, by generalising input concepts, we can remove inconsistencies to find a
novel and useful combination of the input concepts. For instance, a ‘red French sedan’ and a ‘blue German
minivan’ can be blended to a ‘red German sedan’ by generalising the first concept to a ‘red European sedan’
and the second one to a ‘coloured German car’. The least general generalisation of our input concepts—a
‘coloured European car’—serves as an upper bound of the generalisation space to be explored, and, in a
certain sense, plays the role of the so called generic space in conceptual blending, which states the shared
structure of both concepts.

This paper addresses the formalisation and implementation of such a generalisation process in the context
of the description logic EL++ [4, 6]. The choice of EL++ as the knowledge representation language for
a computational interpretation of the cognitive theory of conceptual blending is motivated by several rea-
sons. First, EL++ is the underpinning logic of the OWL 2 EL Profile1, a recommendation of the W3C, and,
therefore, a well-understood and commonly used knowledge representation formalism. Second, EL++ of-
fers a good tradeoff between expressiveness and efficiency of reasoning and is considered to be sufficiently
expressive to model large real-world ontologies, specially in the bio-medical domains [14, 35]. Finally,

1http://www.w3.org/TR/owl2-profiles/, accessed 26/11/2015

1

subsumption of concepts w.r.t. an EL++ TBox is computable in polynomial time [4], and therefore of spe-
cial interest for a tractable real-world implementation of conceptual blending. Indeed, a nontrivial problem
of conceptual blending is that there usually exists a considerable number of possible combinations for the
blend creation that are inconsistent or otherwise not interesting (see e.g. [17]). These combinations need
to be evaluated. Our EL++-based formalisation of conceptual blending suggests that these combinations,
leading to the blends, can be evaluated against the entailment of some properties, modelled as ontology
consequence requirements. The nice computational properties of EL++ facilitate this kind of evaluation
since the entailment in EL++ is not computationally hard.

The generalisation of EL++ concepts has been studied both in the Description Logic (DL) and in the
Inductive Logic Programming (ILP) literature, although from different perspectives. Whilst approaches
in DL focus on formalising the computation of a least general generalisation (LGG) (also known as least
common subsumer) among different concepts as a non-standard reasoning task [2, 5, 38], approaches in
ILP are concerned on learning DL descriptions from examples [29].

In both cases, however, finding a LGG is a challenging task. Its computability depends on the type of DL
adopted and on the assumptions made over the structure of concept definitions.

Our work relates to these approaches, but our main motivation for generalising DL concepts is intrinsically
different. Although we do need to be aware of what properties are shared by the concepts in order to
blend them, it is not necessary (though desirable) to find a generic space that is also a LGG. A minimally
specific common subsumer w.r.t. the subconcepts that can be built using the axioms in a Tbox will suffice.
With this objective in mind, we propose an upward refinement operator for generalising EL++ concepts
which is inductively defined over the structure of concept descriptions. We discuss some of the properties
typically used to characterise refinement operators; namely, local finiteness, properness and completeness
[27].2 Particularly, our operator is locally finite and proper, but it is not complete. As a consequence, it
cannot generate all the possible generalisations of an EL++ concept. As we shall discuss, we sacrifice
completeness for finiteness (since we do not need to compute a LGG, strictly speaking), but we need the
applications of the operator to always terminate at each refinement step.

We show how the upward refinement operator can be implemented in Answer Set Programming (ASP) [21].
We employ the incremental solving capabilities of clingo [19], an advanced ASP solver, to find a generic
space among two EL++ input concepts. The ASP search is embedded in an amalgamation process [31]
that models conceptual blending. We present a conceptual blending algorithm that uses the generalisations
found by the ASP-based search process to create new blended concepts. New concepts are evaluated by
means of ontology consequence requirements and a heuristics function. Throughout the paper, we use an
example in the domain of computer icon design.

This paper is an extended and revised version of [13]. It now contains a formal definition and analysis of the
refinement operator properties (Propositions 1-3 and Theorem 1), an extension of the operator definition
to deal with infinite chain of generalisations, the complete implementation of the operator in ASP, and a
blending algorithm.

The remainder of this paper is organised as follows: Section 2 provides the background knowledge to make
this paper self-contained. Section 3 describes how conceptual blending can be used to design new computer
icons modeled in EL++. Section 4 proposes the formalisation of a refinement operator for generalising
EL++ concepts. In Section 5, the implementation of the operator and the ASP incremental encoding,
which models the generic space search, are presented. Section 6 describes an algorithm for conceptual
blending. Section 7 outlines several works that relate to ours from different perspectives. Finally, Section
8 concludes the paper and envisions some future work.

2Briefly, a refinement operator is said to be locally finite when it generates a finite set of refinements at each step; proper, when
its refinements are not equivalent to the original concept, and complete, when it produces all possible refinements of a given concept.
These property are formally presented in Section 2.2.

2

concept description interpretation

A AI ⊆ ∆I

> ∆I

⊥ ∅
C uD CI ∩ CI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I .(x, y) ∈ rI ∧ y ∈ CI}

axiom satisfaction

C v D CI ⊆ DI

C ≡ D CI = DI

r1 ◦ · · · ◦ rn v r rI1 ; · · · ; rIn ⊆ rI

domain(r) v C rI ⊆ CI ×∆I

range(r) v C rI ⊆ ∆I × CI

Table 1: Syntax and semantics of some EL++ contructors and axioms. (Note: ‘;’ is the usual composition
operator in relation algebra.)

2 Background

In this section we introduce the basic notions that will be used throughout the paper. After presenting the
EL++ description logic, we introduce refinement operators. Then, we provide the definition of amalgams
that provides a computational chacterisation of conceptual blending. We conclude the background with an
overview of Answer Set Programming (ASP) and the incremental solving capabilities of clingo.

2.1 The Description Logic EL++

In DLs, concept and role descriptions are defined inductively by means of concept and role constructors
over a finite set NC of concept names, a finite set NR of role names, and (possibly) a finite set NI of
individual names. As is common practice, we shall write A, B for concept names, C, D for concept
descriptions, r, s for role names, and a, b, for individual names.

The semantics of concept and role descriptions is defined in terms of an interpretation I = (∆I , ·I), where
∆I is a non-empty domain and ·I is an interpretation function assigning a set AI ⊆ ∆I to each concept
name A ∈ NC , a set rI ⊆ ∆I × ∆I to each role name r ∈ Nr, and an element aI ∈ ∆I for each
individual name a ∈ NI , which is extended to general concept and role descriptions. The upper part of
Table 1 shows the constructors of the description logic EL++ that are relevant for this paper, together with
their interpretation. For a complete presentation of EL++ we refer to [4, 6].

A knowledge base usually consists of a finite set T of terminological axioms, called TBox, which contains
intensional knowledge defining the main notions relevant to the domain of discourse; and a finite set A
of assertional axioms, called ABox, which contains extensional knowledge about individual objects of the
domain. In this paper, we focus only on terminological axioms of the form C v D, i.e. general concept
inclusions (GCIs), and r1 ◦ · · · ◦rn v r, i.e. role inclusions (RIs), as well as axioms specifying domain and
range restrictions for roles. The lower part of Table 1 shows the form of these axioms, together with the
condition for these to be satisfied by an interpretation I. By L(T) we refer to the set of all EL++ concept
descriptions we can form with the concept and role names occurring in T .

RIs allow one to specify role hierarchies (r v s) and role transitivity (r ◦ r v r). The bottom concept⊥, in

3

combination with GCIs, allows one to express disjointness of concept descriptions, e.g., C uD v ⊥ tells
that C and D are disjoint. An interpretation I is a model of a TBox T iff it satisfies all axioms in T . The
basic reasoning task in EL++ is subsumption. Given a TBox T and two concept descriptions C and D, we
say that C is (strictly) subsumed by D w.r.t. T , denoted as C vT D (C @T D), iff CI ⊆ DI (CI ⊆ DI

and CI 6= DI) for every model I of T . Analogously, given two roles r, s ∈ Nr, we say that r is (strictly)
subsumed by s w.r.t. T , denoted as r vT s (r @T s), iff rI ⊆ sI (rI ⊆ sI and rI 6= sI) for every model
I of T . Finally, an equivalence axiom C ≡T D is just an abbreviation for C vT D and D vT C.

2.2 Refinement Operators

Refinement operators are a well known notion in Inductive Logic Programming where they are used to
structure a search process for learning concepts from examples. In this setting, two types of refinement op-
erators exist: specialisation (or downward) refinement operators and generalisation (or upward) refinement
operators. While the former constructs specialisations of hypotheses, the latter contructs generalisations.

Generally speaking, refinement operators are defined over quasi-ordered sets. A quasi-ordered set is a pair
〈S,�〉 where S is a set and � is a binary relation among elements of S that is reflexive (a � a) and
transitive (if a � b and b � c then a � c). If a � b, we say that b is more general than a, and if also b � a
we say that a and b are equivalent. A generalisation refinement operator is defined as follows.3

Definition 1. A generalisation refinement operator γ over a quasi-ordered set 〈S,�〉 is a set-valued func-
tion such that ∀a ∈ S : γ(a) ⊆ {b ∈ S | a � b}.

A refinement operator γ can be classified according to some desirable properties [27]. We say that γ is:

• locally finite, if the number of generalisations generated for any given element by the operator is
finite, that is, ∀a ∈ S : γ(a) is finite;

• proper, if an element is not equivalent to any of its generalisations, i.e., ∀a, b ∈ S, if b ∈ γ(a), then
a and b are not equivalent;

• complete, if there are no generalisations that are not generated by the operator, i.e., ∀a, b ∈ S it holds
that if a � b, then b ∈ γ∗(a) (where γ∗(a) denotes the set of all elements which can be reached from
a by means of γ in a finite number of steps).

When a refinement operator is locally finite, proper, and complete it is said to be ideal. An ideal spe-
cialisation refinement operator for EL has been explored in [28]. In this paper, we define a generalisation
refinement operator for EL++ and study its properties.

2.3 Computational Concept Blending by Amalgamation

The process of conceptual blending can be characterised in terms of amalgamation [31], an approach that
has its root in case-based reasoning and focuses on the problem of combining solutions coming from
multiple cases in search-based approaches to reuse and that has also been used to model analogy [8].
According to this approach, input concepts are generalised until a generic space is found, and pairs of
generalised versions of the input concepts are ‘combined’ to create blends.

Formally, the notion of amalgams can be defined in any representation language L for which a subsumption
relation between formulas (or descriptions) of L can be defined, and therefore also in L(T) with the
subsumption relation vT for a given EL++ TBox T .

3A deeper analysis of refinement operators can be found in [27].

4

Clgg

C1 C2Cam

C'1 C'2

Figure 1: A diagram of amalgamation from descriptionsC1 andC2 with an amalgamCam. Arrows indicate
the subsumption of the target by the source of the arrow.

Definition 2. Given two descriptions C1, C2 ∈ L(T):

• A most general specialisation (MGS) is a descriptionCmgs such thatCmgs vT C1 andCmgs vT C2

and for any other description D satisfying these properties, D vT Cmgs.

• A least general generalisation (LGG) is a description Clgg such that C1 vT Clgg and C2 vT Clgg
and for any other description D satisfying these properties, Clgg vT D.

Intuitively, a MGS is a description that has all the information in both the original descriptions C1 and C2,
while a LGG contains that which is common to them.

An amalgam of two descriptions is a new description that contains parts from these original descriptions.
For instance, an amalgam of ‘a red French sedan’ and ‘a blue German minivan’ could be ‘a red German
sedan;’ clearly, there are always multiple possibilities for amalgams, like ‘a blue French minivan’. For the
purposes of this paper we can define an amalgam of two descriptions as follows.

Definition 3 (Amalgam). Let T be an EL++ TBox. A description Cam ∈ L(T) is an amalgam of two
descriptions C1 and C2 (with LGG Clgg) if there exist two descriptions C ′1 and C ′2 such that:

1. C1 vT C ′1 vT Clgg,

2. C2 vT C ′2 vT Clgg, and

3. Cam is a MGS of C ′1 and C ′2

This definition is illustrated in Figure 1, where the LGG of the inputs is indicated as Clgg, and the amalgam
Cam is the MGS of two concrete generalisations C ′1 and C ′2 of the inputs.

In Section 4, we define an upward refinement operator that allows us to find generalisations of EL++

concept descriptions needed for computing the amalgams as described above, although we may generalise
concepts C1 and C2 beyond the LGG Clgg. We do this to guarantee termination, as we shall explain. We
implemented the operator and the search for generalisation in Answer Set Programming (ASP) [21]. To
this end, we provide some basic notions about ASP in the next section.

2.4 Answer Set Programming

Answer Set Programming (ASP) is a declarative approach to solve NP-hard search problems (see e.g.
[21, 7]). An ASP program is similar to a PROLOG program in that it is non-monotonic, takes logic
programming style Horn clauses as input, and uses negation-as-failure (NaF). However, instead of using
Kowalski [25]’s SLDNF resolution semantics as in PROLOG, it employs Gelfond and Lifschitz [22]’s
Stable Model Semantics, which makes it truly declarative, i.e., the order in which ASP rules appear in a

5

Logic Program does not matter. Furthermore, the Stable Model Semantics has the advantage that Answer
Set Programs always terminate, while PROLOG programs do not. For example, given a program not p←
q. and not q ← p., asking whether p holds results in an infinite loop for PROLOG, while ASP returns two
stable models as solution, namely the sets {p} and {q}.

An ASP program consists of a set of rules, facts and constraints. Its solutions are called Stable Models
(SM). In this paper we only consider so-called normal rules [7], which are written as:

a0 ← a1, . . . , aj , not aj+1, . . . , not an (1)

in which a1, ..., an are atoms and not is negation-as-failure. When n = 0 the rule a0 ← is known as a fact
and the← is omitted. A constraint is a rule of the form← a1, . . . , aj , not aj+1, . . . , not an. Constraints
are rules that are used to discard some models of a logic program.

The models of an ASP program are defined according to the stable model semantics. The stable semantics
is defined in terms of the so-called Gelfond-Lifschitz reduction [22]. Let LP be the set of atoms in the
language of a normal logic program P , then for any set M ⊆ LP , the Gelfond-Lifschitz reduction PM is
the definite logic program obtained from P by deleting:

(i) each rule that has a formula not a in its body with a ∈M , and

(ii) all formulæ of the form not a in the bodies of the remaining rules.

PM does not contain not and M is called a stable model of P if and only if M is the minimal model of PM .
A stable model M of an ASP program P contains those atoms that satisfy all the rules in the program and,
consequently, represent a solution of the problem that represents.

ASP is interesting not only because can capture complex knowledge representation problems, but also
because efficient ASP implementations exists. In particular, the clingo solver [19] offers a step-oriented,
incremental approach that allows to control and modify an ASP program at run-time, without the need
of restarting the grounding the solving process from scratch. To this end, a program is partitioned into a
base part, describing the static knowledge independent of a step parameter t, a cumulative part, capturing
knowledge accumulating with increasing t, and a volatile part specific for each value of t. The grounding
and integration of these subprograms into the solving process is completely modular and controllable from
a scripting language such as Python.

The ASP implementation in this paper follows this methodology of specifying and solving a problem
incrementally. For further details about incremental solving, we refer to [20] in which several examples
can be found.

3 Conceptual Blending of Computer Icons

To exemplify our approach, we take the domain of computer icons into account. We consider computer
icons as combinations of signs, such as Document, MagnifyingGlass, HardDisk and Pen that are described
in terms of meanings [12]. Meanings convey actions-in-the-world or object-types.

Figure 2 shows the concept names defined in the ComputerIcon ontology and their relations. In what
follows, concept names are capitalised (e.g., Sign) and role names are not (e.g., hasMeaning). We assume
that a TBox T consists of two parts: one part that contains the background knowledge about the icon do-
main Tbk, and another part that contains the domain knowledge about icon definitions Tdk. Tbk contains
the following axioms:

6

Figure 2: The ComputerIcon ontology, showing the concept names and their relation.

αbk1 : Action v Meaning
αbk2 : ObjectType v Meaning
αbk3 : Search v Action
αbk4 : Edit v Action
αbk5 : HardDrive v ObjectType
αbk6 : Doc v ObjectType
αbk7 : Action u ObjectType v ⊥
αbk8 : Search u Edit v ⊥
.
αbk14 : HardDrive u Doc v ⊥

Axioms αbk1 -αbk6 capture the different meanings associated with signs; axioms αbk7 -αbk14 model the dis-
jointness among all Action and ObjectType concepts defined in the ontology. Signs are associated with a
meaning. This is modeled by the hasMeaning role in the following axioms:

αbk15 : MagnifyingGlass ≡ Sign u ∃hasMeaning.Search
αbk16 : HardDisk ≡ Sign u ∃hasMeaning.HardDrive
αbk17 : Pen ≡ Sign u ∃hasMeaning.Edit
αbk18 : Document ≡ Sign u ∃hasMeaning.Doc

αbk19 : MagnifyingGlass u HardDisk v ⊥
.
αbk25 : Pen u Document v ⊥

A sign is associated with a meaning. For instance, MagnifyingGlass is associated with Search to de-
scribe that it conveys the action of looking for something. Sign concepts are disjoint (αbk19 -αbk25). Signs
are related by spatial relationships such as isAboveIn, isAboveInLeft, isAboveInRight, isUpIn, isUpLeft,
isUpRight, isDownIn, isDownLeft, and isDownRight. Spatial relationships are modelled as roles.

αbk26 : isAboveIn v isInSpatialRelation
αbk27 : isAboveLeft v isInSpatialRelation
αbk28 : isAboveRight v isInSpatialRelation
.
αbk37 : isDownRight v isInSpatialRelation

7

MagnifyingGlass ⊓ ∃isAboveIn.HardDisk

Generalisation
MGS

Blend

Input 1

Pen ⊓ ∃isAboveRight.Document

Input 2

Generalisation

Generic Space

MagnifyingGlass ⊓ ∃isAboveIn.Document

Sign ⊓ ∃isInSpatialRelation.Sign)

MagnifyingGlass ⊓ ∃isAboveIn.Sign Sign ⊓ ∃isInSpatialRelation.Document

Figure 3: Blending the SearchHardDisk and EditDocument icon concepts into a new concept representing
a search-in-document icon. Sign’s meanings are not represented.

For the sake of simplicity, we assume that icons are modelled according to a canonical form. Axioms
describing icon concepts are of the form IconName ≡ C u ∃r.D, where r is a spatial relation and C, D are
concepts that describe signs. Based on this canonical form and on the axioms above, we modeled some
icons as domain knowledge of a TBox.

Example 1. SearchHardDisk is an icon that consists of two signs MagnifyingGlass and HardDisk, where
the MagnifyingGlass sign is above in the middle of the HardDisk sign. Another icon is EditDocument,
where the Pen sign is above on the right of the Document sign. Both icons are shown in Figure 3.

αdk1 : SearchHardDisk ≡ MagnifyingGlass u ∃isAboveIn.HardDisk
αdk2 : EditDocument ≡ Pen u ∃isAboveRight.Document

We consider the above knowledge as a library of icons. We assume that the library is managed and used by
a computer icon design tool. The tool accepts a query as input and retrieves those icons that satisfy certain
properties. For instance, a query asking for an icon with the meaning of searching in a hard-disk will
retrieve the SearchHardDisk concept. In contrast, a query asking for an icon with the meaning of searching
in a document does not return any result. In such a case, the tool tries to answer the query by running a
conceptual blending algorithm.

Intuitively, the conceptual blending algorithm works as follows. Given two input concepts, the algo-
rithm tries to create new concepts that can satisfy the query. New concepts are created by taking the
commonalities and some of their specifics into account (Figure 3). For instance, both SearchHardDisk
and EditDocument are icons that consist of two signs related by a spatial relation (the generic space).
Then, if we keep the MagnifyingGlass concept from SearchHardDisk and the Document concept from
EditDocument, and we generalise the HardDisk and Pen concepts and the role isAboveRight, we can blend
the generalised input concepts of SearchHardDisk and EditDocument into a new concept representing an
icon whose meaning is to search in a document.

MagnifyingGlass u ∃isAboveIn.Document

8

In this paper, we show how the above concept generation description can be computationally realised by
two processes. An ASP-based implementation that generalises EL++ concept descriptions and finds a
generic space; and a procedural implementation that generates and evaluates the blended concepts. First,
we introduce a refinement operator for generalising an EL++ concept.

4 A Generalisation Refinement Operator for EL++

In any description logic the set of concept descriptions are ordered under the subsumption relation forming
a quasi-ordered set. For EL++ in particular they form a bounded meet-semilattice with conjunction as meet
operation, > as greatest element, and ⊥ as least element. In order to define a generalisation refinement
operator for EL++, we need some auxiliary definitions.

Definition 4. Let T be an EL++ TBox. The set of subconcepts of T is given as

sub(T) = {>,⊥} ∪
⋃

CvD∈T

sub(C) ∪ sub(D) (2)

where sub is inductively defined over the structure of concept descriptions as follows:

sub(A) = {A}
sub(⊥) = {⊥}
sub(>) = {>}

sub(C uD) = {C uD} ∪ sub(C) ∪ sub(D)

sub(∃r.C) = {∃r.C} ∪ sub(C)

Based on sub(T), we define the upward cover set of atomic concepts and roles. sub(T) guarantees the
following upward cover set to be finite.4

Definition 5. Let T be an EL++ TBox with concept names from NC . The upward cover set of an atomic
concept A ∈ NC ∪ {>,⊥} and of a role r ∈ NR with respect to T is given as:

UpCov(A) := {C ∈ sub(T) | A vT C (3)
and for all C ′ ∈ sub(T) such that A vT C ′

then C vT C ′

UpCov(r) := {s ∈ NR | r vT s (4)
for all s′ ∈ Nr such that r vT s′

then s vT s′}

We can now define our generalisation refinement operator for EL++ as follows.

Definition 6. Let T be an EL++ TBox. We define the generalisation operator γ inductively over the
structure of concept descriptions as follows:

γ(A) = UpCov(A)

γ(>) = UpCov(>) = ∅
γ(⊥) = UpCov(⊥)

γ(C uD) = {C ′ uD | C ′ ∈ γ(C)} ∪ {C uD′ | D′ ∈ γ(D)}

γ(∃r.C) =

{
γr(∃r.C) ∪ γC(∃r.C) whenever UpCov(r) 6= ∅ or UpCov(C) 6= ∅
{>} otherwise.

4We assume that T is finite.

9

where γr and γC are defined as:

γr(∃r.C) = {∃s.C | s ∈ UpCov(r)}
γC(∃r.C) = {∃r.C ′ | C ′ ∈ γ(C) and C ′ v range(r)}.

Given a refinement operator γ, EL++ concepts are related by refinement paths as described next.

Definition 7. A finite sequence C1, . . . , Cn of EL++ concepts is a concept refinement path C1
γ−→ Cn from

C1 to Cn of the generalisation operator γ iff Ci+1 ∈ γ(Ci) for all i : 1 ≤ i < n. γ∗(C) denotes the set of
all concepts that can be reached from C by means of γ in a finite number of steps.

Proposition 1. The operator γ is a generalisation refinement operator over the set of all EL++ concepts
with the order v.

Proof. We need to prove that for every EL++ concept C and every D ∈ γ(C), the subsumtion C vT D
holds. We do this by induction on the structure of C. If C is a concept name, >, or ⊥, the subsumption
holds directly by definition. If C is of the form C1uC2, we can assume w.l.o.g. that D is C ′uC2 for some
C ′ ∈ γ(C1). By induction hypothesis, C1 vT C ′ and hence C1 uD vT C ′ uD. Finally, if C is of the
form ∃r.C1 we have three possible cases. If UpCov(r) 6= ∅, and D is ∃s.C1 for s ∈ UpCov(r) then by
definition ∃r.C1 vT ∃s.C1. If UpCov(C) 6= ∅, C 6= > and D must be of the form ∃r.C ′ with C1 vT C ′,
and hence the subsumptions hold. In the last case,D is equivalent to>, and hence the subsumption follows
trivially.

We now analyse the properties of the generalisation operator γ. Observe first that our definition of UpCov
for basic concepts and roles only considers the set of subconcepts present in a TBox T . This guarantees
that γ is locally finite, since at each generalisation step, the set of possible generalisations is finite.

Proposition 2. The generalisation refinement operator γ is locally finite.

Proof. We prove that for every EL++ concept C, γ(C) is finite by induction on the structure of C.

For A ∈ NC ∪{>,⊥}, we have that γ(A) ⊆ sub(T). Since sub(T) is finite, the result immediately holds.
For C u D, we have that |γ(C u D)| ≤ |γ(C)| + |γ(D)|. By induction hypothesis, the two sets on the
right-hand side of this inequality are finite, and hence γ(C u D) must be finite too. Finally, it holds that
|γ(∃r.C)| ≤ |UpCov(r)| + |γ(C)|. By the fact that UpCov(r) ⊆ NR, which is finite, and the induction
hypothesis, the result follows.

When generalising concept names and role names, we always ensure that the resulting concepts are more
general (w.r.t. the TBox T) than the original elements. Unfortunately, this does not guarantee that γ is
proper.

Example 2. Let T := {A v B}. Then, following Definition 6, we have that generalising the concept
A uB yields A u > ∈ γ(A uB). However, both these concepts are equivalent to A w.r.t. T . Therefore, γ
is not proper.

One possible way to avoid this situation, and, therefore, to guarantee the properness of γ, is to redefine it
with an additional semantic test. More precisely, let γ′ be defined as:

γ′(C) := γ(C)\{D ∈ γ(C) such that D vT C} (5)

Essentially, γ′ discards those generalisations that are equivalent to the concept being generalised. It is easy
to see that γ′ is still a finite generalisation operator and it is proper.

10

Proposition 3. The generalisation refinement operator γ′ is proper.

Proof. This proposition trivially follows from the definition of γ′.

The repetitive application of the generalisation refinement operator allows to find a description that rep-
resents the properties that two or more EL++ concepts have in common. This description is a common
generalisation of EL++ concepts, the so-called generic space that is used in conceptual blending.

Example 3. Let us consider the EL++ concepts EditDocument and SearchHardDisk defined in Example 1.
It can be checked that:

{(Sign u ∃hasMeaning.Action) u ∃isInSpatialRelation.(Sign u ∃hasMeaning.ObjectType)} ∈ γ∗(EditDocument)
{(Sign u ∃hasMeaning.Action) u ∃isInSpatialRelation.(Sign u ∃hasMeaning.ObjectType)} ∈ γ∗(SearchHardDisk)

(Sign u ∃hasMeaning.Action) u ∃isInSpatialRelation.(Sign u ∃hasMeaning.ObjectType) is a common gen-
eralisation for EditDocument and SearchHardDisk.

Unfortunately, due to the fact that upward cover set we defined only takes subconcepts already present in
the TBox into account, neither γ nor its refinement γ′ are complete; that is, these operators may fail to
compute some of the generalisations of a given EL++ concept.

Example 4. Let T := {A v B, A v C}. Then, generalising the concept A yields γ(A) = {B,C}.
However, B u C is also a possible generalisation of A w.r.t. vT .

More generally, as the following theorem shows, no generalisation refinement operator over EL++ concepts
w.r.t. vT can be locally finite, proper, and complete.

Theorem 1. There is no ideal generalisation refinement operator for EL++ concepts.

Proof. Consider the TBox T = {A v ∃r.A, ∃r.A v A}, and define the conceptsG0 := >, Gi+1 := ∃r.Gi
for all i ≥ 0. Notice first that these concepts form an infinite chain of generalisations G0 AT G1 AT
G2 AT · · · AT A. Moreover, every EL++ concept C with A @T C is equivalent (w.r.t. T) to one such
Gi. Let now γ be a locally finite and proper generalisation refinement operator. Then γ(A) is a finite set of
concepts which, w.l.o.g. we can assume to be of the form {Gi | i ∈ I}, where I is a finite set of indices. In
particular, I contains a maximum index n. Then Gn+1 is strictly more specific than all elements of γ(A)
and cannot be derived by further applications of γ. Thus, γ is not complete.

Since the refinement operator is not complete, it cannot guarantee to find a common generalisation that is
a least general generalisation. However, we believe that not finding a least general generalisation is not a
weakness of our approach since we are interested in finding a generic space that allow us to create new
EL++ concepts from existing ones by conceptual blending. Therefore, for blending, finding a common
generalisation between two concepts will suffice.

At this point, we should note, however, that the generalisation operator may even fail to find a generic
space of a set of EL++ concepts. Indeed, as the following example shows, the generalisation operator can
produce an infinite chain of generalisations.

Example 5. Let T := {A v ∃r.A,B v >}. Then, the generalisation of the concept description B can
yield>. The generalisation of the concept descriptionA yields the infinite chain {∃r.∃.r . . . A}. A common
(trivial) generalisation for A, B is > but it is not found by γ.

Not finding a common generalisation of a set of EL++ concepts is a not a new problem in the DL literature.
Different solutions have been proposed [1, 2, 5, 39, 38]. Typically, some assumptions are made over the

11

structure of the TBox or a fixed role depth of concepts is considered. In the following, we adopt the latter
view, and we restrict the number of nested quantifiers in a concept description to a fixed constant k. To this
end, we introduce the definition of role depth of a concept as follows.

Definition 8. The role depth of an EL++ concept description C is defined as the maximum number of
nested (existential) quantifiers in C:

roleDepth(>) = roleDepth(A) = 0,

roleDepth(C uD) = max{roleDepth(C), roleDepth(D)},
roleDepth(∃r.C) = roleDepth(C) + 1

Based on the role depth of a concept we modify the definition of the generalisation operator γ′ to take a
fixed constant k ∈ N>0 of nested quantifiers into account. More precisely, let γ′k be defined as γ′, except
that for the case of generalising a concept ∃r.C we set:

γ′k(∃r.C) :=


γr(∃r.C) ∪ γC(∃r.C) if (UpCov(r) 6= ∅ or UpCov(C) 6= ∅) and

roleDepth(C) ≤ k,
{>} otherwise.

The role depth prevents the generalisation operator from generating infinite chains of generalisations. Con-
sequently, it can ensure that a generic space between EL++ concepts can always be found.

Definition 9. An EL++ concept description Gk is a k-approximation of a generic space of the EL++

concept descriptions C1, . . . , Cn if and only if Gk ∈ γ′∗k (Ci) for all i = 1, . . . , n.

Proposition 4. There always exists a k-approximation of a generic space Gk for any EL++ concept de-
scriptions C1, . . . , Cn.

Proof. The proof of this proposition can be done by noticing that every concept can always be generalised
to > in a finite number of applications of γ′k. Therefore, > is always a generic space of any concept
descriptions C1, . . . , Cn.

The role depth not only avoids infinite chains of generalisations, but also provides a way to maintain the
structure of the input concepts in conceptual blending. For instance, by choosing the value of k as the
maximum role depth of the input concepts to be blended, the operator yields generalisations with a similar
role structure.

5 Implementing Upward Refinement in ASP

We consider an EL++ TBox T that consists of a background knowledge Tbk and a domain knowledge Tdk.
A generic space between EL++ concepts in the domain knowledge is found by means of an ASP program
that generalises Tdk in a step-wise transition process. Since finding a generic space of n concepts can be
reduced to the problem of finding a generic space between pairs of concepts [3], the ASP program we
devise takes two EL++ concepts into account.

In what follows, we describe how an EL++ TBox T is translated into an ASP representation needed for
implementing the generic space search. Table 2 shows the main EDB and IDB predicates used in the ASP
implementation.5

5Disjointness axioms are not translated to ASP because they are not used in the generalisation process.

12

EDB predicates Description
dConcept(C) A reference to a domain knowledge concept C
concept(A) A concept A
subConcept(A,B) A concept B subsumes A
role(r) A role r
subRole(r, s) A role r subsumes s

hasConjunct(C, C,A, t)
A concept A is a conjunct C in
C at step t

roleExHasRoleAndConcept(C, C, r, depth,A, t)
A concept A is filling the role r in a conjunct
C in C at step t

IDB predicates Description

notEqual(C1, C2, t)
The domain concepts C1, C2 are not equivalent
at step t

conjunctNotEq(C1, C2, A, t)
The concept A is not equivalent in C1 and C2
at step t

roleExpressionNotEq(C1, C2, C, t)
A conjunct C is not equivalent in the C1, C2
at step t

roleInExpressionNotEq(C1, C2, C, r, t)
A role r in a conjunct C is not equivalent
in C1, C2 at step t

app(a, T , t) A refinement step a is applicable in C at step t
poss(a, T , t) A refinement step a is possible in C at step t
exec(a, T , t) A refinement step a is executed in C at step t

Table 2: Overview of the main EDB and IDB predicates used to formalise the upward refinement process
in ASP.

5.1 Modeling EL++ concepts in ASP

For each concept name A ∈ NC in Tbk, we state the fact:

concept(A) (6)

For each role r ∈ Nr in Tbk with domain(r) v C and range(r) v D, we state the facts:

role(r) (7a)
domain(r, C) (7b)
range(r,D) (7c)

For each inclusion axiom A v B ∈ Tbk and A, B are atomic concepts, we state the fact:

subConcept(A,B) (8)

Similarly, for each role inclusion axiom r v s ∈ Tbk, we state the fact:

subRole(r, s) (9)

For each inclusion axiom A v D ∈ Tbk in which A is an atomic concept and D is a complex concept, we
call D the concept definition of A and denote it as ADef within the following facts:

concept(ADef) (10a)
subConcept(A,ADef) (10b)

For eachDi in the complex conceptD = D1u . . .uDn, we make a case distinction and state the following
facts:

13

1. if Di = B:
hasConjunct(ADef , conjunct, B) (11)

2. if Di = E:
hasConjunct(ADef , conjunct, EDef) (12)

where EDef is defined using these cases.

3. if Di = ∃.B:

hasConjunct(ADef , conjunct, roleExi) (13a)
roleExHasRoleAndConcept(ADef , roleExi, depth, r, B) (13b)

where depth is the number of roles from conjunct to roleExi.

4. if Di = ∃r.E:

hasConjunct(ADef , conjunct, roleExi) (14a)
roleExHasRoleAndConcept(ADef , roleExi, depth, r, EDef) (14b)

whereEDef is defined using these cases and depth is the number of roles from conjunct to roleExi.

While the background knowledge is static, the domain knowledge changes. To this end, we need to keep
track of the generalisations applied. In the following, t denotes a step-counter that represents the number
of modifications made to Tdk.

For each axiom C ≡ D ∈ Tdk, in which C is a concept in the domain knowledge and D is its definition,
we add the following fact:

dConcept(C) (15a)

For eachDi in the complex conceptD = D1u . . .uDn, we make a case distinction and state the following
facts:

1. if Di = B:
hasConjunct(C, conjunct, B, t) (16)

2. if Di = E and E is a conjunction of concepts E1 u . . . uEj u . . . uEm or it exists an axiom in the
background knowledge such that E ≡ E1 u . . . u Ej u . . . u Em:

hasConjunct(C, conjunct, subConjunctj , t) (17)

and subConjunctj is recursively defined using these cases.

3. if Di = ∃r.A:

hasConjunct(C, conjunct, roleExi, t) (18a)
roleExHasRoleAndConcept(C, roleExi, depth, r, A, t) (18b)

and depth is the number of roles from conjunct to roleExi.

4. if Di = ∃r.E and E is a conjunction of concepts E1 u . . . u Ej u . . . u Em or it exists an axiom in
the background knowledge such that E ≡ E1 u . . . u Ej u . . . u Em:

hasConjunct(C, conjunct, roleExi, t) (19a)
roleExHasRoleAndConcept(C, roleExi, depth, r, subConjunctij , t) (19b)

and subConjunctij is recursively defined using these cases. depth is the number of roles from
conjunct to roleExi.

14

Besides, we model the concept > as the fact concept(Thing), and for each concept name A ∈ NC ,
which is not already subsumed by other concept names, we add a fact subConcept(A,Thing). We check
for (in)equality of domain concepts C1 and C2 by a predicate notEqual(C1, C2, t). The predicate is true
whenever conjuncts, role expressions and roles are not equal in C1 and C2.

5.2 Formalising upward refinement in ASP

We consider each step of the refinement operator in Definition 6 as an operator type by itself. We consider
five types of generalisation that can be applied to a concept in the domain knowledge at each step:

1. The generalisation of an atomic concept, and we denote it as γA;

2. The generalisation of a concept filling the range of a role up to a role depth k (γC);

3. The generalisation of a role (γr);

4. The removal of a role, and we denote it as γr− ;

5. The removal of a concept, and we denote it as γC− .

We treat each upward refinement operator type as an action. To this end, we model each operator type via a
precondition rule, an inertia rule, and an effect rule. Preconditions are modelled with a predicate app/3 that
states when an operator type is applicable. Inertia is modelled with different non-inertial predicates that
state when an element in a domain concept remains unchanged after the execution of a refinement operator
type. Effect rules model how a refinement operator type changes a concept in the domain knowledge. We
represent the execution of an upward refinement operator type with an atom exec(γx, C, t). This atom
denotes that a generalisation operator type γx ∈ {γA, γC , γr, γr− , γC−} is applied to C at step t.

Upward refinement of atomic concepts. A fact app(genConcept(Ex,A,B), C, t) denotes the applica-
bility of the generalisation of a concept A to a concept B in a conjunct Ex6 of C at step t using γA:

app(genConcept(Ex,A,B), C1, t)← (20)
hasConjunct(C1, Ex,A, t),
subConcept(A,B),

not roleExHasRoleAndConcept(C1, A, , , , t),
not hasConjunct(C1, A, , t),
conjunctNotEq(C1, C2, A, t),
not exec(genConcept(Ex,A,B), C2, t), dConcept(C2)

There are several preconditions for generalising an atomic concept in a conjunct Ex. First, Ex involves
a concept A that has a parent concept B in the subsumption hierarchy defined by the axioms of the TBox
(first two EDB predicates). Second, Ex is neither a role expression nor a complex expression (negated-by-
failure EDB predicates). Third, A is not equivalent in C1 and C2 (conjunctNotEq/4). This latter atom is
true either when either C1 or C2 does not contain A. Another condition is that A is not being generalised in
C2, since we want to keep elements that are common in C1 and C2.

We also need a simple inertia rule for generalising a concept in a conjunct. This is as follows:

noninertialGenConcept(C, Ex,A, t)← exec(genConcept(Ex,A,), C, t), (21)
hasConjunct(C, Ex,A, t)

6The variable Ex can be instantiated with conjunct or subConjunct used to model the conjunction in a complex concept.

15

noninertialGenConcept atoms will cause a conceptA to remain in a conjunct Ex in C, as defined via rule
(30a).

Upward refinement of range concepts. A fact app(genConceptInRole(Ex, r,A,B), C, t) denotes the
applicability of the generalisation of a concept A to a concept B when A fills the range of a role r in a role
expression RoleEx of C at step t using γC :

app(genConceptInRole(RoleEx, r, A,B), C1, t)← (22)
roleExHasRoleAndConcept(C1, RoleEx,Depth, r, A, t),
app(genConcept(RoleEx,A,B), C1, t),
roleExpressionNotEq(C1, C2, RoleEx, t), Depth ≤ k,
not exec(genConceptInRole(RoleEx, , ,), C2, t), dConcept(C2)

The preconditions for generalising a concept filling the role of a role expression RoleEx are similar to the
case of the upward refinement of an atomic concept: RoleEx involves a conceptA that is generalisable, the
role expression is not equivalent in C1 and C2 (roleExpressionNotEq/4), and the concept to be generalised
must not be under generalisation in C2. Please note how the maximum role depth of a concept k controls
the applicability of this rule.

The inertia rule for generalising a concept that fills the range of a role in C is:

noninertialGenConceptInRole(C, RoleEx, r,A, t)← (23)
exec(genConceptInRole(RoleEx, r, A,), C, t),
roleExHasRoleAndConcept(C, RoleEx, , r, A, t)

noninertialGenConceptInRole atoms will cause a concept A to remain in the range of a role as defined
via rule (30b).

Upward refinement of roles. A fact app(genRole(RoleEx , r , s), C, t) denotes the applicability of the
generalisation of a role r to a role s in a role expression RoleEx of C at step t using γr:

app(genRole(RoleEx, r, s), C1, t)← (24)
hasConjunct(C1, Ex,RoleEx, t),
roleExHasRoleAndConcept(C1, RoleEx, , r, A, t),
subRole(r, s),

roleInExpressionNotEq(C1, C2, RoleEx, r, t),
not exec(genRole(RoleEx, r,), C2, t), dConcept(C2)

The main precondition for generalising a role r contained in a role expression RoleEx is that r has a
parent role s in the subsumption hierarchy defined by the axioms of the TBox. Other preconditions are that
the role expression RoleEx is not equivalent in C1 and C2 (roleInExpressionNotEq/4) and is not being
generalised in C2.

The inertia rule for generalising a role in a role expression is:

noninertialGenRole(C, RoleEx, r, t)← exec(genRole(RoleEx, r,), C, t), (25)
roleExHasRoleAndConcept(C, RoleEx, , r, A, t)

noninertialGenRole atoms will cause a role r to remain in a role expression RoleEx in C, as defined via
rule (30b).

16

Removal of a role. A fact app(rmRole(RoleEx , r ,A), C, t) denotes the applicability of the removal of a
role r from a role expression RoleEx of C at step t using γr− :

app(rmRole(RoleEx, r, A), C1, t)← (26)
hasConjunct(C1, Ex,RoleEx, t),
roleExHasRoleAndConcept(C1, RoleEx, , r, A, t),
not app(genRole(RoleEx, r, s), C1, t),
not app(genConceptInRole(RoleEx, r, A,), C1, t),
roleExpressionNotEq(C1, C2, RoleEx, t),
not exec(rmRole(RoleEx, r,), C2, t), dConcept(C2)

Essentially, a role r is removable from a role expression RoleEx when neither itself nor the concept
filling its range are generalisable. This is captured by the negated-by-failure predicates app/3. Other
preconditions are that the role expressionRoleEx is not equivalent in C1 and C2 (roleExpressionNotEq/4)
and is not being removed from C2.

The inertia rule for removing a role in a role expression is:

noninertialRmRole(C, Ex,RoleEx, r,A, t)← exec(rmRole(RoleEx, r, A), C, t), (27)
hasConjunct(C, Ex,RoleEx, t),
roleExHasRoleAndConcept(C, RoleEx, , r, A, t)

noninertialRmRole atoms will cause a role r to remain in a role expression in C, as defined via rules
(30a-30b).

Removal of a concept. A fact app(rmConcept(C ,A), C, t) denotes the applicability of the removal of a
concept A from a conjunct Ex of C at step t using γC− :

app(rmConcept(Ex,A), C1, t)← (28)
hasConjunct(C1, Ex,A, t),
not app(genConcept(Ex,A,), C1, t),
conjunctNotEq(C1, C2, A, t),
not exec(rmConcept(Ex,A), C2, t), dConcept(C2)

Essentially, a concept A is removable from a conjunct Ex when is not generalisable. This is captured by
the negated-by-failure predicates app/3. Other preconditions are that the conjunct from where the concept
will be removed is not equivalent in C1 and C2 (conjunctNotEq/4) and A is not being removed from C2.

The inertia rule for removing a concept is:

noninertialRmConcept(C, Ex,A, t)← exec(rmConcept(Ex,A), C, t), (29)
hasConjunct(C, Ex,A, t)

noninertialRmConcept atoms will cause a concept A to remain in a conjunct Ex in C, as defined via rule
(30a).

Inertia. The following rules state which concepts remain unchanged when they are inertial.

hasConjunct(C, C,A, t+ 1)← hasConjunct(C, C,A, t), (30a)
not noninertialGenConcept(C, C,A, t),
not noninertialRmRole(C, C,A, , , t),
not noninertialRmConcept(C, C,A, t)

17

roleExHasRoleAndConcept(C, C, r,Depth,A, t+ 1)← (30b)
roleExHasRoleAndConcept(C, C, r,Depth,A, t),
not noninertialGenConceptInRole(C, C, r, A, t),
not noninertialGenRole(C, C, r, A, t),
not noninertialRmRole(C, , C, r, A, t)

Effects. The following rules state which concepts change when they are generalised.7

hasConjunct(C, C,B, t+ 1)← (31a)
hasConjunct(C, C,A, t),
exec(genConcept(C,A,B), C, t)

roleExHasRoleAndConcept(C, C, r,Depth,B, t+ 1)← (31b)
roleExHasRoleAndConcept(C, C, r,Depth,A, t),
exec(genConceptInRole(C, r,A,B), C, t)

roleExHasRoleAndConcept(C, C, s,Depth,A, t+ 1)← (31c)
roleExHasRoleAndConcept(C, C, r,Depth,A, t),
exec(genRole(C, r, s, A), C, t)

Checking the equivalence between generalisations. As seen in the previous section, the upward re-
finement operator γ is proper when those generalisations, which are equivalent to the concept being gener-
alised, are discarded (see Eq. 5). To this end, during the generic space search, we discard these generali-
sations. The clingo solver allows to interleave the solving capabilities of ASP with a procedural language
such as Python. This allowed us to check the equivalence between two generalisations in an external Python
function and return the result to the ASP program.

poss(genConcept(Ex,A,B), C1, t)← (32a)
app(genConcept(Ex,A,B), C1, t),
EQ 6= 1,EQ = @isGenEq(‘genConcept′, C, Ex, , A,B, t)

poss(genConceptInRole(RoleEx, r, A,B), C1, t)← (32b)
app(genConceptInRole(RoleEx, r, A,B), C1, t),
EQ 6= 1,EQ = @isGenEq(‘genConceptInRole′, C, RoleEx, r,A,B, t)

poss(genRole(RoleEx, r, s), C1, t)← (32c)
app(genRole(RoleEx, r, s), C1, t),
EQ 6= 1,EQ = @isGenEq(‘genRole′, C, RoleEx, , r, s, t)

poss(rmRole(RoleEx, r, A), C1, t)← (32d)
app(rmRole(RoleEx, r, A), C1, t),
EQ 6= 1,EQ = @isGenEq(‘rmRole′, C, RoleEx, , r, A, t)

7Additional rules handle the case in which the generalisation adds facts that model concept definitions (Eq. 10-14). In such a case,
the number of roles Depth can be increased. To this end, the precondition Depth ≤ k in Eq. 22 prevents the applicability of further
generalisations of a concept filling the range of a role when Depth reaches k, the maximum number of nested roles allowed.

18

poss(rmConcept(Ex,A), C1, t)← (32e)
app(rmConcept(Ex,A), C1, t),
EQ 6= 1,EQ = @isGenEq(‘rmConcept′, C, Ex,A, , , t)

The isGenEq function internally does two things. First, it builds the concept description C based on the
current generalisation. Since the incremental ASP solving process is controlled by a Python script, the
Python function contains all the generalisations of a concept. Second, it checks whether the generalisation
at step t is equivalent to the generalisation at step t − 1. This is done by means of the jcel reasoner [30].
We test the equivalence between the current and the previous generalisation by checking the corresponding
subsumptions. If the two generalisations are equivalent, then the function returns 1. In this case, the
applicability of a generalisation operation is ‘disabled’ by preventing the instantiation of the corresponding
poss/3 predicate.

5.3 Upward refinement search

We use ASP for finding a generic space and the generalised versions of the concepts in the domain knowl-
edge of an EL++ TBox T , which can lead to a blend. This is done by successively generalising the concepts
in the domain knowledge by means of the upward operator steps we described in the previous subsection.
The repetitive application of the generalisation operator types defines a refinement path.

Definition 10. Let C be a domain concept in an EL++ TBox T , let {γ1x, . . . , γnx} be the set of generalisation
steps for C, t1 < · · · < tn be refinement steps and γx ∈ {γA, γC , γr, γr− , γC−} . The set of atoms
P = {exec(γ1x, C, t1), · · · , exec(γnx , C, tn)} is a refinement path of C. Sometimes, we write Cti to denote
the concept C after i generalisation steps.

Refinement paths are generated with the following choice rule, that allows one or zero refinement operators
per C at each step t:

0{exec(a, C, t) : poss(a, C, t)}1← (33)
not genericReached(t), dConcept(C)

The only generalisations that are executed are those whose preconditions are satisfied. Refinement paths
lead from the domain concepts to a generic space. A generic space is reached, if the generalised domain
concepts are equals. The notEqual predicate is used to determine if a generic space is reached.

notGenericReached(t)←dConcept(C1), dConcept(C2), (34a)
notEqual(C1, C2, t), C1 6= C2

← notGenericReached(t) (34b)

The constraint (34b) ensures that the generic space is reached in all stable models. The ASP program
generates one stable model for each combination of generalisation paths that lead to the generic space.

Example 6. Let us consider the SearchHardDisk and EditDocument concepts in Example 1 representing

19

icons in the domain knowledge of the ComputerIcon ontology. Their refinement paths are:

PSearchHardDisk = {exec(genConceptInRole(roleEx21, hasMeaning,HardDrive,

ObjectType),SearchHardDisk , 0),

exec(genRole(roleEx1, isAboveIn, isInSpatialRelation, subConjunct2),

SearchHardDisk , 1),

exec(genConceptInRole(roleEx11, hasMeaning, Search,Action),

SearchHardDisk , 2)}
PEditDocument = {exec(genConceptInRole(roleEx11, hasMeaning,Edit, Action),

EditDocument , 0),

exec(genRole(roleEx1, isAboveInRight, isInSpatialRelation, subConjunct2),

EditDocument , 1),

exec(genConceptInRole(roleEx21, hasMeaning,Doc,ObjectType),

EditDocument , 2)}

After applying the respective generalisation operators a generic space is reached. It is easy to check that
this corresponds to the generic space in Example 3.

6 Blending EL++ concepts

Conceptual blending, as described by Fauconnier and Turner [18], involves the following aspects:

1. blend generation: it takes the generic space of two input spaces into account and combines their
non-common structure in a selective way to a novel blended space;

2. blend completion: it constructs the emergent structure of a blend —a structure that is not directly
copied from the inputs— by taking some background knowledge into account;

3. blend evaluation: it assesses the quality of a blend by means of certain optimality principles.

Our algorithm for blending EL++ concepts (Algorithm 1) implements these aspects as three phases, and
re-interprets them in order to provide a computational account for conceptual blending.8

The blend generation is implemented according to the definition of an amalgam (Definition 3). To this end,
first, a generic space is found by means of the ASP-based generalisation process described in the previous
section. The method generalise finds different refinement paths of two (domain) EL++ concepts that lead
to a generic space (Line 1). Then, a blend is created by computing the most general specialisation (MGS) of
a pair of generalised concepts (Line 4). The MGS of two EL++ concepts corresponds to their conjunction.

Due to this combinational way of generating the blends, some of them might have already been found using
some previous refinement paths, and they are simply not considered. Some other blends, on the other hand,
may be not interesting. For instance, they might not have certain desirable properties.

In the algorithm, blend evaluation consists of two parts: a logical check and a heuristic function (Line 5 and 7).
The logical check discards those blends that do not satisfy certain properties. Desirable properties are mod-
eled as an ontology consequence requirement CR that is given as input to the algorithm. To verify whether

8The implementation of the conceptual blending algorithm is available at: https://bitbucket.org/rconfalonieri/
ontolp-implementation

20

Algorithm 1 Conceptual blending of EL++ concepts

Input:


An EL++ TBox T
A consequence requirement CR
A maximum role depth k

Output: A ranked list of blended concepts B
{〈C′1, C′2〉 denotes a set of generalisations for C1 and C2 that lead to a generic space.}

1: for all 〈C′1, C′2〉 ← generalise(C1, C2, k) do
2: for C ′1 ∈ C′1 do
3: for C ′2 ∈ C′2 do
4: Cam ←MGS(C ′1, C

′
2)

5: if Cam 6∈ B and {T ∪ Cam} entails CR then
6: C ′am ← completion(Cam)
7: rankBlend(C ′am, compactness(C

′
am),B)

8: end if
9: end for

10: end for
11: end for
12: return B

a consequence requirement is satisfied or not, the algorithm makes use of the jcel reasoner [30]. Con-
sequence satisfaction is achieved by checking whether the ontology in the TBox T and the new blended
concept entail the consequence requirement (Line 5).9

Then, those blends that satisfy the consequence requirement are completed. In conceptual blending, com-
pletion refers to the “background knowledge that one brings into a blend” [18]. Clearly, in a computational
setting, there can be different interpretations of what background knowledge stands for. In our implemen-
tation, we interpreted it as structural properties that a blend should have. In blending computer icons, we
expect new blended icon concepts to be defined by one spatial relation between signs in which each sign
has only one meaning relation.10 To this end, completion is an operation that transforms the structure of
a blend by using this background knowledge. In particular, completion consists of a set of transformation
rules that aggregate roles and concepts by taking the axioms in the TBox into account.

To implement completion, we specified a simple rewriting system using Maude [11], a system that supports
rewriting logic specification and programming. The transformation rules that we used for completing a
blend are:

A uB is transformed to A if A vT B (35a)
∃r.C u ∃s.C is transformed to ∃r.(C uD) if r vT s (35b)

Besides, we make use of concept definitions — equivalence axioms in the TBox— to rewrite a blend into a
shorter equivalent form. It is worthy to notice that whilst this last rewriting preserves concept equivalence
—therefore, it can be considered a simple instance of DL rewriting [3]— the above rules do not. Indeed,
the rule in Eq. 35b is not invariant w.r.t. EL++ semantic equivalence, since it transforms a concept into a
more specific one. Blends are completed before a heuristic function is applied (Line 6).

To decide which blends are better than others, the algorithm ranks them by means of a heuristic function
(Line 7). The compactness heuristic counts the number of concepts and roles used in the definition of a
blend B:

9Blend evaluation is an open research topic in conceptual blending and it can be accomplished in different ways. For instance,
evaluation could be achieved through an argumentative dialogue, in which users engage in order to decide which blend to keep and
which one to discard. We refer the interested reader to [12] where a discussion about the use of Lakatosian reasoning to evaluate
conceptual blends is presented.

10This constraint is not expressable in EL++. We re-interpreted it as the background knowledge used to complete blended concepts.

21

compactness(B) =
1

conceptsNr(B) + rolesNr(B)
(36)

The algorithm considers as best blends those that have a higher compactness value. This heuristic can be
considered as a computational interpretation of some of the optimality principles proposed by Fauconnier
and Turner [18]. The integration principle, for instance, states that “a blend must constitute a tightly
integrated scene that can be manipulated as a unit”. The compactness of a blend captures the idea behind
this principle in the sense that minimises the number of concepts and roles that are used to define a blend.

Example 7. Let us considerC1 = SearchHardDisk, C2 = EditDocument,G in Example 3 and the general-
isation steps in PSearchHardDisk and in PEditDocument . Given a consequence requirement expressing that a
blended concept should contain a sign with meaning search above a sign with meaning document, modeled
in EL++ as Sign u ∃hasMeaning.Search u ∃isAboveIn.Sign u ∃hasMeaning.Doc, and the maximum role
depth k = 2, the algorithm returns the following ranked blends:

Blend Compactness
MGS(C0

0 , C
1
2) 0,33

MGS(C1, C
0
2) 0,2

MGS(C1, C
1
2) 0,16

MGS(C0
1 , C

0
2) 0,14

MGS(C1, C2) 0,13
MGS(C0

1 , C2) 0,1

MGS(C0
1 , C

1
2) is completed and elaborated into MagnifyingGlass uisAbove.Document and its compact-

ness value is 0,33. MGS(C0
1 , C

1
2) is the best blend found by the algorithm. Other valid but less ranked

blends are obtained by other combinations of generalisations.

7 Related Work

Conceptual blending in EL++ as described in this paper is a special case of the amalgam-based concept
blending model described in [9], and implemented for CASL theories in [16] in order to invent cadences and
chord progressions. This model has also been used to study the role of blending in mathematical invention
[10]. This concept blending model, as the one presented here, is based on the notion of amalgam defined
over a space of generalisations [31]. The space of generalisations is defined by refinement operators,
that can be specialisation operators or generalisation operators, notions developed by the Inductive Logic
Programming (ILP) community for inductive learning. These notions can be specified in any language
where refinement operators define a generalisation space like ILP [27], description logics [34], or order-
sorted feature terms [32].

Several approaches for generalising ontology concepts in the EL family exist in the DL and ILP literature.

On the one hand, in DL approaches, the LGG is defined in terms of a non-standard reasoning task over a
TBox [1, 2, 5, 39, 38]. Generally speaking, since the LGG w.r.t. general TBoxes in the EL family does
usually not exist, these approaches propose several solutions for computing it. For instance, Baader [1, 2]
devises the exact conditions for the existence of the LGG for cyclic EL-TBoxes based on graph-theoretic
generalisations. Baader et al [5] propose an algorithm for computing good LGGs w.r.t. a background
terminology. Zarrieß and Turhan [39], Turhan and Zarrieß [38] specify the conditions for the existence
of the LGG for general EL- and EL+-TBoxes based on canonical models. As already commented in the
introduction, our work relates to these approaches, but it is different in spirit, since we do not need to find
the LGG between (two) EL++ concepts for the kind of application we are developing.

22

An approach in DL that does use refinement operators is [34], where the language chosen for representing
the generalisation space is that of DL Conjunctive Queries. Here LGG between two inputs, translated
to conjunctive queries, can be determined by searching over the generalisation space using downward
specialisation operators.

On the other hand, studying the LGG in terms of generalisation and specialisation refinement operators
has been used for order sorted-feature terms and Horn clauses in ILP. Anti-unification (or LGG) in order
sorted-feature terms was studied in [32], which was conducive to later develop the notion of amalgam
[31]. The notion of refinement operator, that originated in ILP, has been more studied in the space of Horn
clauses [27], but LGG in particular has not been a topic intensively pursued in the context of inductive
learning in ILP.

Finally, other approaches that combine ASP for reasoning over DL ontologies worthy to be mentioned are
[36, 15, 33]. The focus of these work is quite different from ours, since they use ASP for reasoning over
DL ontologies.

8 Conclusion and Future Works

In this paper, we defined an upward refinement operator for generalising EL++ concepts for conceptual
blending. The operator works by recursively traversing their descriptions. We discussed the properties
of the refinement operator. We showed that the operator is locally finite, proper, but it is not complete
(Propositions 2-3 and Theorem 1). We claimed, however, that completeness is not an essential property for
our needs, since being able to find a generic space between two EL++ concepts, although not a LGG, is
already a sufficient condition for conceptual blending.

We presented an implementation of the refinement operator in ASP. We showed how to model the descrip-
tion of EL++ concepts in ASP and to implement a search process for generalising the domain knowledge
of an EL++ TBox. The stable models of the ASP program contain the generalisation steps needed to be
applied in order to generalise two EL++ concepts until a generic space is reached. We embedded the ASP-
based search process in an amalgamation process to implement an algorithm for conceptual blending. The
algorithm creates new EL++ concepts by combining pair of generalised EL++ concepts. The blends are
logically evaluated and ranked by means of ontology consequence requirements and a heuristic function
respectively. We exemplified our approach in the domain of computer icon design.

We envision some directions of future research. We aim at employing a richer DL, such as SROIQ [24]
—the DL underlying the Web Ontology Language OWL 211—, in our conceptual blending framework.
This will allow us to capture more complex concept descriptions and consequence requirements. By doing
this, however, we will have to sacrifice efficiency, since the reasoning tasks in this logic are computational
more expensive than in EL++. A possible way to find a tradeoff between expressivity and efficiency is
to employ a richer DL only in one of the phases of our conceptual blending framework, e.g., either in the
generation or in the evaluation phase. For instance, SROIQ could be employed in the generation phase (to
this end, we will need to extend the generalisation operator), while the blend evaluation could be realised
through argumentation [12]. On the contrary, we can keep EL++ in the generation phase and use SROIQ
in the evaluation. These options are perfectly justifiable from the conceptual blending point of view, since
the blend generation and evaluation are separate processes that can use different languages and techniques.
This is also what usually happens in data mining approaches to computational creativity [37].

Another extension of the framework that we wish to explore is the blending of ontologies rather only
concepts. Blending ontologies has already been explored in an ontological blending framework [23, 26],
where blends are computed as colimits of algebraic specifications. In this framework, the blending process
is not characterised in terms of amalgamation, the input concepts are not generalised, and the generic space
is assumed to be given. Therefore, the results of this paper can be extended and applied in this framework.

11http://www.w3.org/TR/owl2-overview/, accessed 04/12/2015

23

We consider the work of this paper to be a fundamental step towards the challenging task of defining and
implementing a computational framework for conceptual blending which uses DLs as its formal underpin-
ning language.

References
[1] Baader F (2003) Computing the Least Common Subsumer in the Description Logic EL w.r.t. Ter-

minological Cycles with Descriptive Semantics. In: Ganter B, de Moor A, Lex W (eds) Conceptual
Structures for Knowledge Creation and Communication, Lecture Notes in Computer Science, vol
2746, Springer Berlin Heidelberg, pp 117–130

[2] Baader F (2005) A Graph-Theoretic Generalization of the Least Common Subsumer and the Most
Specific Concept in the Description Logic EL. In: Hromkovič J, Nagl M, Westfechtel B (eds) Graph-
Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol 3353, Springer
Berlin Heidelberg, pp 177–188

[3] Baader F, Küsters R (2006) Non-standard Inferences in Description Logics: The Story So Far. In:
Gabbay DM, Goncharov SS, Zakharyaschev M (eds) Mathematical Problems from Applied Logic I,
International Mathematical Series, vol 4, Springer New York, pp 1–75

[4] Baader F, Brandt S, Lutz C (2005) Pushing the EL Envelope. In: Proceedings of the 19th International
Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, pp 364–369

[5] Baader F, Sertkaya B, Turhan AY (2007) Computing the least common subsumer w.r.t. a background
terminology. Journal of Applied Logic 5(3):392 – 420

[6] Baader F, Brandt S, Lutz C (2008) Pushing the EL Envelope Further. In: Clark K, Patel-Schneider PF
(eds) In Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and Directions

[7] Baral C (2003) Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press

[8] Besold TR, Plaza E (2015) Generalize and Blend: Concept Blending Based on Generalization, Anal-
ogy, and Amalgams. In: Proceedings of the 6th International Conference on Computational Creativity,
ICCC15

[9] Bou F, Eppe M, Plaza E, Schorlemmer M (2014) D2.1: Reasoning with Amalgams. Tech.
rep., COINVENT Project, available at http://www.coinvent-project.eu/fileadmin/
publications/D2.1.pdf

[10] Bou F, Schorlemmer M, Corneli J, Gomez-Ramirez D, Maclean E, Smail A, Pease A (2015) The
role of blending in mathematical invention. In: Proceedings of the 6th International Conference on
Computational Creativity, ICCC15

[11] Clavel M, Durán F, Eker S, Lincoln P, Martı́-Oliet N, Meseguer J, Talcott C (2003) The Maude
2.0 System. In: Nieuwenhuis R (ed) Rewriting Techniques and Applications (RTA 2003), Springer-
Verlag, no. 2706 in Lecture Notes in Computer Science, pp 76–87

[12] Confalonieri R, Corneli J, Pease A, Plaza E, Schorlemmer M (2015) Using Argumentation to Evaluate
Concept Blends in Combinatorial Creativity. In: Proceedings of the 6th International Conference on
Computational Creativity, ICCC15

[13] Confalonieri R, Eppe M, Schorlemmer M, Kutz O, Peñaloza R, Plaza E (2015) Upward Refinement
for Conceptual Blending in Description Logic —An ASP-based Approach and Case Study in EL++.
In: Proceedings of 1st International workshop of Ontologies and Logic Programming for Query An-
swering, ONTOLP 2015, co-located with IJCAI-2015

24

[14] Cornet R, de Keizer N (2008) Forty years of SNOMED: a literature review. BMC medical informatics
and decision making 8 Suppl 1

[15] Eiter T, Ianni G, Lukasiewicz T, Schindlauer R, Tompits H (2008) Combining answer set program-
ming with description logics for the semantic web. Artificial Intelligence 172(12–13):1495–1539

[16] Eppe M, Confalonieri R, Maclean E, Kaliakatsos-Papakostas MA, Cambouropoulos E, Schorlem-
mer WM, Codescu M, Kühnberger K (2015) Computational Invention of Cadences and Chord Pro-
gressions by Conceptual Chord-Blending. In: Yang Q, Wooldridge M (eds) Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, AAAI Press, pp 2445–2451

[17] Eppe M, Maclean E, Confalonieri R, Kutz O, Schorlemmer WM, Plaza E (2015) ASP, Amalgamation,
and the Conceptual Blending Workflow. In: Calimeri F, Ianni G, Truszczynski M (eds) Logic Pro-
gramming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, Lexington,
KY, USA, September 27-30, 2015. Proceedings, pp 309–316

[18] Fauconnier G, Turner M (2002) The Way We Think: Conceptual Blending And The Mind’s Hidden
Complexities. Basic Books

[19] Gebser M, Kaminski R, Kaufmann B, Schaub T (2014) Clingo = ASP + control: Preliminary report.
CoRR abs/1405.3694

[20] Gebser M, Kaminski R, Kaufmann B, Lindauer M, Ostrowski M, Romero J, Schaub T, Thiele S
(2015) Potassco User Guide 2.0. Tech. rep., University of Potsdam

[21] Gelfond M, Kahl Y (2014) Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach. Cambridge University Press, New York, NY, USA

[22] Gelfond M, Lifschitz V (1988) The stable model semantics for logic programming. In: Proceedings of
the Fifth International Conference on Logic Programming, (ICLP’88), The MIT Press, pp 1070–1080

[23] Hois J, Kutz O, Mossakowski T, Bateman J (2010) Towards ontological blending. In: Dicheva D,
Dochev D (eds) Artificial Intelligence: Methodology, Systems, and Applications, Lecture Notes in
Computer Science, vol 6304, Springer Berlin Heidelberg, pp 263–264

[24] Horrocks I, Kutz O, Sattler U (2006) The Even More Irresistible SROIQ. In: Doherty P, Mylopoulos
J, Welty CA (eds) Proceedings, Tenth International Conference on Principles of Knowledge Rep-
resentation and Reasoning, Lake District of the United Kingdom, June 2-5, 2006, AAAI Press, pp
57–67

[25] Kowalski R (1974) Predicate Logic as Programming Language. In: Proceedings of International Fed-
eration for Information Processing, pp 569– 574

[26] Kutz O, Bateman J, Neuhaus F, Mossakowski T, Bhatt M (2014) E pluribus unum: Formalisation,
Use-Cases, and Computational Support for Conceptual Blending. In: Computational Creativity Re-
search: Towards Creative Machines, Thinking Machines, Atlantis/Springer

[27] van der Laag PR, Nienhuys-Cheng SH (1998) Completeness and properness of refinement operators
in inductive logic programming. The Journal of Logic Programming 34(3):201 – 225

[28] Lehmann J, Haase C (2010) Ideal Downward Refinement in the EL Description Logic. In: Proc. of
the 19th Int. Conf. on Inductive Logic Programming, Springer-Verlag, Berlin, Heidelberg, ILP’09, pp
73–87

[29] Lehmann J, Hitzler P (2010) Concept learning in description logics using refinement operators. Ma-
chine Learning 78(1-2):203–250

[30] Mendez J (2012) jcel: A Modular Rule-based Reasoner. In Proceedings of the 1st International Work-
shop on OWL Reasoner Evaluation (ORE 2012) 858

25

[31] Ontañón S, Plaza E (2010) Amalgams: A Formal Approach for Combining Multiple Case Solutions.
In: Bichindaritz I, Montani S (eds) Proceedings of the International Conference on Case Base Rea-
soning, Springer, Lecture Notes in Computer Science, vol 6176, pp 257–271

[32] Ontañón S, Plaza E (2012) Similarity measures over refinement graphs. Machine Learning Journal
87(1):57–92

[33] Ricca F, Gallucci L, Schindlauer R, Dell’Armi T, Grasso G, Leone N (2009) OntoDLV: An ASP-based
System for Enterprise Ontologies. Journal of Logic and Computation 19(4):643–670

[34] Sánchez-Ruiz A, Ontañón S, González-Calero P, Plaza E (2013) Refinement-Based Similarity Mea-
sure over DL Conjunctive Queries. In: Delany S, Ontañón S (eds) Case-Based Reasoning Research
and Development, Lecture Notes in Computer Science, vol 7969, Springer Berlin, pp 270–284

[35] Spackman K, Campbell K, Cote R (1997) SNOMED RT: A reference terminology for health care.
Journal of the American Medical Informatics Association

[36] Swift T (2004) Deduction in Ontologies via ASP. In: Lifschitz V, Niemelä I (eds) Logic Programming
and Nonmonotonic Reasoning, Lecture Notes in Computer Science, vol 2923, Springer Berlin, pp
275–288

[37] Toivonen H, Gross O (2015) Data mining and machine learning in computational creativity. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 5(6):265–275

[38] Turhan A, Zarrieß B (2013) Computing the lcs w.r.t. general EL+-TBoxes. In: Proceedings of the
26th International Workshop on Description Logics, pp 477–488

[39] Zarrieß B, Turhan AY (2013) Most Specific Generalizations w.r.t. General EL-TBoxes. In: Proceed-
ings of the 23th International Joint Conference on Artificial Intelligence, AAAI Press, IJCAI ’13, pp
1191–1197

26

