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ABSTRACT

This paper presents two novel strategies for processing chro-
ma vectors corresponding to polyphonic audio, and pro-
ducing a symbolic representation known as GCT (General
Chord Type). This corresponds to a fundamental step in the
conversion of general polyphonic audio files to this symbolic
representation, which is required for enlarging the current
corpus of harmonic idioms used for conceptual blending in
the context of the COINVENT project. Preliminary results
show that the strategies proposed produce correct results,
even though harmonic ambiguities (e.g. between a major
chord with added major 6th and a minor chord with minor
7th) might be resolved differently according to each strat-

egy.

Categories and Subject Descriptors

[Multimedia and Multimodal Retrieval]: Music Re-
trieval

1. INTRODUCTION

This paper deals with processing chroma feature vectors
obtained from audio databases containing polyphonic mu-
sic, in order to automatically obtain General Chord Type
(GCT) representations for music pieces [2]; this is a special
case of chord transcription where GCT's are used instead of
the more common guitar-style (e.g. Am, D7) chord anno-
tations. GCT is a symbolic chord representation that de-
composes chords into three fundamental parts: a root, a
base (maximally consonant pitch-class subset) and exten-
sions (additional pitch-classes). This representation com-
bines the flexibility of pc-set representations for dealing with
non-tonal music idioms with the expressiveness of traditional
tonal harmony through a generic consonance representation
framework. The problem of obtaining GCT representations
from audio also relates to, but is considerably easier than,
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polyphonic audio transcription, in the sense that the output
does not require any timbre or voice-related information,
that octave-equivalence may be explored for improved com-
putational performance, and also due to the fact that GCTs
offer some degree of robustness regarding transcription er-
rors (e.g. doubled notes or wrong octaves do not affect the
result).

The main interest in developing these methods lies in ob-
taining symbolic databases of music from different idioms
that will be used in the contexts of automatic harmonization
[9] and conceptual blending [22]. GCTs offer a more detailed
account of the harmonic progressions than plain pitch-class
sets, and this additional information (e.g. roots and disso-
nant notes) can be explored in the logical ontologies that
are used for conceptual blending. The original algorithm for
obtaining GCTs [2] depends on pre-existing symbolic rep-
resentations of the chords (e.g. MIDI or pc-sets), and so
GCT-based automatic harmonization and conceptual blend-
ing of music idioms depend on large databases of symbolic
data for training and validation. One possibility of extend-
ing the repertoire available for tests and future research in
these fields consists in obtaining GCTs directly from audio
recordings.

We offer a preliminary account of a few potential methods
for obtaining GCTs from audio based on the use of chroma
feature vectors. Chroma features are computed for (usu-
ally very short) windowed audio frames in the context of
the Short-Time Fourier Transform, and they represent in
a 12-dimensional vector every pitch-class in the 12 equal-
tempered octave division. Each chroma value accumulates
spectral energy information from all octaves in the audible
range corresponding to a particular pitch-class. These val-
ues are then used for extracting the relevant components of
the GCT corresponding to a given frame.

1.1 Related Work

Automated chord transcription from audio is the task to
identify chord labels on segments of musical audio signal. A
first approach in chord transcription was presented in [6],
where notes where extracted from audio and through the
symbolic content described by notes, chord labels were as-
signed. The notes-to-chords matching was based on simple
pattern matching based on chord templates, which are vec-
tors that describe the intensity of each pitch class. Chord
templates have also been used for chord transcription in
more recent works [19, 18], proposing more robust tech-
niques for identifying chord-change locations and labelling
the segmented parts.

Among the most successful techniques for chord transcrip-



tion is the additional utilisation of hidden Markov models
(HMMs). The pioneering work in audio cord transcription
with HMMs was presented in [23], where HMMs were em-
ployed on a dataset of 20 Beatles songs. To train and test
the system, ground-truth labels of these pieces were collected
from a book of Beatles transcriptions. Several other meth-
ods were proposed that have been characterised as “vari-
ations of the standard methods” [4] (meaning as standard
methods the ones presented in [6] and [23]), some of which
utilised HMMs with additional variations [13, 14, 12, 3], ge-
ometric characteristics of the chroma space [8] and recurrent
neural networks [1].

This paper focuses on the quality of information that is
embodied in audio signals in terms of isolated chord labels,
skipping the task of segmenting audio and “filtering” the
spectrogram (as a means to obtain clear pitch-related infor-
mation). Even though the problem of interdependence be-
tween segmentation and labels [25] is an important aspect
of effective chord transcription, aim of the paper at hand is
to provide musicologically grounded insights about funda-
mental chord concepts, like consonance (examined through
the General Chord Type (GCT) [2] representation) and per-
ceived pitch hierarchies (expressed through Parncutt’s the-
ory [21]). To this end, the labelling quality of single-chord
recordings is examined, by utilising spectral information from
the chroma profile, extracted with the MATLAB Chroma
Toolbox [15, 16, 17] and theoretic models of pitch-combina-
tion consonances expressed by the GCT model.

GCTs will be presented in some detail in Section 2.1, but
for the sake of comparison with related work on obtaining
guitar-style chord annotations, two aspects of GCTs have to
be taken into account: structure and idiom-independence.
GCTs are structured in the sense that they rely on a conso-
nance model that allows it to recognize different parts of a
chord, namely root, base (maximal consonant part) and dis-
sonant extensions. Furthermore, these components, which
of course exist in traditional harmonic notations, are not de-
fined exclusively for western tonal harmony, but are inferred
from the consonance model, which is flexible enough to be
applied in widely different music idioms, such as Jazz, modal
Folkloric music, western tonal Classical and Popular music
and also 20th- and 21st-century Atonal music.

2. CONCEPTS AND METHODOLOGY

2.1 General Chord Types

The General Chord Type (GCT) representation [2] incor-
porates the concepts of root, base and extension of a chord.
These concepts derive from traditional harmonic analysis
and establish a hierarchy between the notes of a chord, where
the root represents the fundamental note upon which the
rest of the chord is built (in tonal music this construction
would be based on stacking thirds, although the GCT does
not presuppose such method), the base represent a subset
of pitch-classes that are pairwise consonant according to a
user-defined binary consonance vector' and which is maxi-
mal with respect to this property, and extension represents

!Consonance and dissonance in music are intricate concepts
which are outside of the scope of this text. In contrast with
the psychoacoustic notion of dissonance which includes tim-
bre as an essential defining characteristic, the consonance
vector here considered is arbitrary and reflects cultural as-
pects related to a given music idiom.

other notes aggregated to this collection which might be con-
sonant or dissonant with respect to notes belonging to the
base (but are necessarily dissonant with respect to at least
one note in the base, otherwise they would belong to the
base by definition).

Such a hierarchy is built upon an abstract model that
takes as input a given scale and a partition of the interval
space into consonant and dissonant intervals. The GCT rep-
resentation obtained depends fundamentally on those idiom-
specifuc definitions; for instance, by defining every possible
interval in a chromatic (12-semitone-equal-tempered) scale,
GCTs are equivalent to the normal orders of pc-sets [5],
frequently used in the analysis of atonal music. On the
other hand, by considering as consonant only unisons, thirds,
sixths and perfect fourths and fifths, the GCTs obtained are
very close to traditional harmonic notation based on roman
numerals, which are considerably more expressive than plain
pe-sets in the analysis of tonal repertoire (in this aspect the
GCT is comparable in expressiveness and ease-of-use to the
model of Harte and co-authors [7], although the latter is not
adequate for representing atonal music). These two exam-
ples illustrate the versatility of the GCT model in dealing
with music idiomatic differences: besides atonal and west-
ern tonal music, this model has been also used to represent
Rock and Jazz pieces, and polyphonic music from Epirus
[11]. This versatility is particularly welcome in the context
of conceptual blending across music idioms [10], since the
same representation may be used for widely differing har-
monic material, and at the same time it is expressive with
respect to singularities of each idiom, allowing for a much
more consistent and comprehensive exploration of hybrid
music idioms.

2.2 Chroma feature vectors for transcribing
GCTs

By definition, GCTs are computed from a symbolic repre-
sentation of the chords [2], and in this sense the problem of
obtaining them directly from audio input could be decom-
posed naturally into two steps: polyphonic audio transcrip-
tion, which obtains symbolic music representations from au-
dio, and GCT computation from these. Regrettably, there
are good reasons against adopting such a strategy: compu-
tationally, polyphonic transcription is a very intensive task,
which by state-of-the-art methods still provides inaccurate
results, being often dependent on pre-existing timbre mod-
els or instrument spectral templates (although some tech-
niques, such as non-negative matrix factorization, aim at
finding those templates simultaneously to actual transcrip-
tion [24]). The use of chroma vectors provides a reasonable
alternative to GCT computation which bypasses polyphonic
transcription and allows the direct identification of GCT
components.

Chroma vectors are audio features that describe the har-
monic content of an audio signal in terms of intensity or
amplitude of spectral components corresponding to pitch-
classes. Typically they are computed for short audio frames
and for the 12-semitone equal-tempered scale, by adding
spectral peaks corresponding to each pitch-class over all oc-
taves in the audible range. The Chroma Toolbox is a Matlab
implementation that provides basic signal processing func-
tions as well as graphical output in the form of chroma-
grams (the equivalent of spectrograms or sonograms but us-
ing chroma vectors as the vertical axis) [17].



Experimental validation of the techniques here presented
is done by using as ground truth an annotated chord dataset
which is synthesized in order to provide an automatically
annotated audio database. By adopting such a strategy
we can obtain GCTs directly from the original symbolic
database, which are compared to the ones obtained from
the synthesized audio input through chroma feature vec-
tors. This strategy will also allow the use of information
retrieval techniques such as cross-validation (by using part
of the database as training set and part as experimental in-
put data) and analysis of the results through measures such
as precision and recall in future experiments.

2.3 Identifying the GCT root and base notes

The problem of identifying the main part of the chord,
comprising root and base notes, is considered from the per-
spective of the chroma vector, which is directly obtained
from a Fourier transform of a windowed portion of the sig-
nal. In this sense, chroma vectors are affected by the po-
sition of the notes within the audible spectrum, and this
relates to orchestration: notes produced by spectrally richer
instruments, as well as notes produced in the lowest regis-
ter, will add more energy to the chroma vector, and this
energy will appear not only in the index corresponding to
the pitch-class, but also in its entire harmonic series. For
this reason it is not always the case that the root will have
more energy than other notes, as it is also not the case that
the bass note will have necessarily more energy. Algorithmic
strategies have to be flexible regarding how to select relevant
pitch-classes from the chroma vector.

In order to select a reasonable subset of pitch-classes from
which to search for the root and base of the chord, the con-
sonance vector can be used to provide a threshold of chroma
energy. Specifically, given a consonance vector it is easy to
compute the maximum number N of different pitch-classes
that can belong to any base of any chord; for instance,
the tonal consonance vector (1,0,0,1,1,1,0,1,1,1,0,0) allows
no more than N=3 pairwise consonance pitches in any given
chord. Because of the nature of the chroma vector it would
be risky to assume that exactly the N pitches with highest
chroma values would correspond to the base of the chord; in-
stead we propose a strategy for selecting a larger set of pitch
classes. This may be viewed as an intermediate approximate
transcription step which aims at obtaining a superset con-
taining the root and base notes, where extra notes will be
discarded by the GCT algorithm. This pre-processing of the
chroma vector is given by algorithm 1 below.

Algorithm 1: Approximate Transcription

input: chroma vector c, indexed from O to 11.

output: a set of pitch classes

step 1: sort c in ascending order

step 2: compute the first derivative
d(i)=c(i)-c(i-1)

step 3: normalize d

step 4: select k = min { i | 4(1)>T }

step 5: define N = 12-k

step 6: return the original indices of the
N largest chroma values

This algorithm depends on a parameter T which is a
threshold on the normalized derivative values for identifying
a cutting point in the sorted chroma vector and producing
a set of pitch classes that desirably contains all the notes in

the chord (and maybe others). Given this set, the original
GCT algorithm [2] is used to sort out the pitch classes into
root, base and extension.

We investigate two implementations of the GCT algo-
rithm, the one originally proposed for dealing with purely
symbolic data (where chroma values would be meaningless),
and another one that incorporates information from chroma
values. Specifically, there is a step in the GCT algorithm
where it is confronted with competing hypothesis for root
and base (e.g. the chord A-C-E-G can be viewed as C ma-
jor with added 6th or as A minor with added 7th). Whereas
the original algorithm has a rule based on the overlapping
of base candidates, one variant here considered (referred to
as Audio GCT) weighs chroma values according to Parncutt
model for root-finding [20] and chooses the candidate with
the highest score.

Since the transcription step is not perfect, but approxi-
mate, it makes no sense to keep the notes identified by the
GCT algorithm as added dissonances. Instead we rely on the
chroma values again for identifying the correct extension of
the GCT.

2.4 Identifying the GCT Extension

After the identification of chord root and base notes, the
problem reduces to selecting candidates among the remain-
ing notes that are actually present in the chord being an-
alyzed. This is not a completely trivial task for the fact
that notes present in the input audio add nonzero energy to
their entire harmonic series, so some nonzero chroma values
might reflect pure harmonic energy but absent notes (e.g.
the note B on a C major chord, which receives contributions
from the harmonic series of both E and G).

If we assume that absent notes will have smaller energy
values than dissonances actually present in the chord, then
this problem becomes one of finding a suitable threshold,
not unlike the approximate transcription step above. The
main difference is that this step may benefit from informa-
tion obtained in the identification of the base. Algorithm
2 presents this step using both the chroma vector and the
base identified by the GCT algorithm in the previous step.

Algorithm 2: Finding GCT Extensions
input: chroma vector c, indexed from O to 11
and GCT base
output: a set of pitch classes corresponding
to GCT extensions
step 1: re-scale c by dividing it by the
mean value of base notes
step 2: remove base notes from c
step 3: sort c in ascending order
step 4: compute the first derivative
d(i)=c(i)-c(i-1)
step 5: return all indices i such that d(i)>T

This algorithm also depends on a threshold T on normal-
ized derivative values, but the normalization here reflects
the base identification step.

3. EXPERIMENTS AND DISCUSSION

The above strategies were tested on a set of chords that
occur commonly in western tonal music: major and minor
triads in open position, their inversions, and these chords
with added major 6ths and with added minor 7ths. Since



all strategies are invariant by transposition, a common root
(C) was chosen for all chords, resulting in twenty chord de-
scriptions. These descriptions were synthesized using SOX
and the Karplus-Strong plucked string algorithm available
through SOX synth module (using 4 seconds of audio for
each chord). Chroma vectors were obtained using the Chro-
maToolbox [15] implemented in MatLab, using the default
parameters (0.1 seconds window with 50% overlap), and
adding all chroma obtained over the 4 seconds of each file.

Two preliminary experiments were run for Algorithms 1
(approximate transcription) and 2 (identifying extensions),
both using T=0.5 as threshold. Algorithm 1 alone was able
to correctly transcribe the notes in the chord in 75% of the
input chords, and in the remaining 25% one extra note was
incorrectly transcribed. In no case the produced pc sets fail
to contain the desired base nor the expected extensions of
the chords. Algorithm 2 alone was tested using the manu-
ally annotated bases, and it correctly identified the desired
extensions from the chroma vector in 100% of the cases. Ev-
idently when these procedures are pipelined there is always
the possibility of error propagation, so this 100% is only a
confirmation of the adequacy of this isolated step.

Table 1 exhibits that both the original and the audio GCT
variations identify the roots, bases and extension of the ex-
amined chords with high accuracy (over 80%) - although this
percentage is indicative as later explained. This accuracy is
dependent both on the part of the presented algorithm that
decided about the PCs that are present in an audio segment
as well as the part where the actual chord extensions are
identified - while chroma values that belong to accumula-
tions of harmonics of actual notes are discarded.

The GCT algorithm, being a methodology that relies on
pitch classes, is expected to misinterpret “ambiguous” chord
schemes, like for instance the pc-set {0,3,7,10}. Since no
further information is provided, this pc-set could either refer
to a minor seventh chord with root 0 ([0, [0, 3, 7], [10]]), or a
major sixth chord with root 3 ([3, [0,4,7], [9]]). On a theo-
retic basis, none of these choices is “incorrect”. The original
GCT algorithm systematically misinterprets the C6 chords
as Abm7, while in inversion C6 (G bass) the algorithm fails
to identify the extension (due to the high value that corre-
sponds to the PC 11 in the chroma vector, which smoothens
the derivative towards the PC 10 peak).

In contrast, the audio GCT variation that utilises Parn-
cutt’s harmonic information to untie competing bases, mis-
interprets the minor seventh chords, exhibiting a preference
towards major chord bases. Therefore, all four inversions of
Cm7 are interpreted as Ebm7 chords, while their extensions,
in this root and base context, are correctly identified. As
previously mentioned, the accuracy percentages displayed
in Table 1 are indicative in a sense that both GCT varia-
tions are actually performing equally well in identifying roots
and bases in the examined examples. The difference in the
accuracy results lies on the fact that three inversions were
considered for the C6 chords (omitting the inversion that
would put A in the bass), while four inversions were con-
sidered for the Cm7 chords. Therefore, the original GCT is
shown to misinterpret three cases, while audio GCT four.

It is important to note that, except for the missing ex-
tension on chord C6 (G bass) which is an incorrect result
by any standard, all results that were marked as incorrect
corresponds to valid interpretations of the chords in terms
of traditional harmonic analysis. In fact the two chord cat-

egories “major chords with added major 6th” and “minor
chords with added minor 7th” are equivalent from the point
of view of pc-set theory, being one the rotation of the other
in the modulus-12 pitch representation space. Also from the
perceptual point of view the audio examples are ambiguous,
and each one can be heard one way or another depending on
which note the listener focus his/her attention. The correct
analysis of these chords in a given harmonic context would
depend on previous and following chords, and also on voice
leading information (e.g. melodic resolutions).

4. CONCLUSIONS

This paper presented two novel strategies for obtaining
GCT representations from chroma vectors obtained from
polyphonic audio input. This is a necessary step towards
the automatic conversion of audio databases for polyphonic
music into symbolic databases adequate for automatic har-
monisation and conceptual blending.

The experimental section provide preliminary results that
confirm the adequacy of the proposed strategies, yet further
work is required on more general types of audio input. Par-
ticularly, it is important to consider different timbres and
also different chord dispositions in terms of the frequency
range.

Moving on to the problem of processing polyphonic audio
input, a few problems are already identified and are the
subject of future work:

e When processing a large audio file there are two choices
to be explored: segment the audio into steady chords
(e.g. by thresholding the derivative of consecutive chro-
ma vectors) and then process each steady chord by
one of the techniques presented herein, or use a fixed
segmentation and produce a long chain of GCTs for
each chord in the input, and then process this sequence
to chunk identical or very similar GCTs into a single
chord event. The first alternative is subjected to prior
segmentation errors, which would produce wrong or
cluttered GCTs, whereas the second alternative poses
the problem of how to resolve ambiguities and differ-
ences of interpretation of GCTs obtained from different
chroma vectors but belonging to the same chord (e.g.
the C major with added major 6th and the A minor
with added minor 7th).

e Symbolic databases for automatic harmonisation and
conceptual blending are supposed to have a high-level
analytical representation of the chords, aiming at rep-
resenting the harmonic structure underlying the actual
notes present in the score. Some melodic or coun-
terpunctual devices should be ignored (e.g. passing
notes) whereas others have a harmonic function (e.g.
suspended and then resolved dissonances). This is a
very difficult challenge in producing these symbolic
databases, and current solutions depend on expert
knowledge and manual annotations. Some form of
semi-automatic pre-processing of these situations, try-
ing to identify and label at least the most recurring
forms of these devices, would be of great help in pro-
ducing those databases.



GCT on pitch classes GCT with audio information
chord extracted PCs | root  base  extensions | root base extensions

C (C bass) {0,4,7} 0 047 0 047

C (E bass) {0,4,7} 0 047 0 047

C (G bass) {0,4,7} 0 047 0 047

C7 (C bass) {0,4,7,10} 0 047 10 0 047 10
C7 (E bass) {0,4,7,10} 0 [047 10 0 [047 10
C7 (G bass) {0,4,7,10,11} 0 047 10 0 047 10
C7 (Bb bass) {0,4,7,10} 0 047 10 0 047 10
C6 (C bass) {0,4,7,9} 9 037 10 0 047 9
C6 (E bass) {0,4,7,9} 9 037 10 0 047 9
C6 (G bass) {0,4,7,9,11} 9 037 0 047 9
Cm (C bass) {0,3,7} 0 [037 0 [0837
Cm (Eb bass) {0,3,7} 0 037 0 037

Cm (G bass) {0,3,7} 0 037 0 037
Cmé (C bass) {0,3,7,9} 0 [037 9 0 [0837 9
Cm6 (Eb bass) {0,3,7,9} 0 037 9 0 037 9
Cm6 (G bass) {0,3,7,9,11} 0 037 9 0 037 9
Cm7 (C bass) | {0,3,7,10} 0 [037 10 3 [047 9
Cm7 (Eb bass) {0,3,7,10} 0 037 10 3 047 9
Cm7 (G bass) | {0,3,7,10,11} 0 037 10 3 047 9
Cm7 (Bb bass) | {0,3,7,10} 0 [037 10 3 [047 9

accuracy: 85% accuracy: 80%

Table 1: Chord labels assigned by the examined approaches. Misinterpretations appear in grey background.
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