
Computational invention of cadences and chord progressions
by conceptual chord-blending

Manfred Eppe1, Roberto Confalonieri1, Ewen Maclean2, Maximos Kaliakatsos3,
Emilios Cambouropoulos3, Marco Schorlemmer1, Mihai Codescu4, Kai-Uwe Kühnberger5

1IIIA-CSIC, Spain
{meppe,confalonieri,marco}@iiia.csic.es

2University of Edinburgh, UK
emaclea2@inf.ed.ac.uk

3University of Thessaloniki, Greece
{emilios,maxk}@mus.auth.gr

4University of Magdeburg, Germany
codescu@iws.cs.uni-magdeburg.de

5 University of Osnabrück, Germany
kkuehnbe@uos.de

Abstract
We present a computational framework for chord inven-
tion based on a cognitive-theoretic perspective on con-
ceptual blending. The framework builds on algebraic
specifications, and solves two musicological problems.
It automatically finds transitions between chord progres-
sions of different keys or idioms, and it substitutes chords
in a chord progression by other chords of a similar func-
tion, as a means to create novel variations. The approach
is demonstrated with several examples where jazz ca-
dences are invented by blending chords in cadences from
earlier idioms, and where novel chord progressions are
generated by inventing transition chords.

1 Introduction
Suppose we live in a early diatonic tonal world, where dis-
sonances in chords are mostly forbidden. We assume that, in
this early harmonic space, some basic cadences have been
established as salient harmonic functions around which the
harmonic language of the idiom(s) has been developed —
for instance, the perfect cadence, the half cadence, the plagal
cadence and, even, older cadences such as the Phrygian ca-
dence. The main question to be addressed in this paper is the
following: Is it possible for a computational system to invent
novel cadences and chord progressions based on blending be-
tween more basic cadences and chord progressions?
To answer this question, we describe cadences as simple pitch
classes with reference to a tonal centre of C, and combine
pitches of the semi-final chords of different cadences, assum-
ing that the final chord is a common tonic chord. Additionally,
we assign priorities to chord notes that reflect their relative
prominence. Similarly, we assign priorities to the relative ex-
tensions of a chord, e.g., having a major third or a dominant
seventh, which are independent from its root note.
Let us examine more closely the perfect and Phrygian ca-
dences (see Fig. 1). Certain notes in their prefinal chords are
more important as they have specific functions: In the perfect
cadence, the third of the dominant seventh is the leading and
most important note in this cadence, the root is the base of the
chord and moves to the tonic, and the seventh resolves down-
wards by stepwise motion, whereas the fifth may be omitted.
In the Phrygian cadence, the bass note (third of the chord) is
the most important note as it plays the role of a downward
leading note, and the second most important note is the root.

In such a setup, we propose two applications of chord blend-
ing, to give rise to new cadences and chord progressions.
The first application is to generate a novel cadence as a ‘fu-
sion’ of existing cadences by blending chords with a similar
function. For example, in case of the perfect and the Phrygian,
we blend their prefinal chords. Here, we start with combina-
tions of at least three notes with the highest priority. Many
of these combinations are not triadic or very dissonant and
may be filtered out using a set of constraints. However, among
those blends that remain, it turns out that the highest rating ac-
cepted blend (according to the priorities described above), is
the tritone substitution progression (IIb7-I) of jazz harmony.
This simple blending mechanism ‘invents’ a chord progres-
sion that embodies some important characteristics of the
Phrygian cadence (bass downward motion by semitone to
the tonic) and the perfect cadence (resolution of tritone); the
blending algorithm creates a new harmonic ‘concept’ that was
actually introduced in jazz centuries later than the original in-
put cadences. The backdoor progression also appears in the
potential blends, but it embodies less characteristics from the
inputs and is therefore considered a weaker blend (Fig. 1).

Figure 1: Conceptual blending between the perfect and Phry-
gian cadence gives rise to the tritone substitution progression
and the backdoor progression

The second application of chord blending is to ‘cross-fade’
chord progressions of different keys or idioms in a smooth
manner by means of a transition chord, which is the result
of blending. Assume that the input sequences are precom-
posed by another system, e.g. the constrained HMM (cHMM)
by [Kaliakatsos and Cambouropoulos, 2014]. Let us suppose
that a chord sequence starts in C major, such as C-Dmin-G7-
C-F, and after its ending an intermediate G]7-C] chord pro-
gression is introduced (having thus a very remote modulation
from C major to C] major). The cHMM system will not find
any transition from the available diatonic chords in C major to
the G]7 chord, and will terminate or give a random continua-
tion. However, if we perform blending on F ([5,9,0]) – the last

chord from the first progression – with G]7 ([8,0,3,6]) – the
first chord from the last progression – then we get [0,3,6,9]
which contains two notes from the first chord and three from
the second.1 This resultant chord is the diminished seventh
chord that is well-known to be very versatile and useful for
modulations to various keys. Hence, the blending mechanism
‘invents’ a new chord that bridges the two key regions.
In order to implement a computational framework that is ca-
pable of performing blends like the aforementioned exam-
ples, we build on the cognitive theory of conceptual blend-
ing by [Fauconnier and Turner, 2002]. We also take inspi-
ration from the category-theoretical formalisation of blend-
ing by [Goguen, 1999] and use the category theoretical col-
imit operation to compute blends. Hence, we contribute to
the ongoing discussion on musical computational creativity
[Ramalho and Ganascia, 1994; Pachet, 2012; Wiggins et al.,
2009], where conceptual blending has been identified to be at
the heart of music meaning and appreciation on formal, ges-
tural, emotional and referential levels [Brandt, 2008].
A number of researchers in the field of computational cre-
ativity have recognised the value of conceptual blending
for building creative systems, and particular implementa-
tions of this cognitive theory have been proposed [T.Veale
and O’Donoghue, 2000; Pereira, 2007; Goguen and Harrell,
2010; Guhe et al., 2011]. However, despite the importance
of blending for music creation, there is surprisingly little
work on formalisations and computational systems that em-
ploy blending for music generation, and it is unclear how
existing implementations of blending can deal with musi-
cological concepts. Exceptions are [Pereira and Cardoso,
2007], who provide a systematic approach to create a novel
chord by blending an existing chord with colour properties,
and [Nichols et al., 2009], who propose a weighted-sum com-
bination of chord transition Markovian matrices from differ-
ent musical styles to produce novel ‘blended’ ones. In both
cases, a detailed computational implementation is not pro-
vided, and the application of chord blending to generate novel
chord progressions has not been investigated. In this work,
we take inspiration from [?], who use a simple informal ca-
dence representation for blending, without providing a com-
putational framework.

2 An algebraic model of chords
For our blending framework, we follow Goguen’s proposal to
model conceptual spaces as algebraic specifications. Towards
this, we use specifications defined in a variant of Common
Algebraic Specification Language (CASL) [Mosses, 2004],
which is extended with priority values associated to axioms.

Definition 1 (Prioritised CASL specification). A prioritised
CASL specification S = (〈ST ,.ST 〉,O,P, 〈A,≤A〉) con-
sists of a set ST of sorts along with a preorder .ST that
defines a sub-sort relationship, a set O of operators that map
objects of argument sorts to the respective domain sort, a set

1Throughout this paper, we follow the usual notation of specify-
ing notes as numbers which refer to semitones above a tonal centre.
If not stated otherwise, we use an absolute tonal centre of C. How-
ever, sometimes we explicitly use the root of a chord as a relative
tonal centre, as described in Sec. 2.

P of predicates that map objects to Boolean values, and a set
of axioms A with a partial priority order ≤A.
We say that two prioritised CASL specifications are equal, if
their sorts, operators, predicates, axioms, as well as subsort-
relationships are equal. Note that this notion of equality does
not involve priority ordering of axioms. As notational con-
vention, we use superscriptAS to denote the set of axioms of
a particular specification S. CASL lets us define our musical
theory about chords and notes in a modular way that facili-
tates the definition of specifications with inheritance relations
between them as follows:
Symbols is the most basic specification that contains the
building blocks to describe notes and chord features. The sort
Note is constituted by numbers from 0 to 11, describing their
position in a scale. This can be a relative or an absolute posi-
tion. For example, 7 can refer to a G note in a C major tonality,
or to the relative interval of a perfect fifth (7 semitones above
the tonality’s or chord’s root).
RelChord inherits from Symbols and contains the op-
erators needed to define a chord of the sort RelChord ,
which has no absolute root. We use the predicate
relNote : RelChord ×Note to assign a relative note to a chord.
For example relNote(c, 7) means that the chord c has a note
which is seven semitones above the root, i.e., a perfect fifth.
AbsRelChord extends RelChord in that it provides the sort
AbsRelChord , a subsort of chord specifications that have
also absolute notes, in addition to the relative notes inherited
from RelChord . Absolute notes are defined with the pred-
icate absNote : AbsRelChord ×Note. We use the usual abso-
lute tonal centre of C, so that e.g., a G7 chord can be specified
by the absolute notes [7,11,2,5]. The AbsRelChord specifica-
tion also involves an operator root : AbsRelChord → Note
to fix the root note of a chord, and a ‘+’ operator that we use
for arithmetics of addition in a cyclic group of 12 semitones.
For example, 7+7=2 denotes that a fifth on top of a fifth is a
major second. This allows us to define the relation between
relative and absolute notes of a chord as follows:
∀n : Note; c : AbsRelChord . relNote(c, n)

⇐⇒ absNote(c, n+ root(c))
(1)

For example, the relative notes [0,4,7,10] determine a rela-
tive dominant seventh chord. Setting the root to 7 makes that
chord a G7, and Axiom (1) allows us to deduce the absolute
notes [7,11,2,5] by adding the root to each relative note. This
corresponds to the following prioritised CASL specification:

spec G7INPERFECT = ABSRELCHORD then
op c : AbsRelChord .root(c) = 7
.absNote(c, 7) %p(2)% .relNote(c, 0) %p(3)%
.absNote(c, 11) %p(3)% .relNote(c, 4) %p(3)%
.absNote(c, 2) %p(1)% .relNote(c, 7) %p(2)%
.absNote(c, 5) %p(2)% .relNote(c, 10) %p(3)%

end

(2)

The priorities are assigned as numbers using the CASL an-
notation p, in the context of G7 being the prefinal chord of
the perfect cadence in a C key (see Sec. 1). Note that we at-
tribute importance to the notes within a chord in two ways.
Firstly, we attach priorities to notes relative to a key, and
hence their function within that key, by prioritising axioms
involving absNote predicates. For example, given that G7 is
the prefinal chord of a perfect cadence resolving in C ma-
jor, then the function of the major third of this chord is vital

because it provides a leading note – a semitone below the
tonic. Thus, the fact absNote(c, 11) is given a high priority
with %p(3)%. Secondly, we attach priorities to notes relative
to the chord root, and hence their function within the chord,
by prioritising axioms involving relNote predicates. For ex-
ample, we usually want to emphasise the importance of the
chord having a dominant seventh, denoted by relNote(c, 10)
%p(3)%, whereas the relative fifths has a lower importance.
A challenging problem in blending is the huge number of pos-
sible combinations of input specifications. Towards this, we
constrain the search space and disallow dissonant chords by
means of the following axioms:

∀c : AbsRelChord . ¬(relNote(c, 3) ∧ relNote(c, 4)) (3a)
∀c : AbsRelChord . ¬relNote(c, 1) (3b)

∀c : AbsRelChord . ¬(relNote(c, 6) ∧ relNote(c, 7)) (3c)

The axioms prohibit chords with one semitone below the ma-
jor third or one semitone above the minor third (3a), one semi-
tone above the root (3b), and one semitone below the perfect
fifth or one semitone above the diminished fifth (3c). These
constraints work well for our examples depicted in Sec. 4, but
they can of course be extended or relaxed if desired.

3 Computational chord blending
A computational chord blending framework should be able to
deal with three problems. First, it has to avoid dissonances
that a naive combination of two chords can produce; second,
it has to respect that some elements in the input chords are
more salient then others; and third, it has to deal with the
huge space of possible blends. In the implementation of this
framework, we employ the core ideas of the notion of Amal-
gams from the field of case based reasoning [Ontañón and
Plaza, 2010] to deal with these problems. Specifically, we
employ a search process that interleaves the combination of
chord specifications with a step-wise generalisation process
that removes notes which cause an inconsistency. We extend
the idea of Amalgams by introducing priorities of notes, to
evaluate the resulting blends and to prune the search space.
Our framework (Fig. 2) first generalises chords by remov-
ing their least salient notes. Then, the generalised chords
are combined via the colimit operation on CASL theories
[Mossakowski, 1998]. After this, it completes the blends
by means of the GCT algorithm [Cambouropoulos et al.,
2014] and a deduction step, and, finally, it performs a con-
sistency check to ensure that the result is not too disso-
nant. If the produced blend is consistent, then it is evalu-
ated by respecting (i) the total number of axioms removed
from a chord specification (removing less axioms gives a bet-
ter blend because more information is preserved) (ii) the im-
portance of axioms removed from a chord specification (re-
moving axioms of low importance gives a better blend be-
cause salient information is preserved), and (iii) the balance
of the amount of generalisation of the chord specifications.
The latter point (iii) is important, because we do not want
blends where one chord is generalised a lot, by removing
many axioms, and another chord only very little, by remov-
ing none or very few axioms. Instead, we want to keep a bal-
anced amount of information from each input space. This be-
haviour refers to the double-scope property of blends, that is

advocated in [Fauconnier and Turner, 2002] as “what we typ-
ically find in scientific, artistic and literary discoveries and
inventions.” Points (i) and (ii) account for many of the opti-
mality principles proposed in [Fauconnier and Turner, 1998;
2002] to ensure ‘good’ or ‘interesting’ blends.
Generalisation.
Generalisation of chords is not only essential to resolve in-
consistencies, but also required to identify commonalities be-
tween the input chords. In blending literature, a conceptual
space that contains only commonalities between two input
spaces is called generic space — a constitutional element
of a conceptual blending process [Fauconnier and Turner,
2002]. In our framework, it is required to perform the colimit
operation on chord specifications. Therefore, we employ a
search process to find the generic space, by removing axioms
(i.e., notes) from chord specifications until only the common
notes between the chords are left. The formal definition of the
generic space of input chord specifications is:
Definition 2 (Generic space). Given a set S of chord specifi-
cations, we say that a specification G is a generic space of S,
if ∀S ∈ S : G ⊆ S, where G ⊆ S denotes that axioms, oper-
ators, predicates, sorts and partial orders in G are subsets of
(or equal to) their respective counterparts in S.
As an example consider the prefinal chords of the perfect and
the Phrygian cadence (G7 and B[min). They have one abso-
lute note (5) and two relative notes (root and fifth) in com-
mon, which are represented as the following generic space:

absNote(c,5) relNote(c,0) relNote(c,7) (4)
We realise the generalisation of chords by successive applica-
tion of generalisation operators, which remove axioms from
a chord specification. For each axiom ax ∈ AS of a chord
specification S there exists one generalisation operator σ(ax)
that removes the axiom. The formal definition is:
Definition 3 (Generalisation operator). A generalisation op-
erator σ(ax) is a partial function that maps a chord speci-
fication to a chord specification. The application of a gener-
alisation operator σ(ax) on a specification S is defined as

σ(ax)(S) =

{
S \ {ax} if ∃S′ : ax 6∈ S′

undefined otherwise
(5)

where S \ ax denotes the removal of an axiom ax from the
poset of axiomsAS of S, and S′ denotes another chord spec-
ification that is input to the blending process.
The conditional statement in Eq. (5) only allows the removal
of an axiom if there exists a chord specification S′ that does
not involve the axiom, i.e., if the axiom is not common among
all input chord specification. This assures that the resulting
generic space is a least general generalisation, where all
commonalities between the input specifications are kept.
The successive application of generalisation operators on a
chord specification forms a generalisation path from the in-
put specification to the generic space. Hence, in order to find
a generic space between several input chords, we search for
one generalisation path for each input specification. A gener-
alisation path is defined as follows:
Definition 4 (Generalisation path). Let S be a prioritised
CASL specification and σ1, . . . , σn be generalisation oper-
ators. We denote a generalisation path as p = σ1; . . . ;σn and

Generalisation

!(C1)
Generic
Space!(C2)

No

No

C1

C2

Combination and Completion

colimit

getGeneralisation(C1)

getGeneralisation(C2)

Yes Completion
GCT + Deduction

Consistency
Check Evaluate Blended

Chord
Yes

No

No

Figure 2: Blending as interleaved generalisation, combination and completion process

write p(S) = σn(· · ·σ2(σ1(S)) · · ·) to denote the successive
application of the generalisation operators in p on S.
As an example, consider the path (6) which leads from the G7
specification (2) to the generic space (4).

σ(absNote(c, 2));σ(absNote(c, 7));σ(relNote(c, 10));

σ(relNote(c, 4));σ(absNote(c, 11));
(6)

A general problem is the huge search space of possible gen-
eralisation paths. To avoid this, we exploit axiom priorities,
and only allow a limited number k of operators that violate
the priority order of axioms within a path, i.e., that remove a
high-priority axiom before a lower-priority axiom is removed.
For example, path (6) does not violate the priority order, be-
cause axioms with a low priority are always removed before
axioms with a higher priority. However, in the case of the
backdoor blend described in Sec.1, the early removal of ax-
iom absNote(c, 11) violates the priority order. For most of
our examples, a value of k = 2 turned out to be useful.
For the generalisation process (Fig. 2), two chords C1 and C2

are given as input to the system, and successively generalised
until the generalisation operators form a generalisation path
to the generic space. Note that it is possible to have general-
isation paths of different length. For example, three general-
isation operators may have to be applied on one input space,
while only two generalisations are required for the other input
space. Once a pair of generalisation paths is found, they are
handed over to a combination and completion process.
Combination and completion.
While a full generalisation path generalises an input chord
specification towards the generic space, we want to keep
those specifics of each input specification that do not cause
inconsistencies in the blend. For example, blending the prefi-
nal G7 chord of the perfect cadence with the prefinal B[min
chord of the Phrygian cadence results in a D[7 chord, which
is the prefinal of the tritone substitution progression. How-
ever, this requires to generalise the G7 chord by removing its
absolute 2 note, because otherwise one would end up with too
much dissonance that arises in combination with the root note
1 of the resulting D[7. However, we must not generalise all
the way down to the generic space, because, for example, the
absolute 11 in the G7 is very salient and should be kept.
Towards this, we introduce the notion of a prefix of a generali-
sation path, which generalises an input chord only as much as
necessary to avoid inconsistencies, thereby keeping as many
salient notes as possible. Formally, a prefix is the subsequence
of the firstm generalisation operators of a generalisation path.

Definition 5 (Generalisation path prefix). Given a general-
isation path p = σ1; · · · ;σn, then ppre = σ1; · · · ;σm is a
prefix of p iff m ≤ n.

For example, it turns out that for blending G7 and B[min, the
generalisation path prefix of G7, which is required to remove
all dissonant notes, is σ(absNote(c, 2));σ(absNote(c, 7)).
The combination and completion process depicted in Fig. 2
selects generalisation path prefixes for each input via
getGeneralisation , and applies them to the input chords. The
result is a generalised version of each input chord, used to
compute candidate blends. The process starts with empty gen-
eralisation path prefixes, and increases the amount of gener-
alisation in each iteration, until a consistent blend is found.
The amount of generalisation is measured as a generalisation
cost, that considers (i) the total amount of generalisation of
each input space, (ii) an additional penalty for paths where
the priority order among axioms is not preserved, and (iii)
the balance between the amount of generalisation for each in-
put specification (recall the double-scope property mentioned
in [Fauconnier and Turner, 2002]). This is determined by the
following functions:
cost(p) = |p|+ |{σ ∈ p |

σ violates the priority order among axioms}|
totalCost(p1, p2) = max(cost(p1), cost(p2))

2+

min(cost(p1), cost(p2))

(7)

First, cost(p) determines the generalisation cost of one gener-
alisation path prefix. This is realised as the sum of the length
|p| of the path, and the number of generalisation operators
σ within p that violate the priority ordering among axioms.
The priority order is violated if an axiom with a higher prior-
ity value is removed before an axiom with a lower priority in
the same path. Second, totalCost determines the total cost of
both generalisation path prefixes together. This is defined as
the square of the higher generalisation cost of the two paths,
plus the lower generalisation cost. Using the square causes a
lower total cost for a pair of paths which have a similar gener-
alisation cost, compared to a pair of paths where the amount
of generalisation is unbalanced. It therefore promotes blends
with the desired double-scope property.
Having selected generalisation prefixes ppre1 , ppre2 with a cer-
tain total generalisation cost for two input chords C1, C2, we
obtain two generalised chord specifications by applying the
prefixes to the chords as described in Def. 4. The generalised
chord specifications and the generic space are then input to
the colimit. Indeed, the colimit operation coincides with what
[Fauconnier and Turner, 2002] refer to as the composition
step of blending, i.e., a ‘raw’ candidate combination of infor-
mation from the input spaces. According to Fauconnier and
Turner, the composition is then subject to a completion and an
elaboration step that enrich the composition with background
knowledge. In our framework, we complete the blend as fol-
lows: First, we analyse the set of absolute notes to determine
the root of a chord using the GCT algorithm [Cambouropou-
los et al., 2014]. Second, we deduce additional information

about absolute and relative notes via axiom (1). For example,
in case of blending G7 with B[min, GCT analyses the abso-
lute notes [1,5,11] of the colimit, and infers that 1 is the root
of the resulting D[7 chord. With the information about the
root, additional information about the relative notes is used
to deduce additional absolute notes and vice-versa, e.g., we
deduce that the D[7 chord should also have a relative fifth.
Once the completion step is done, we check consistency
of the blend. If the blend is consistent, then we evalu-
ate it by considering the generalisation cost. The lower the
total generalisation cost of the path prefixes according to
totalCost(ppre1 , ppre2) (7), the better the blend. After evalu-
ation, the blend is output as a potential solution.

Implementation.
The described blending system is implemented using the Sta-
ble Model Semantics of Answer Set Programming (ASP)
[Gelfond and Lifschitz, 1988], a well-known declarative pro-
gramming paradigm to solve non-monotonic search prob-
lems. In particular, ASP facilitates the implementation of the
unique nondeterministic choice of generalisation operators in
the generalisation part, and the unique nondeterministic se-
lection of prefixes in the combination part of our system, by
using so-called choice rules (see e.g. [Gebser et al., 2012]).
We use the ASP solver clingo v4 [Gebser et al., 2014] as main
reasoning engine, which allows us not only to implement the
search in an incremental manner, but also to use external pro-
grams via a Python interface. In our case, we need Python to
call HETS [Mossakowski, 1998] as an external tool for com-
puting the colimits for CASL specifications, and to invoke
the theorem provers darwin [Baumgartner et al., 2007] and
eprover [Schulz, 2013] for the consistency check.

4 Chord blending at work
To validate our approach, we present various examples of our
system at work. This is summarised in Tables 1 and 2, where
we provide the input chord progressions, the chords that are
blended, the prefixes,2 the colimit, the completion, and the
resulting blend with its respective total generalisation cost.
The two tables refer to the two different applications that we
envisage for chord blending. We refer to these applications as
cadence fusion and cross-fading.

Cadence fusion. This application takes two chord sequences
as input and blends chords of a similar function, which re-
sults in a ‘fusion’ of both input chord sequences. In this paper
we investigate the special case of cadences and present five
corresponding examples. For brevity we generalise the final
chords in the cadences to C chords. As discussed in Sec.1,
we assign a high priority to the absolute 11 note of the G7 of
the perfect cadence, and to the absolute 1 note of the prefinal
B[min in the Phrygian cadence. For the plagal cadence, we
put a high priority on the absolute 5 and 9 notes of its prefinal
chord, since these cause its characteristic suspended feel.
. Tritone progression. This refers to the running example
described throughout the paper. We blend the G7 of the per-

2Recall that prefixes denote the notes that are removed from the
input chords. ‘Prefix1’ refers to the blended chord in the upper line
of the ‘Inputs’ column, and ‘Prefix2’ to the chord in the lower line.

fect and the B[min of the Phrygian cadence to obtain a D[7
as prefinal chord of the tritone substitution progression.
. Backdoor cadence. Like the tritone, this result is also ob-
tained by blending the prefinal chord of the perfect and the
Phrygian cadence. However, this is a weaker blend with a
higher generalisation cost, because the generalisation pre-
fixes violate the priority order of axioms. For example,
absNote(c, 11) is removed from the G7 of the perfect ca-
dence, even though it has a high priority.
. Diatonic extensions. These are variations of generating
jazz-type chords that are obtained by blending the prefinal
chords of the plagal and the perfect cadence. The notes from
the plagal cadence are used as 9th and 11th extensions to the
prefinal G7 of the perfect cadence.
. Modified Phrygian. Here we blend the prefinal chords of
the plagal and the Phrygian cadence. The result is an interest-
ing modification of the Phrygian, with a prefinal B[minmaj9.
Cross-fading. The second application of chord blending con-
catenates two chord sequences to a single chord sequence by
blending the last chord of the first sequence with the first
chord of the last sequence to obtain a transition chord. The
blended chord then serves as a transition chord that is used to
‘cross-fade’ the two chord progressions in a smooth manner.
Examples for this application are depicted in Table 2. We used
the first example for the development of our system. The last
four examples are taken from the Real Book of jazz [Leonard,
2004]. They are of particular interest because they allow us to
evaluate our system. Towards this, we take chord sequences
with a key transition from the book, and blend the last chord
from the first transition with the first chord from the last tran-
sition. Then we compare the resulting blended chord with the
actual chord that is found in the book. If the chord is the same
or similar, we consider the approach to be successful.
As far as the priorities in the examples are concerned, we give
those absolute notes with a specific function in the key a high
priority. In particular, the roots, and thirds within a key are
usually causing certain characteristics that are important. It is
of similar importance when a chord has a characteristic ex-
tension, such as a dom7. Hence, such relative notes (10 in the
case of dom7) are also given a high priority.
. Development example. This refers to the example de-
scribed in Sec. 1, where the F chord is blended with G]7 chord
to obtain the Co7 chord as transition between the keys.
. All the things you are. This has a chord progression
F]min7 - B7 - Emaj7 - C+7 - Fmin7 - B[- E[and hence a
key transition from E major to E[major with C+7 as transi-
tion chord. To evaluate our system, we try if our system would
generate the C+7 transition chord automatically by blending
Emaj7 with Fmin7. Our result is C7]5]9, which in fact is quite
similar to the original C+7.
. Blue Bossa. It contains a progression Cmin-X-E[min,
moving from C minor to E[minor key without explicitly giv-
ing a transition chord (denoted by ‘X’). Our resulting blend
is a C∅7, which one can safely assume as a natural transition
chord chosen by an accompanist.
. Con Alma. This contains a progression C]min - B7 - B[7
- E[7 and is (arguably) moving from a C]min to an E[major
key via the B[7. Our system generates a B[11 as transition
chord, which is very close to the original B[7.

Inputs Prefix1 Prefix2 Colimit Completion Blend

Perfect/Phrygian
Tritone

G7 C

B[min C

σ(abs(2));
σ(abs(7))

σ(abs(10));
σ(rel(3))

D[7
without perf.5th

root D[
A[as perf.5th

D[7 C
(total cost = 6)

Perfect/Phrygian
Backdoor

G7 C

B[min C

σ(abs(7));
σ(abs(11))

σ(abs(1));
σ(rel(3)) B[7

root B[
A[as dom.7th

B[7 C
(total cost = 19)

Perfect/Plagal
Diatonic extension

G7 C

F C
∅ ∅ G11 root G

G11 C
(total cost = 0)

Perfect/Plagal
Diatonic extension

G7 C

F C
∅

σ(abs(0));

σ(rel(7)) G9 root G
G9 C

(total cost = 4)

Phrygian/Plagal
Modified Phrygian

B[min C

F C ∅ σ(rel(4)) B[min
root B[

A as maj.7th
C as 9th

B[minmaj9 C
(total cost = 4)

Table 1: Cadence fusion results generated by our system

Inputs Prefix1 Prefix2 Colimit Completion Blend

Dev.
Example

C F

G]7 C]
σ(abs(5));
σ(rel(7))

σ(abs(8));
σ(rel(10));
σ(rel(4));

σ(rel(7))

single C note

root C
E[as min.3rd

G[dim.5h
A as dim.7th

C Co7 C]

(total cost = 19)

All the
things

B7 Emaj7

Fmin7 B[
σ(rel(11))

σ(abs(5));
σ(rel(3));
σ(rel(7))

C7]5]9
without 7th

root C
B[as 7th

Emaj7 C7]5]9 Fmin7
(total cost = 26)

Blue
Bossa

Cmin

E[min

σ(abs(7));
σ(rel(7)) σ(abs(1)) Cmin

without 5th

root C
F] as dim.5th
B[as min.7th

Cmin C∅7 E[min
(total cost = 5)

Con
alma

C]min B7

E[maj7 E[min7

σ(abs(6));
σ(abs(9));
σ(abs(11))

σ(abs(2));

σ(rel(11));

σ(abs(7))

B[11
without maj.3rd
without perf.5th

without 7th

root B[
D as maj.3rd
F as perf.5th

A[as 7th

B7 B[11 E[maj7

(total cost = 20)

Days
Nights

F7 B[maj7

F]min7 Bmin7

σ(abs(5));
σ(rel(11));

σ(abs(10));

σ(abs(2))

σ(abs(6));
σ(rel(3)) A

root A
G as min.7th

B[maj7 A7 F]min7

(total cost = 39)

Table 2: Cross-fading results generated by our system

. Days and Nights Waiting. This contains a progression
B[maj7 - A7 - F]min7, i.e. it is moving from B[major to a
D major key via the A7 as transition. Blending B[maj7 and
F]min7 indeed gives us an A7.

5 Conclusion
The paper presents a blending-based approach to gener-
ate novel chord progressions and cadences. Though other
blending frameworks, such as [Goguen and Harrell, 2010;
Pereira, 2007; Guhe et al., 2011; T.Veale and O’Donoghue,
2000] are in principle expressive enough to deal with basic
chord specifications, they do not provide a formal model for
this, and it is also unclear how their implementations would
resolve inconsistencies. Our evaluation shows that the results
of our framework are musicologically useful, in terms of in-
venting jazz cadences from earlier ones, and in terms of find-
ing transition chords to ‘cross-fade’ chord sequences. We are
not aware of any other approach that provides a full compu-
tational framework for this.

Our work is based on the cognitive theory of conceptual
blending [Fauconnier and Turner, 2002], and the category
theoretical formalisation by [Goguen, 1999], in that we use
algebraic specifications and combine chords via the colimit.
Though one could think of simpler methods than the colimit
for the naive combination of chords, we appreciate the gener-
ality of our approach: Firstly, it allows us to extend our system
in future work, such that blending can happen directly on the
level of cadences and chord progressions, or specifications
of other musical entities, instead of blending only chords.
Secondly, we can use it for the blending of input specifica-
tions with different algebraic signatures, which makes it pos-
sible to blend non-musicological and musicological concepts
(e.g. [Zbikowski, 2002; Antović, 2011]). Such applications
would involve also a prioritisation for operators and predi-
cates of the algebraic input language, and the introduction of
other generalisation and renaming operators for operators and
predicates, so that the full potential of [Goguen, 1999]’s ideas
of blending general sign-systems can be explored.

References
[Antović, 2011] M. Antović. Musical metaphor revisited:

Primitives, universals and conceptual blending. Stockholm
Metaphor Festival, 2011.

[Baumgartner et al., 2007] P. Baumgartner, A. Fuchs,
H. de Nivelle, and C. Tinelli. Computing finite models by
reduction to function-free clause logic. Journal of Applied
Logic, 2007.

[Brandt, 2008] P. Brandt. Music and the abstract mind. Jour-
nal of Music and Meaning, 7:1–15, 2008.

[Cambouropoulos et al., 2014] E. Cambouropoulos,
M. Kaliakatsos, and C. Tsougras. An idiom-independent
representation of chords for computational music analysis
and generation. In Proceeding of the International
Computer Music Conference, 2014.

[Fauconnier and Turner, 1998] G. Fauconnier and
M. Turner. Principles of conceptual integration. In
J. P. Koenig, editor, Discourse and Cognition: Bridging
the Gap, pages 269–283. Center for the Study of Language
and Information, 1998.

[Fauconnier and Turner, 2002] G. Fauconnier and
M. Turner. The Way We Think: Conceptual Blend-
ing And The Mind’s Hidden Complexities. Basic Books,
2002.

[Gebser et al., 2012] M. Gebser, R. Kaminski, B. Kaufmann,
and T. Schaub. Answer Set Solving in Practice. Morgan
and Claypool, 2012.

[Gebser et al., 2014] M. Gebser, R. Kaminski, B. Kaufmann,
and T. Schaub. Clingo = ASP + control: Preliminary re-
port. CoRR, abs/1405.3694, 2014.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The Stable Model Semantics for Logic Programming. In
Proceedings of the International Conference on Logic Pro-
gramming, 1988.

[Goguen and Harrell, 2005] J. A. Goguen and D. F. Har-
rell. Foundations for active multimedia narrative: Semiotic
spaces and structural blending. Interaction Studies: Social
Behaviour and Communication in Biological and Artificial
Systems, 2005.

[Goguen and Harrell, 2010] J. A. Goguen and D. F. Harrell.
Style: A computational and conceptual blending-based ap-
proach. In S. Argamon, K. Burns, and S. Dubnov, editors,
The Structure of Style: Algorithmic Approaches to Under-
standing Manner and Meaning, pages 291–316. Springer,
2010.

[Goguen, 1999] J. A. Goguen. An introduction to algebraic
semiotics, with application to user interface design. In
C. L. Nehaniv, editor, Computation for Metaphors, Anal-
ogy, and Agents, volume 1562 of Lecture Notes in Com-
puter Science, pages 242–291. 1999.

[Guhe et al., 2011] M. Guhe, A. Pease, A. Smaill,
M. Martı́nez, M. Schmidt, H. Gust, K. U. Kühnberger,
and U.Krumnack. A computational account of concep-
tual blending in basic mathematics. Cognitive Systems
Research, 12(3–4):249–265, 2011.

[Kaliakatsos and Cambouropoulos, 2014] M. Kaliakatsos
and E. Cambouropoulos. Probabilistic harmonisation with
fixed intermediate chord constraints. In Proceeding of the
International Computer Music Conference, 2014.

[Leonard, 2004] H. Leonard. The Real Book. Hal Leonard
Corporation, 2004.

[Mossakowski, 1998] T. Mossakowski. Colimits of order-
sorted specifications. In Recent trends in algebraic devel-
opment techniques, volume 1376 of Lecture Notes in Com-
puter Science, pages 316–332. Springer, Berlin, 1998.

[Mosses, 2004] P. D. Mosses. CASL Reference Manual –
The Complete Documentation of the Common Algebraic
Specification Language, volume 2960 of Lecture Notes in
Computer Science. Springer, 2004.

[Nichols et al., 2009] E. Nichols, D. Morris, and S. Basu.
Data-driven exploration of musical chord sequences. In
Proceedings of the International Conference on Intelligent
User Interfaces, pages 227–236, 2009.

[Ontañón and Plaza, 2010] S. Ontañón and E. Plaza. Amal-
gams: A formal approach for combining multiple case so-
lutions. In I. Bichindaritz and S. Montani, editors, Pro-
ceedings of the International Conference on Case Base
Reasoning, volume 6176 of Lecture Notes in Computer
Science, pages 257–271. Springer, 2010.

[Pachet, 2012] F. Pachet. Musical virtuosity and creativity.
In Computers and Creativity, pages 115–146. Springer,
2012.

[Pereira and Cardoso, 2007] F. Pereira and F. Cardoso.
Knowledge Integration with Conceptual Blending. In Pro-
ceedings of the Irish Conference on Artificial Intelligence
& Cognitive Science, 2007.

[Pereira, 2007] F. Pereira. Creativity and Artificial Intelli-
gence: A Conceptual Blending Approach, volume 4 of Ap-
plications of Cognitive Linguistics. Mouton de Bruyter,
2007.

[Ramalho and Ganascia, 1994] G. Ramalho and J. G.
Ganascia. Simulating creativity in jazz performance. In
Prodeedings of AAAI, volume 94, pages 108–113, 1994.

[Schulz, 2013] S. Schulz. System Description: E 1.8. In
Ken McMillan, Aart Middeldorp, and Andrei Voronkov,
editors, Proceedings of LPAR, volume 8312 of LNCS.
Springer, 2013.

[T.Veale and O’Donoghue, 2000] T.Veale and
D. O’Donoghue. Computation and blending. Cog-
nitive Linguistics, 11(3/4):253–281, 2000.

[Wiggins et al., 2009] G. Wiggins, M. Pearce,
D. Müllensiefen, et al. Computational modeling of
music cognition and musical creativity. In The Oxford
Handbook of Computer Music. Oxford University Press,
2009.

[Zbikowski, 2002] L. Zbikowski. Conceptualizing Music:
Cognitive Structure, Theory, and Analysis. Oxford Uni-
versity Press, 2002.

